3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-01-09 20:38:58 +00:00

fix the duplicate bug

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2025-12-22 20:15:09 -10:00
parent 232bae1f9b
commit 78e225f1ca

View file

@ -1,6 +1,8 @@
#include "nlsat/levelwise.h"
#include "nlsat/nlsat_types.h"
#include "nlsat/nlsat_assignment.h"
#include <iterator>
#include <list>
#include <vector>
#include <unordered_map>
#include <map>
@ -45,7 +47,6 @@ namespace nlsat {
}
}
// todo: consider to key polynomials in a set by using m_pm.eq
struct property {
prop_enum m_prop_tag;
poly* m_poly = nullptr;
@ -127,7 +128,7 @@ namespace nlsat {
root_function(root_function const&) = delete;
root_function& operator=(root_function const&) = delete;
// allow move-assignment so we can sort a vector<root_function>
root_function& operator=(root_function&& other) noexcept { val = other.val; ire = other.ire; return *this; }
root_function& operator=(root_function&& other) noexcept { val = other.val; ire = other.ire; return *this; }
};
solver& m_solver;
polynomial_ref_vector const& m_P;
@ -141,23 +142,35 @@ namespace nlsat {
bool m_fail = false;
/*
Let us suppose that l = m_level, and j is such that m_rfunc[j](x_l) <= sample(x_l) and
m_rfunc[j](x_l) reaches the maximum of such numbern. Let k is the symmetrical definition for
m_rfunc[j](x_l) reaches the maximum of such numbers. Let k is the symmetrical definition for
the upper bounds, and for simplicity assume that both j and k are defined.
The paper does not address it formally, but the idea is that the relation is legal
if and only if for every p < j, there is a path (p, p1), (p1, p2), ...(p_n, j) inside of the relation,
and the corresponding statement for the upper bound.
*/
struct relation_E {
std::vector<root_function> m_rfunc; // the root functions on a level
std::list<root_function> m_rfunc; // the root functions on a level
std::vector<std::pair<unsigned, unsigned>> m_pairs; // of the relation
bool empty() const { return m_rfunc.size() == 0 && m_pairs.size() == 0; }
void clear() {
m_pairs.clear();
m_rfunc.clear();
}
// the indices point to vector m_rfunc
std::list<root_function>::iterator rfunc_it(unsigned index) {
auto it = m_rfunc.begin();
std::advance(it, index);
return it;
}
std::list<root_function>::const_iterator rfunc_it(unsigned index) const {
auto it = m_rfunc.begin();
std::advance(it, index);
return it;
}
root_function& rfunc_at(unsigned index) { return *rfunc_it(index); }
root_function const& rfunc_at(unsigned index) const { return *rfunc_it(index); }
// the indices point to list m_rfunc
void add_pair(unsigned j, unsigned k) {
if ((void*)m_rfunc[j].ire.p != (void*)m_rfunc[k].ire.p) // compare pointers
if ((void*)rfunc_at(j).ire.p != (void*)rfunc_at(k).ire.p) // compare pointers
m_pairs.emplace_back(j, k);
}
};
@ -363,61 +376,79 @@ namespace nlsat {
}
void get_el_eu(unsigned l, unsigned u, unsigned & el, unsigned & eu) {
auto & rfs = m_rel.m_rfunc;
auto const& rfs = m_rel.m_rfunc;
el = l; eu = u;
if (is_set(l))
while (el > 0 && m_am.eq(rfs[el - 1].val, rfs[l].val))
if (is_set(l)) {
auto it_l = m_rel.rfunc_it(l);
auto it_check = it_l;
while (el > 0) {
auto it_prev = it_check;
--it_prev;
if (!m_am.eq(it_prev->val, it_l->val))
break;
--el;
if (is_set(u))
while (eu + 1 < rfs.size() && m_am.eq(rfs[eu + 1].val, rfs[u].val))
++eu;
}
void min_degrees_to_bounds(unsigned l, unsigned u_index, unsigned el, unsigned eu) {
auto & rfs = m_rel.m_rfunc;
if (is_set(l) && el < l) {
unsigned j = l;
unsigned min_deg = m_pm.degree(rfs[l].ire.p, m_level);
unsigned min_deg_pos = l;
while (j -- > el) {
unsigned deg = m_pm.degree(rfs[j].ire.p, m_level);
if (deg < min_deg) {
min_deg = deg;
min_deg_pos = j;
}
}
if (min_deg_pos != l) {
std::swap(rfs[min_deg_pos], rfs[l]);
it_check = it_prev;
}
}
if (is_set(u_index) && eu > u_index) {
unsigned min_deg = m_pm.degree(rfs[u_index].ire.p, m_level);
unsigned min_deg_pos = u_index;
unsigned j = u_index;
while (j ++ < eu ) {
unsigned deg = m_pm.degree(rfs[j].ire.p, m_level);
if (is_set(u)) {
auto it_u = m_rel.rfunc_it(u);
auto it_check = it_u;
while (true) {
auto it_next = it_check;
++it_next;
if (it_next == rfs.end() || !m_am.eq(it_next->val, it_u->val))
break;
++eu;
it_check = it_next;
}
}
}
void min_degrees_to_bounds(unsigned l, unsigned u_index, unsigned el, unsigned eu) {
if (is_set(l) && el < l) {
auto it_l = m_rel.rfunc_it(l);
auto it = it_l;
unsigned j = l;
unsigned min_deg = m_pm.degree(it_l->ire.p, m_level);
auto it_min = it_l;
while (j-- > el) {
--it;
unsigned deg = m_pm.degree(it->ire.p, m_level);
if (deg < min_deg) {
min_deg = deg;
min_deg_pos = eu + 1;
}
it_min = it;
}
}
if (min_deg_pos != u_index) {
std::swap(rfs[min_deg_pos], rfs[u_index]);
if (it_min != it_l)
std::iter_swap(it_min, it_l);
}
if (is_set(u_index) && eu > u_index) {
auto it_u = m_rel.rfunc_it(u_index);
auto it = it_u;
unsigned j = u_index;
unsigned min_deg = m_pm.degree(it_u->ire.p, m_level);
auto it_min = it_u;
while (j++ < eu) {
++it;
unsigned deg = m_pm.degree(it->ire.p, m_level);
if (deg < min_deg) {
min_deg = deg;
it_min = it;
}
}
if (it_min != it_u)
std::iter_swap(it_min, it_u);
}
}
size_t find_mid_index(anum const& v) const {
auto const& rfs = m_rel.m_rfunc;
size_t lo = 0, hi = rfs.size();
while (lo < hi) {
size_t m = lo + (hi - lo) / 2;
if (m_am.compare(rfs[m].val, v) <= 0)
lo = m + 1;
else
hi = m;
size_t idx = 0;
for (auto const& rf : m_rel.m_rfunc) {
if (m_am.compare(rf.val, v) > 0)
break;
++idx;
}
return lo;
return idx;
}
// Part B of construct_interval: build (I, E, ≼) representation for level i
@ -427,19 +458,22 @@ namespace nlsat {
return;
anum const& v = sample().value(m_level);
auto &rfs = m_rel.m_rfunc;
auto mid = rfs.begin() + find_mid_index(v);
auto mid_index = find_mid_index(v);
auto mid = m_rel.rfunc_it(static_cast<unsigned>(mid_index));
auto & I = m_I[m_level];
unsigned l_index = -1, u_index = -1; // indices in rfs
SASSERT(mid == rfs.end() || m_am.lt(v, mid->val));
if (mid != rfs.begin()) {
auto& r = *(mid - 1);
auto it_prev = mid;
--it_prev;
auto& r = *it_prev;
if (m_am.eq(r.val, v)) {
l_index = mid - rfs.begin() - 1;
l_index = static_cast<unsigned>(mid_index - 1);
I.section = true;
I.l = r.ire.p; I.l_index = r.ire.i;
} else {
SASSERT( m_am.lt(r.val, v));
l_index = mid - rfs.begin() - 1;
l_index = static_cast<unsigned>(mid_index - 1);
I.l = r.ire.p; I.l_index = r.ire.i;
if (mid != rfs.end()) {
u_index = l_index + 1;
@ -463,7 +497,7 @@ namespace nlsat {
tout << "pairs:\n";
for (unsigned kk = 0; kk < m_rel.m_pairs.size(); ++kk) {
auto pair = m_rel.m_pairs[kk];
display(tout, m_rel.m_rfunc[pair.first]) << "<<<" ; display(tout, m_rel.m_rfunc[pair.second])<< "\n";
display(tout, m_rel.rfunc_at(pair.first)) << "<<<" ; display(tout, m_rel.rfunc_at(pair.second))<< "\n";
}
}
display(tout << "m_I[" << m_level << "]:", m_I[m_level]) << std::endl;);
@ -501,6 +535,10 @@ namespace nlsat {
}
void fill_relation_pairs(unsigned l, unsigned u) {
unsigned el = l, eu = u;
get_el_eu(l, u, el, eu);
min_degrees_to_bounds(l, u, el, eu);
if (m_relation_mode == biggest_cell)
fill_relation_with_biggest_cell_heuristic(l, u);
else if (m_relation_mode == chain)
@ -530,43 +568,31 @@ namespace nlsat {
if (num_roots == 0)
continue;
if (m_rel.m_rfunc.empty()) {
m_rel.m_rfunc.reserve(num_roots);
for (unsigned k = 0; k < num_roots; ++k)
m_rel.m_rfunc.emplace_back(m_am, p, k + 1, roots[k]);
continue;
}
// Merge sorted roots into m_rfunc, dropping duplicates by degree.
std::vector<root_function> merged;
merged.reserve(m_rel.m_rfunc.size() + num_roots);
unsigned j = 0, k = 0;
unsigned p_deg = m_pm.degree(p, m_level);
while (j < m_rel.m_rfunc.size() && k < num_roots) {
int cmp = m_am.compare(m_rel.m_rfunc[j].val, roots[k]);
if (cmp < 0) {
merged.push_back(std::move(m_rel.m_rfunc[j]));
++j;
}
// Merge sorted roots into m_rfunc
auto it = m_rel.m_rfunc.begin();
unsigned k = 0;
while (it != m_rel.m_rfunc.end() && k < num_roots) {
int cmp = m_am.compare(it->val, roots[k]);
if (cmp < 0)
++it;
else if (cmp > 0) {
merged.emplace_back(m_am, p, k + 1, roots[k]);
m_rel.m_rfunc.emplace(it, m_am, p, k + 1, roots[k]);
++k;
}
else {
unsigned existing_deg = m_pm.degree(m_rel.m_rfunc[j].ire.p, m_level);
if (existing_deg <= p_deg)
merged.push_back(std::move(m_rel.m_rfunc[j]));
else
merged.emplace_back(m_am, p, k + 1, roots[k]);
++j;
m_rel.m_rfunc.emplace(it, m_am, p, k + 1, roots[k]);
++it;
++k;
}
}
while (j < m_rel.m_rfunc.size())
merged.push_back(std::move(m_rel.m_rfunc[j++]));
while (k < num_roots) {
merged.emplace_back(m_am, p, k + 1, roots[k]);
k++;
m_rel.m_rfunc.emplace_back(m_am, p, k + 1, roots[k]);
++k;
}
m_rel.m_rfunc = std::move(merged);
TRACE(lws, tout << "m_rfunc after merge:\n"; for (auto const& rf : m_rel.m_rfunc) display(tout, rf) << "\n";);
}
TRACE(lws, tout << "exit\n";);
@ -618,12 +644,11 @@ namespace nlsat {
psc_chain(pa, pb, x, chain);
for (unsigned i = 0; i < chain.size(); ++i) {
r = polynomial_ref(chain.get(i), m_pm);
r = polynomial_ref(chain.get(i), m_pm);
if (is_const(r))
continue;
break;
break;
}
TRACE(lws,
tout << "psc resultant wrt x" << x << "\n";
::nlsat::display(tout << "a: ", m_solver, pa) << "\n";
@ -1019,11 +1044,13 @@ namespace nlsat {
mk_prop(connected, level_t(m_level - 1));
}
for (const auto & pair: m_rel.m_pairs) {
poly *a = m_rel.m_rfunc[pair.first].ire.p;
poly *b = m_rel.m_rfunc[pair.second].ire.p;
auto& ar = m_rel.rfunc_at(pair.first);
auto& br = m_rel.rfunc_at(pair.second);
poly *a = ar.ire.p;
poly *b = br.ire.p;
if ((void*)a == (void*)b) continue;
SASSERT(max_var(a) == max_var(b) && max_var(b) == m_level) ;
if (m_pm.id(a) != m_pm.id(b))
add_ord_inv_resultant(a, b, m_level);
add_ord_inv_resultant(a, b, m_level);
}
}
@ -1106,9 +1133,11 @@ namespace nlsat {
return out;
}
out << " Root functions:\n";
for (size_t i = 0; i < m_rel.m_rfunc.size(); ++i) {
out << " [" << i << "]: ";
display(out, m_rel.m_rfunc[i], true) << "\n";
size_t idx = 0;
for (auto const& rf : m_rel.m_rfunc) {
out << " [" << idx << "]: ";
display(out, rf, true) << "\n";
++idx;
}
out << " Pairs:\n";
for (const auto& pair : m_rel.m_pairs) {