3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00

Add html pretty printing mode for RCF package

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-01-27 10:19:54 -08:00
parent 8e2298c327
commit 77f58269ed
8 changed files with 156 additions and 94 deletions

View file

@ -98,13 +98,13 @@ extern "C" {
Z3_CATCH_RETURN(0);
}
Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal(Z3_context c, Z3_string name) {
Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal(Z3_context c) {
Z3_TRY;
LOG_Z3_rcf_mk_infinitesimal(c, name);
LOG_Z3_rcf_mk_infinitesimal(c);
RESET_ERROR_CODE();
reset_rcf_cancel(c);
rcnumeral r;
rcfm(c).mk_infinitesimal(name, r);
rcfm(c).mk_infinitesimal(r);
RETURN_Z3(from_rcnumeral(r));
Z3_CATCH_RETURN(0);
}
@ -268,13 +268,13 @@ extern "C" {
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_string Z3_API Z3_rcf_num_to_string(Z3_context c, Z3_rcf_num a, Z3_bool compact) {
Z3_string Z3_API Z3_rcf_num_to_string(Z3_context c, Z3_rcf_num a, Z3_bool compact, Z3_bool html) {
Z3_TRY;
LOG_Z3_rcf_num_to_string(c, a, compact);
LOG_Z3_rcf_num_to_string(c, a, compact, html);
RESET_ERROR_CODE();
reset_rcf_cancel(c);
std::ostringstream buffer;
rcfm(c).display(buffer, to_rcnumeral(a), compact != 0);
rcfm(c).display(buffer, to_rcnumeral(a), compact != 0, html != 0);
return mk_c(c)->mk_external_string(buffer.str());
Z3_CATCH_RETURN("");
}

View file

@ -29,8 +29,10 @@ def E(ctx=None):
return RCFNum(Z3_rcf_mk_e(ctx.ref()), ctx)
def MkInfinitesimal(name="eps", ctx=None):
# Todo: remove parameter name.
# For now, we keep it for backward compatibility.
ctx = z3._get_ctx(ctx)
return RCFNum(Z3_rcf_mk_infinitesimal(ctx.ref(), name), ctx)
return RCFNum(Z3_rcf_mk_infinitesimal(ctx.ref()), ctx)
def MkRoots(p, ctx=None):
ctx = z3._get_ctx(ctx)
@ -49,6 +51,7 @@ def MkRoots(p, ctx=None):
return r
class RCFNum:
html = False
def __init__(self, num, ctx=None):
# TODO: add support for converting AST numeral values into RCFNum
if isinstance(num, RCFNumObj):
@ -65,10 +68,10 @@ class RCFNum:
return self.ctx.ref()
def __repr__(self):
return Z3_rcf_num_to_string(self.ctx_ref(), self.num, False)
return Z3_rcf_num_to_string(self.ctx_ref(), self.num, False, RCFNum.html)
def compact_str(self):
return Z3_rcf_num_to_string(self.ctx_ref(), self.num, True)
return Z3_rcf_num_to_string(self.ctx_ref(), self.num, True, RCFNum.html)
def __add__(self, other):
v = _to_rcfnum(other, self.ctx)

View file

@ -64,9 +64,9 @@ extern "C" {
/**
\brief Return a new infinitesimal that is smaller than all elements in the Z3 field.
def_API('Z3_rcf_mk_infinitesimal', RCF_NUM, (_in(CONTEXT), _in(STRING)))
def_API('Z3_rcf_mk_infinitesimal', RCF_NUM, (_in(CONTEXT),))
*/
Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal(__in Z3_context c, __in Z3_string name);
Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal(__in Z3_context c);
/**
\brief Store in roots the roots of the polynomial <tt>a[n-1]*x^{n-1} + ... + a[0]</tt>.
@ -173,9 +173,9 @@ extern "C" {
/**
\brief Convert the RCF numeral into a string.
def_API('Z3_rcf_num_to_string', STRING, (_in(CONTEXT), _in(RCF_NUM), _in(BOOL)))
def_API('Z3_rcf_num_to_string', STRING, (_in(CONTEXT), _in(RCF_NUM), _in(BOOL), _in(BOOL)))
*/
Z3_string Z3_API Z3_rcf_num_to_string(__in Z3_context c, __in Z3_rcf_num a, __in Z3_bool compact);
Z3_string Z3_API Z3_rcf_num_to_string(__in Z3_context c, __in Z3_rcf_num a, __in Z3_bool compact, __in Z3_bool html);
/**
\brief Convert the RCF numeral into a string in decimal notation.

View file

@ -231,6 +231,7 @@ public:
bool contains(interval const & n, numeral const & v) const;
void display(std::ostream & out, interval const & n) const;
void display_pp(std::ostream & out, interval const & n) const;
bool check_invariant(interval const & n) const;

View file

@ -643,6 +643,15 @@ void interval_manager<C>::display(std::ostream & out, interval const & n) const
out << (upper_is_open(n) ? ")" : "]");
}
template<typename C>
void interval_manager<C>::display_pp(std::ostream & out, interval const & n) const {
out << (lower_is_open(n) ? "(" : "[");
::display_pp(out, m(), lower(n), lower_kind(n));
out << ", ";
::display_pp(out, m(), upper(n), upper_kind(n));
out << (upper_is_open(n) ? ")" : "]");
}
template<typename C>
bool interval_manager<C>::check_invariant(interval const & n) const {
if (::eq(m(), lower(n), lower_kind(n), upper(n), upper_kind(n))) {

View file

@ -298,26 +298,41 @@ namespace realclosure {
struct transcendental : public extension {
symbol m_name;
symbol m_pp_name;
unsigned m_k;
mk_interval & m_proc;
transcendental(unsigned idx, symbol const & n, mk_interval & p):extension(TRANSCENDENTAL, idx), m_name(n), m_k(0), m_proc(p) {}
transcendental(unsigned idx, symbol const & n, symbol const & pp_n, mk_interval & p):
extension(TRANSCENDENTAL, idx), m_name(n), m_pp_name(pp_n), m_k(0), m_proc(p) {}
void display(std::ostream & out) const {
out << m_name;
void display(std::ostream & out, bool pp = false) const {
if (pp)
out << m_pp_name;
else
out << m_name;
}
};
struct infinitesimal : public extension {
symbol m_name;
symbol m_pp_name;
infinitesimal(unsigned idx, symbol const & n):extension(INFINITESIMAL, idx), m_name(n) {}
infinitesimal(unsigned idx, symbol const & n, symbol const & pp_n):extension(INFINITESIMAL, idx), m_name(n), m_pp_name(pp_n) {}
void display(std::ostream & out) const {
if (m_name.is_numerical())
out << "eps!" << m_name.get_num();
else
out << m_name;
void display(std::ostream & out, bool pp = false) const {
if (pp) {
if (m_pp_name.is_numerical())
out << "&epsilon;<sub>" << m_pp_name.get_num() << "</sub>";
else
out << m_pp_name;
}
else {
if (m_name.is_numerical())
out << "eps!" << m_name.get_num();
else
out << m_name;
}
}
};
@ -1266,9 +1281,9 @@ namespace realclosure {
/**
\brief Create a new infinitesimal.
*/
void mk_infinitesimal(symbol const & n, numeral & r) {
void mk_infinitesimal(symbol const & n, symbol const & pp_n, numeral & r) {
unsigned idx = next_infinitesimal_idx();
infinitesimal * eps = alloc(infinitesimal, idx, n);
infinitesimal * eps = alloc(infinitesimal, idx, n, pp_n);
m_extensions[extension::INFINITESIMAL].push_back(eps);
set_lower(eps->interval(), mpbq(0));
@ -1280,12 +1295,12 @@ namespace realclosure {
SASSERT(depends_on_infinitesimals(r));
}
void mk_infinitesimal(char const * n, numeral & r) {
mk_infinitesimal(symbol(n), r);
void mk_infinitesimal(char const * n, char const * pp_n, numeral & r) {
mk_infinitesimal(symbol(n), symbol(pp_n), r);
}
void mk_infinitesimal(numeral & r) {
mk_infinitesimal(symbol(next_infinitesimal_idx()), r);
mk_infinitesimal(symbol(next_infinitesimal_idx()), symbol(next_infinitesimal_idx()), r);
}
void refine_transcendental_interval(transcendental * t) {
@ -1318,9 +1333,9 @@ namespace realclosure {
}
}
void mk_transcendental(symbol const & n, mk_interval & proc, numeral & r) {
void mk_transcendental(symbol const & n, symbol const & pp_n, mk_interval & proc, numeral & r) {
unsigned idx = next_transcendental_idx();
transcendental * t = alloc(transcendental, idx, n, proc);
transcendental * t = alloc(transcendental, idx, n, pp_n, proc);
m_extensions[extension::TRANSCENDENTAL].push_back(t);
while (contains_zero(t->interval())) {
@ -1332,12 +1347,12 @@ namespace realclosure {
SASSERT(!depends_on_infinitesimals(r));
}
void mk_transcendental(char const * p, mk_interval & proc, numeral & r) {
mk_transcendental(symbol(p), proc, r);
void mk_transcendental(char const * p, char const * pp_n, mk_interval & proc, numeral & r) {
mk_transcendental(symbol(p), symbol(pp_n), proc, r);
}
void mk_transcendental(mk_interval & proc, numeral & r) {
mk_transcendental(symbol(next_transcendental_idx()), proc, r);
mk_transcendental(symbol(next_transcendental_idx()), symbol(next_transcendental_idx()), proc, r);
}
void mk_pi(numeral & r) {
@ -1345,7 +1360,7 @@ namespace realclosure {
set(r, m_pi);
}
else {
mk_transcendental(symbol("pi"), m_mk_pi_interval, r);
mk_transcendental(symbol("pi"), symbol("&pi;"), m_mk_pi_interval, r);
m_pi = r.m_value;
inc_ref(m_pi);
}
@ -1356,7 +1371,7 @@ namespace realclosure {
set(r, m_e);
}
else {
mk_transcendental(symbol("e"), m_mk_e_interval, r);
mk_transcendental(symbol("e"), symbol("e"), m_mk_e_interval, r);
m_e = r.m_value;
inc_ref(m_e);
}
@ -5762,7 +5777,7 @@ namespace realclosure {
}
template<typename DisplayVar>
void display_polynomial(std::ostream & out, unsigned sz, value * const * p, DisplayVar const & display_var, bool compact) const {
void display_polynomial(std::ostream & out, unsigned sz, value * const * p, DisplayVar const & display_var, bool compact, bool pp) const {
if (sz == 0) {
out << "0";
return;
@ -5778,33 +5793,44 @@ namespace realclosure {
else
out << " + ";
if (i == 0)
display(out, p[i], compact);
display(out, p[i], compact, pp);
else {
if (!is_rational_one(p[i])) {
if (use_parenthesis(p[i])) {
out << "(";
display(out, p[i], compact);
out << ")*";
display(out, p[i], compact, pp);
out << ")";
if (pp)
out << " ";
else
out << "*";
}
else {
display(out, p[i], compact);
out << "*";
display(out, p[i], compact, pp);
if (pp)
out << " ";
else
out << "*";
}
}
display_var(out, compact);
if (i > 1)
out << "^" << i;
display_var(out, compact, pp);
if (i > 1) {
if (pp)
out << "<sup>" << i << "</sup>";
else
out << "^" << i;
}
}
}
}
template<typename DisplayVar>
void display_polynomial(std::ostream & out, polynomial const & p, DisplayVar const & display_var, bool compact) const {
display_polynomial(out, p.size(), p.c_ptr(), display_var, compact);
void display_polynomial(std::ostream & out, polynomial const & p, DisplayVar const & display_var, bool compact, bool pp) const {
display_polynomial(out, p.size(), p.c_ptr(), display_var, compact, pp);
}
struct display_free_var_proc {
void operator()(std::ostream & out, bool compact) const {
void operator()(std::ostream & out, bool compact, bool pp) const {
out << "x";
}
};
@ -5813,13 +5839,13 @@ namespace realclosure {
imp const & m;
extension * m_ref;
display_ext_proc(imp const & _m, extension * r):m(_m), m_ref(r) {}
void operator()(std::ostream & out, bool compact) const {
m.display_ext(out, m_ref, compact);
void operator()(std::ostream & out, bool compact, bool pp) const {
m.display_ext(out, m_ref, compact, pp);
}
};
void display_polynomial_expr(std::ostream & out, polynomial const & p, extension * ext, bool compact) const {
display_polynomial(out, p, display_ext_proc(*this, ext), compact);
void display_polynomial_expr(std::ostream & out, polynomial const & p, extension * ext, bool compact, bool pp) const {
display_polynomial(out, p, display_ext_proc(*this, ext), compact, pp);
}
static void display_poly_sign(std::ostream & out, int s) {
@ -5846,7 +5872,7 @@ namespace realclosure {
out << "}";
}
void display_sign_conditions(std::ostream & out, sign_condition * sc, array<polynomial> const & qs, bool compact) const {
void display_sign_conditions(std::ostream & out, sign_condition * sc, array<polynomial> const & qs, bool compact, bool pp) const {
bool first = true;
out << "{";
while (sc) {
@ -5854,21 +5880,28 @@ namespace realclosure {
first = false;
else
out << ", ";
display_polynomial(out, qs[sc->qidx()], display_free_var_proc(), compact);
display_polynomial(out, qs[sc->qidx()], display_free_var_proc(), compact, pp);
display_poly_sign(out, sc->sign());
sc = sc->prev();
}
out << "}";
}
void display_algebraic_def(std::ostream & out, algebraic * a, bool compact) const {
void display_interval(std::ostream & out, mpbqi const & i, bool pp) const {
if (pp)
bqim().display_pp(out, i);
else
bqim().display(out, i);
}
void display_algebraic_def(std::ostream & out, algebraic * a, bool compact, bool pp) const {
out << "root(";
display_polynomial(out, a->p(), display_free_var_proc(), compact);
display_polynomial(out, a->p(), display_free_var_proc(), compact, pp);
out << ", ";
bqim().display(out, a->iso_interval());
display_interval(out, a->iso_interval(), pp);
out << ", ";
if (a->sdt() != 0)
display_sign_conditions(out, a->sdt()->sc(a->sc_idx()), a->sdt()->qs(), compact);
display_sign_conditions(out, a->sdt()->sc(a->sc_idx()), a->sdt()->qs(), compact, pp);
else
out << "{}";
out << ")";
@ -5878,28 +5911,33 @@ namespace realclosure {
collect_algebraic_refs c;
for (unsigned i = 0; i < n; i++)
c.mark(p[i]);
display_polynomial(out, n, p, display_free_var_proc(), true);
display_polynomial(out, n, p, display_free_var_proc(), true, false);
std::sort(c.m_found.begin(), c.m_found.end(), rank_lt_proc());
for (unsigned i = 0; i < c.m_found.size(); i++) {
algebraic * ext = c.m_found[i];
out << "\n r!" << ext->idx() << " := ";
display_algebraic_def(out, ext, true);
display_algebraic_def(out, ext, true, false);
}
}
void display_ext(std::ostream & out, extension * r, bool compact) const {
void display_ext(std::ostream & out, extension * r, bool compact, bool pp) const {
switch (r->knd()) {
case extension::TRANSCENDENTAL: to_transcendental(r)->display(out); break;
case extension::INFINITESIMAL: to_infinitesimal(r)->display(out); break;
case extension::TRANSCENDENTAL: to_transcendental(r)->display(out, pp); break;
case extension::INFINITESIMAL: to_infinitesimal(r)->display(out, pp); break;
case extension::ALGEBRAIC:
if (compact)
out << "r!" << r->idx();
else
display_algebraic_def(out, to_algebraic(r), compact);
if (compact) {
if (pp)
out << "&alpha;<sub>" << r->idx() << "</sub>";
else
out << "r!" << r->idx();
}
else {
display_algebraic_def(out, to_algebraic(r), compact, pp);
}
}
}
void display(std::ostream & out, value * v, bool compact) const {
void display(std::ostream & out, value * v, bool compact, bool pp=false) const {
if (v == 0)
out << "0";
else if (is_nz_rational(v))
@ -5907,51 +5945,50 @@ namespace realclosure {
else {
rational_function_value * rf = to_rational_function(v);
if (is_denominator_one(rf)) {
display_polynomial_expr(out, rf->num(), rf->ext(), compact);
display_polynomial_expr(out, rf->num(), rf->ext(), compact, pp);
}
else if (is_rational_one(rf->num())) {
out << "1/(";
display_polynomial_expr(out, rf->den(), rf->ext(), compact);
display_polynomial_expr(out, rf->den(), rf->ext(), compact, pp);
out << ")";
}
else {
out << "(";
display_polynomial_expr(out, rf->num(), rf->ext(), compact);
display_polynomial_expr(out, rf->num(), rf->ext(), compact, pp);
out << ")/(";
display_polynomial_expr(out, rf->den(), rf->ext(), compact);
display_polynomial_expr(out, rf->den(), rf->ext(), compact, pp);
out << ")";
}
}
}
void display_compact(std::ostream & out, value * a) const {
void display_compact(std::ostream & out, value * a, bool pp=false) const {
collect_algebraic_refs c;
c.mark(a);
if (c.m_found.empty()) {
display(out, a, true);
display(out, a, true, pp);
}
else {
std::sort(c.m_found.begin(), c.m_found.end(), rank_lt_proc());
out << "[";
display(out, a, true);
display(out, a, true, pp);
for (unsigned i = 0; i < c.m_found.size(); i++) {
algebraic * ext = c.m_found[i];
out << "; r!" << ext->idx() << " := ";
display_algebraic_def(out, ext, true);
if (pp)
out << "; &alpha;<sub>" << ext->idx() << "</sub> := ";
else
out << "; r!" << ext->idx() << " := ";
display_algebraic_def(out, ext, true, pp);
}
out << "]";
}
}
void display_compact(std::ostream & out, numeral const & a) const {
display_compact(out, a.m_value);
}
void display(std::ostream & out, numeral const & a, bool compact=false) const {
void display(std::ostream & out, numeral const & a, bool compact=false, bool pp=false) const {
if (compact)
display_compact(out, a);
display_compact(out, a.m_value, pp);
else
display(out, a.m_value, false);
display(out, a.m_value, false, pp);
}
void display_non_rational_in_decimal(std::ostream & out, numeral const & a, unsigned precision) {
@ -5989,7 +6026,7 @@ namespace realclosure {
if (is_zero(a))
out << "[0, 0]";
else
bqim().display(out, interval(a.m_value));
display_interval(out, interval(a.m_value), false);
}
};
@ -6029,16 +6066,16 @@ namespace realclosure {
m_imp->del(a);
}
void manager::mk_infinitesimal(char const * n, numeral & r) {
m_imp->mk_infinitesimal(n, r);
void manager::mk_infinitesimal(char const * n, char const * pp_n, numeral & r) {
m_imp->mk_infinitesimal(n, pp_n, r);
}
void manager::mk_infinitesimal(numeral & r) {
m_imp->mk_infinitesimal(r);
}
void manager::mk_transcendental(char const * n, mk_interval & proc, numeral & r) {
m_imp->mk_transcendental(n, proc, r);
void manager::mk_transcendental(char const * n, char const * pp_n, mk_interval & proc, numeral & r) {
m_imp->mk_transcendental(n, pp_n, proc, r);
}
void manager::mk_transcendental(mk_interval & proc, numeral & r) {
@ -6212,9 +6249,9 @@ namespace realclosure {
return gt(a, _b);
}
void manager::display(std::ostream & out, numeral const & a, bool compact) const {
void manager::display(std::ostream & out, numeral const & a, bool compact, bool pp) const {
save_interval_ctx ctx(this);
m_imp->display(out, a, compact);
m_imp->display(out, a, compact, pp);
}
void manager::display_decimal(std::ostream & out, numeral const & a, unsigned precision) const {
@ -6234,7 +6271,7 @@ namespace realclosure {
};
void pp(realclosure::manager::imp * imp, realclosure::polynomial const & p, realclosure::extension * ext) {
imp->display_polynomial_expr(std::cout, p, ext, false);
imp->display_polynomial_expr(std::cout, p, ext, false, false);
std::cout << std::endl;
}
@ -6278,6 +6315,6 @@ void pp(realclosure::manager::imp * imp, mpq const & n) {
}
void pp(realclosure::manager::imp * imp, realclosure::extension * x) {
imp->display_ext(std::cout, x, false);
imp->display_ext(std::cout, x, false, false);
std::cout << std::endl;
}

View file

@ -70,7 +70,7 @@ namespace realclosure {
/**
\brief Add a new infinitesimal to the current field. The new infinitesimal is smaller than any positive element in the field.
*/
void mk_infinitesimal(char const * name, numeral & r);
void mk_infinitesimal(char const * name, char const * pp_name, numeral & r);
void mk_infinitesimal(numeral & r);
/**
@ -83,7 +83,7 @@ namespace realclosure {
Then, we extend the field F with 1 - Pi. 1 - Pi is transcendental with respect to algebraic real numbers, but it is NOT transcendental
with respect to F, since F contains Pi.
*/
void mk_transcendental(char const * name, mk_interval & proc, numeral & r);
void mk_transcendental(char const * name, char const * pp_name, mk_interval & proc, numeral & r);
void mk_transcendental(mk_interval & proc, numeral & r);
/**
@ -252,7 +252,7 @@ namespace realclosure {
bool ge(numeral const & a, mpq const & b) { return !lt(a, b); }
bool ge(numeral const & a, mpz const & b) { return !lt(a, b); }
void display(std::ostream & out, numeral const & a, bool compact=false) const;
void display(std::ostream & out, numeral const & a, bool compact=false, bool pp=false) const;
/**
\brief Display a real number in decimal notation.

View file

@ -332,4 +332,16 @@ void display(std::ostream & out,
}
}
template<typename numeral_manager>
void display_pp(std::ostream & out,
numeral_manager & m,
typename numeral_manager::numeral const & a,
ext_numeral_kind ak) {
switch (ak) {
case EN_MINUS_INFINITY: out << "-&infin;"; break;
case EN_NUMERAL: m.display(out, a); break;
case EN_PLUS_INFINITY: out << "+&infin;"; break;
}
}
#endif