3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-29 01:18:45 +00:00

BDD vectors: add subtract and quot_rem, move finite domain abstraction out of bdd_manager (#5201)

* Coding style

* Simplify bddv class

* mk_eq: run loop from below

* Add unit test for bddv unsigned comparison

* Add test that shows contains_num/find_num fail after reordering

* Add BDD vector subtraction

* Call apply_rec in mk_ite_rec instead of apply

* Question about mk_quant

* Implement quot_rem over BDD vectors

* Move shl/shr to bddv

* Make unit test smaller

* Add class dd::fdd to manage association between BDDs and numbers

* Remove contains_num/find_num from bdd_manager
This commit is contained in:
Jakob Rath 2021-04-20 18:09:32 +02:00 committed by GitHub
parent bc695a5a97
commit 77350d97da
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 494 additions and 301 deletions

View file

@ -1,6 +1,7 @@
z3_add_component(dd z3_add_component(dd
SOURCES SOURCES
dd_bdd.cpp dd_bdd.cpp
dd_fdd.cpp
dd_pdd.cpp dd_pdd.cpp
COMPONENT_DEPENDENCIES COMPONENT_DEPENDENCIES
util util

View file

@ -23,19 +23,6 @@ Revision History:
namespace dd { namespace dd {
std::ostream& operator<<(std::ostream& out, find_result x) {
switch (x) {
case find_result::empty:
return out << "empty";
case find_result::singleton:
return out << "singleton";
case find_result::multiple:
return out << "multiple";
}
UNREACHABLE();
return out;
}
bdd_manager::bdd_manager(unsigned num_vars) { bdd_manager::bdd_manager(unsigned num_vars) {
m_cost_metric = bdd_cost; m_cost_metric = bdd_cost;
m_cost_bdd = 0; m_cost_bdd = 0;
@ -606,10 +593,10 @@ namespace dd {
if (is_true(a)) return b; if (is_true(a)) return b;
if (is_false(a)) return c; if (is_false(a)) return c;
if (b == c) return b; if (b == c) return b;
if (is_true(b)) return apply(a, c, bdd_or_op); if (is_true(b)) return apply_rec(a, c, bdd_or_op);
if (is_false(c)) return apply(a, b, bdd_and_op); if (is_false(c)) return apply_rec(a, b, bdd_and_op);
if (is_false(b)) return apply(mk_not_rec(a), c, bdd_and_op); if (is_false(b)) return apply_rec(mk_not_rec(a), c, bdd_and_op);
if (is_true(c)) return apply(mk_not_rec(a), b, bdd_or_op); if (is_true(c)) return apply_rec(mk_not_rec(a), b, bdd_or_op);
SASSERT(!is_const(a) && !is_const(b) && !is_const(c)); SASSERT(!is_const(a) && !is_const(b) && !is_const(c));
op_entry * e1 = pop_entry(a, b, c); op_entry * e1 = pop_entry(a, b, c);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1); op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
@ -659,6 +646,7 @@ namespace dd {
bdd_manager::BDD bdd_manager::mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op) { bdd_manager::BDD bdd_manager::mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op) {
BDD result = b; BDD result = b;
// TODO: should this method catch mem_out like the other non-rec mk_ methods?
for (unsigned i = 0; i < n; ++i) { for (unsigned i = 0; i < n; ++i) {
result = mk_quant_rec(m_var2level[vars[i]], result, op); result = mk_quant_rec(m_var2level[vars[i]], result, op);
} }
@ -911,65 +899,18 @@ namespace dd {
std::ostream& operator<<(std::ostream& out, bdd const& b) { return b.display(out); } std::ostream& operator<<(std::ostream& out, bdd const& b) { return b.display(out); }
bool bdd_manager::contains_num(BDD b, rational const& val, unsigned_vector const& bits) {
DEBUG_CODE(for (unsigned i = 1; i < bits.size(); ++i) { SASSERT(bits[i-1] < bits[i]); });
unsigned var_idx = bits.size();
while (!is_const(b)) {
VERIFY(var_idx-- > 0);
SASSERT(var(b) <= bits[var_idx]);
while (var(b) < bits[var_idx]) {
VERIFY(var_idx-- > 0);
}
SASSERT(var(b) == bits[var_idx]);
b = val.get_bit(var_idx) ? hi(b) : lo(b);
}
return is_true(b);
}
find_result bdd_manager::find_num(BDD b, unsigned_vector bits, rational& val) {
DEBUG_CODE(for (unsigned i = 1; i < bits.size(); ++i) { SASSERT(bits[i-1] < bits[i]); });
val = 0;
if (is_false(b))
return find_result::empty;
bool is_unique = true;
unsigned var_idx = bits.size();
while (!is_true(b)) {
VERIFY(var_idx-- > 0);
SASSERT(var(b) <= bits[var_idx]);
while (var(b) < bits[var_idx]) {
is_unique = false;
VERIFY(var_idx-- > 0);
}
if (!is_false(lo(b)) && !is_false(hi(b)))
is_unique = false;
if (is_false(lo(b))) {
SASSERT(var(b) == bits[var_idx]);
val += rational::power_of_two(var_idx);
b = hi(b);
}
else
b = lo(b);
}
if (var_idx > 0)
is_unique = false;
return is_unique ? find_result::singleton : find_result::multiple;
}
bdd bdd_manager::mk_eq(bddv const& a, bddv const& b) { bdd bdd_manager::mk_eq(bddv const& a, bddv const& b) {
SASSERT(a.size() == b.size()); SASSERT(a.size() == b.size());
bdd eq = mk_true(); bdd eq = mk_true();
for (unsigned i = a.size(); i-- > 0; ) { for (unsigned i = 0; i < a.size(); ++i)
eq &= !(a[i] ^ b[i]); eq &= !(a[i] ^ b[i]);
}
return eq; return eq;
} }
bdd bdd_manager::mk_eq(bddv const& a, rational const& n) { bdd bdd_manager::mk_eq(bddv const& a, rational const& n) {
SASSERT(n.is_int() && n >= 0 && n < rational(2).expt(a.size())); SASSERT(n.is_int() && n >= 0 && n < rational(2).expt(a.size()));
bdd b = mk_true(); bdd b = mk_true();
for (unsigned i = a.size(); i-- > 0; ) for (unsigned i = 0; i < a.size(); ++i)
b &= n.get_bit(i) ? a[i] : !a[i]; b &= n.get_bit(i) ? a[i] : !a[i];
return b; return b;
} }
@ -977,7 +918,7 @@ namespace dd {
bdd bdd_manager::mk_eq(unsigned_vector const& vars, rational const& n) { bdd bdd_manager::mk_eq(unsigned_vector const& vars, rational const& n) {
SASSERT(n.is_int() && n >= 0 && n < rational(2).expt(vars.size())); SASSERT(n.is_int() && n >= 0 && n < rational(2).expt(vars.size()));
bdd b = mk_true(); bdd b = mk_true();
for (unsigned i = vars.size(); i-- > 0; ) for (unsigned i = 0; i < vars.size(); ++i)
b &= n.get_bit(i) ? mk_var(vars[i]) : mk_nvar(vars[i]); b &= n.get_bit(i) ? mk_var(vars[i]) : mk_nvar(vars[i]);
return b; return b;
} }
@ -1006,9 +947,8 @@ namespace dd {
carry = (carry && a[i]) || (carry && b[i]) || (a[i] && b[i]); carry = (carry && a[i]) || (carry && b[i]) || (a[i] && b[i]);
} }
#else #else
if (a.size() > 0) { if (a.size() > 0)
result.push_back(a[0] ^ b[0]); result.push_back(a[0] ^ b[0]);
}
for (unsigned i = 1; i < a.size(); ++i) { for (unsigned i = 1; i < a.size(); ++i) {
carry = (carry && a[i-1]) || (carry && b[i-1]) || (a[i-1] && b[i-1]); carry = (carry && a[i-1]) || (carry && b[i-1]) || (a[i-1] && b[i-1]);
result.push_back(carry ^ a[i] ^ b[i]); result.push_back(carry ^ a[i] ^ b[i]);
@ -1017,11 +957,18 @@ namespace dd {
return result; return result;
} }
void bdd_manager::bddv_shl(bddv &a) { bddv bdd_manager::mk_sub(bddv const& a, bddv const& b) {
for (unsigned j = a.size(); j-- > 1; ) { SASSERT(a.size() == b.size());
a[j] = a[j - 1]; bdd carry = mk_false();
bddv result(this);
if (a.size() > 0)
result.push_back(a[0] ^ b[0]);
for (unsigned i = 1; i < a.size(); ++i) {
// carry = (a[i-1] && b[i-1] && carry) || (!a[i-1] && (b[i-1] || carry));
carry = mk_ite(a[i-1], b[i-1] && carry, b[i-1] || carry);
result.push_back(carry ^ a[i] ^ b[i]);
} }
a[0] = mk_false(); return result;
} }
bddv bdd_manager::mk_mul(bddv const& a, bddv const& b) { bddv bdd_manager::mk_mul(bddv const& a, bddv const& b) {
@ -1031,18 +978,16 @@ namespace dd {
for (unsigned i = 0; i < b.size(); ++i) { for (unsigned i = 0; i < b.size(); ++i) {
#if 1 #if 1
bddv s = a_shifted; bddv s = a_shifted;
for (unsigned j = i; j < b.size(); ++j) { for (unsigned j = i; j < b.size(); ++j)
s[j] &= b[i]; s[j] &= b[i];
}
result = mk_add(result, s); result = mk_add(result, s);
#else #else
// From BuDDy's bvec_mul. It seems to compute more intermediate BDDs than the version above? // From BuDDy's bvec_mul. It seems to compute more intermediate BDDs than the version above?
bddv added = mk_add(result, a_shifted); bddv added = mk_add(result, a_shifted);
for (unsigned j = 0; j < result.size(); ++j) { for (unsigned j = 0; j < result.size(); ++j)
result[j] = mk_ite(b[i], added[j], result[j]); result[j] = mk_ite(b[i], added[j], result[j]);
}
#endif #endif
bddv_shl(a_shifted); a_shifted.shl();
} }
return result; return result;
} }
@ -1052,10 +997,9 @@ namespace dd {
bddv a_shifted = a; bddv a_shifted = a;
bddv result = mk_zero(a.size()); bddv result = mk_zero(a.size());
for (unsigned i = 0; i < a.size(); ++i) { for (unsigned i = 0; i < a.size(); ++i) {
if (get_bit(i)) { if (get_bit(i))
result = mk_add(result, a_shifted); result = mk_add(result, a_shifted);
} a_shifted.shl();
bddv_shl(a_shifted);
} }
return result; return result;
} }
@ -1070,36 +1014,63 @@ namespace dd {
return mk_mul(a, [b](unsigned i) { return b[i]; }); return mk_mul(a, [b](unsigned i) { return b[i]; });
} }
void bdd_manager::mk_quot_rem(bddv const& a, bddv const& b, bddv& quot, bddv& rem) {
SASSERT(a.size() == b.size());
quot = mk_zero(a.size());
// We work with double-size vectors
unsigned worksize = a.size() + b.size();
// Extend dividend to worksize
rem = a;
for (unsigned i = b.size(); i-- > 0; )
rem.push_back(mk_false());
// Shift divisor to the left
bddv div(this);
for (unsigned i = a.size(); i-- > 0; )
div.push_back(mk_false());
div.m_bits.append(b.m_bits);
// Keep shifting divisor to the right and subtract whenever it is
// smaller than the remaining value
for (int i = 0; i <= b.size(); ++i) {
bdd divLteRem = div <= rem;
bddv remSubDiv = rem - div;
for (int j = 0; j < worksize; ++j)
rem[j] = mk_ite(divLteRem, remSubDiv[j], rem[j]);
if (i > 0)
quot[b.size()-i] = divLteRem;
div.shr();
}
rem.m_bits.shrink(b.size());
}
bddv bdd_manager::mk_num(rational const& n, unsigned num_bits) { bddv bdd_manager::mk_num(rational const& n, unsigned num_bits) {
SASSERT(n.is_int() && n >= 0 && n < rational::power_of_two(num_bits)); SASSERT(n.is_int() && n >= 0 && n < rational::power_of_two(num_bits));
bddv result(this); bddv result(this);
for (unsigned i = 0; i < num_bits; ++i) { for (unsigned i = 0; i < num_bits; ++i)
result.push_back(n.get_bit(i) ? mk_true() : mk_false()); result.push_back(n.get_bit(i) ? mk_true() : mk_false());
}
return result; return result;
} }
bddv bdd_manager::mk_ones(unsigned num_bits) { bddv bdd_manager::mk_ones(unsigned num_bits) {
bddv result(this); bddv result(this);
for (unsigned i = 0; i < num_bits; ++i) { for (unsigned i = 0; i < num_bits; ++i)
result.push_back(mk_true()); result.push_back(mk_true());
}
return result; return result;
} }
bddv bdd_manager::mk_zero(unsigned num_bits) { bddv bdd_manager::mk_zero(unsigned num_bits) {
bddv result(this); bddv result(this);
for (unsigned i = 0; i < num_bits; ++i) { for (unsigned i = 0; i < num_bits; ++i)
result.push_back(mk_false()); result.push_back(mk_false());
}
return result; return result;
} }
bddv bdd_manager::mk_var(unsigned num_bits, unsigned const* vars) { bddv bdd_manager::mk_var(unsigned num_bits, unsigned const* vars) {
bddv result(this); bddv result(this);
for (unsigned i = 0; i < num_bits; ++i) { for (unsigned i = 0; i < num_bits; ++i)
result.push_back(mk_var(vars[i])); result.push_back(mk_var(vars[i]));
}
return result; return result;
} }
@ -1108,7 +1079,7 @@ namespace dd {
} }
bool bdd_manager::is_constv(bddv const& a) { bool bdd_manager::is_constv(bddv const& a) {
for (bdd const& bit : a.bits) for (bdd const& bit : a.bits())
if (!is_const(bit.root)) if (!is_const(bit.root))
return false; return false;
return true; return true;
@ -1119,9 +1090,8 @@ namespace dd {
for (unsigned i = 0; i < a.size(); ++i) { for (unsigned i = 0; i < a.size(); ++i) {
bdd const &bit = a[i]; bdd const &bit = a[i];
SASSERT(is_const(bit.root)); SASSERT(is_const(bit.root));
if (bit.is_true()) { if (bit.is_true())
result += rational::power_of_two(i); result += rational::power_of_two(i);
}
} }
return result; return result;
} }
@ -1131,8 +1101,18 @@ namespace dd {
bdd bdd_manager::mk_sge(bddv const& a, bddv const& b) { return mk_sle(b, a); } bdd bdd_manager::mk_sge(bddv const& a, bddv const& b) { return mk_sle(b, a); }
bdd bdd_manager::mk_slt(bddv const& a, bddv const& b) { return mk_sle(a, b) && !mk_eq(a, b); } bdd bdd_manager::mk_slt(bddv const& a, bddv const& b) { return mk_sle(a, b) && !mk_eq(a, b); }
bdd bdd_manager::mk_sgt(bddv const& a, bddv const& b) { return mk_slt(b, a); } bdd bdd_manager::mk_sgt(bddv const& a, bddv const& b) { return mk_slt(b, a); }
bdd_manager::bddv bdd_manager::mk_sub(bddv const& a, bddv const& b);
void bdd_manager::mk_quot_rem(bddv const& a, bddv const& b, bddv& quot, bddv& rem);
#endif #endif
void bddv::shl() {
for (unsigned j = size(); j-- > 1;)
m_bits[j] = m_bits[j-1];
m_bits[0] = m->mk_false();
}
void bddv::shr() {
for (unsigned j = 1; j < size(); ++j)
m_bits[j-1] = m_bits[j];
m_bits[size()-1] = m->mk_false();
}
} }

View file

@ -27,16 +27,14 @@ namespace dd {
class bdd; class bdd;
class bddv; class bddv;
class test_bdd;
enum class find_result { empty, singleton, multiple };
std::ostream& operator<<(std::ostream& out, find_result x);
class bdd_manager { class bdd_manager {
friend bdd; friend bdd;
friend bddv; friend bddv;
friend test_bdd;
typedef unsigned BDD; typedef unsigned BDD;
typedef svector<BDD> BDDV;
const BDD null_bdd = UINT_MAX; const BDD null_bdd = UINT_MAX;
@ -206,10 +204,6 @@ namespace dd {
~scoped_push() { m.m_bdd_stack.shrink(m_size); } ~scoped_push() { m.m_bdd_stack.shrink(m_size); }
}; };
bool contains_num(BDD b, rational const& val, unsigned_vector const& bits);
find_result find_num(BDD b, unsigned_vector bits, rational& val);
void bddv_shl(bddv& a);
template <class GetBitFn> bddv mk_mul(bddv const& a, GetBitFn get_bit); template <class GetBitFn> bddv mk_mul(bddv const& a, GetBitFn get_bit);
public: public:
@ -285,6 +279,7 @@ namespace dd {
bool is_true() const { return root == bdd_manager::true_bdd; } bool is_true() const { return root == bdd_manager::true_bdd; }
bool is_false() const { return root == bdd_manager::false_bdd; } bool is_false() const { return root == bdd_manager::false_bdd; }
bool is_const() const { return is_false() || is_true(); }
bdd operator!() const { return m->mk_not(*this); } bdd operator!() const { return m->mk_not(*this); }
bdd operator&&(bdd const& other) const { return m->mk_and(*this, other); } bdd operator&&(bdd const& other) const { return m->mk_and(*this, other); }
@ -298,22 +293,6 @@ namespace dd {
double cnf_size() const { return m->cnf_size(root); } double cnf_size() const { return m->cnf_size(root); }
double dnf_size() const { return m->dnf_size(root); } double dnf_size() const { return m->dnf_size(root); }
unsigned bdd_size() const { return m->bdd_size(*this); } unsigned bdd_size() const { return m->bdd_size(*this); }
/** Checks whether the integer val is contained in the BDD when viewed as set of integers.
*
* Preconditions:
* - bits are sorted in ascending order,
* - the bdd only contains variables from bits.
*/
bool contains_num(rational const& val, unsigned_vector const& bits) const { return m->contains_num(root, val, bits); }
/** Returns an integer contained in the BDD, if any, and whether the BDD is a singleton.
*
* Preconditions:
* - bits are sorted in ascending order,
* - the bdd only contains variables from bits.
*/
find_result find_num(unsigned_vector const& bits, rational& val) const { return m->find_num(root, bits, val); }
}; };
std::ostream& operator<<(std::ostream& out, bdd const& b); std::ostream& operator<<(std::ostream& out, bdd const& b);
@ -321,79 +300,69 @@ namespace dd {
class bddv { class bddv {
friend bdd_manager; friend bdd_manager;
// TODO: currently we repeat the pointer to the manager in every entry of bits. vector<bdd> m_bits;
// Should use BDDV instead (drawback: the functions in bdd_manager aren't as nice and they need to be careful about reference counting if they work with BDD directly). bdd_manager* m;
vector<bdd> bits;
bdd_manager& m;
bddv(vector<bdd> bits, bdd_manager* m): bits(bits), m(*m) { inc_bits_ref(); } bddv(vector<bdd> bits, bdd_manager* m): m_bits(bits), m(m) { SASSERT(m); }
bddv(vector<bdd>&& bits, bdd_manager* m): bits(std::move(bits)), m(*m) { inc_bits_ref(); } bddv(vector<bdd>&& bits, bdd_manager* m): m_bits(std::move(bits)), m(m) { SASSERT(m); }
void inc_bits_ref() {
// NOTE: necessary if we switch to BDDV as storage bddv(bdd_manager* m): m_bits(), m(m) { SASSERT(m); }
// for (BDD b : bits) { m.inc_ref(b); } bdd const& operator[](unsigned i) const { return m_bits[i]; }
} bdd& operator[](unsigned i) { return m_bits[i]; }
void push_back(bdd const& a) { m_bits.push_back(a); }
void push_back(bdd&& a) { m_bits.push_back(std::move(a)); }
void shl();
void shr();
// NOTE: these should probably be removed if we switch to BDDV
bddv(bdd_manager* m): bits(), m(*m) { }
bdd const& operator[](unsigned i) const { return bits[i]; }
bdd& operator[](unsigned i) { return bits[i]; }
void push_back(bdd const& a) { bits.push_back(a); }
void push_back(bdd&& a) { bits.push_back(a); }
public: public:
bddv(bddv const& other): bits(other.bits), m(other.m) { inc_bits_ref(); } unsigned size() const { return m_bits.size(); }
bddv(bddv&& other): bits(), m(other.m) { std::swap(bits, other.bits); } vector<bdd> const& bits() const { return m_bits; }
bddv& operator=(bddv const& other) {
if (this != &other) {
bddv old(std::move(*this));
bits = other.bits;
inc_bits_ref();
}
return *this;
}
bddv& operator=(bddv&& other) {
if (this != &other) {
bddv old(std::move(*this));
SASSERT(bits.empty());
std::swap(bits, other.bits);
}
return *this;
}
~bddv() {
// NOTE: necessary if we switch to BDDV as storage
// for (BDD b : bits) { m.dec_ref(b); }
}
unsigned size() const { return bits.size(); } /* unsigned comparison operators */
vector<bdd> const& get_bits() const { return bits; } bdd operator<=(bddv const& other) const { return m->mk_ule(*this, other); } ///< unsigned comparison
bdd operator>=(bddv const& other) const { return m->mk_uge(*this, other); } ///< unsigned comparison
bdd operator< (bddv const& other) const { return m->mk_ult(*this, other); } ///< unsigned comparison
bdd operator> (bddv const& other) const { return m->mk_ugt(*this, other); } ///< unsigned comparison
bdd operator<=(rational const& other) const { return m->mk_ule(*this, m->mk_num(other, size())); } ///< unsigned comparison
bdd operator>=(rational const& other) const { return m->mk_uge(*this, m->mk_num(other, size())); } ///< unsigned comparison
bdd operator< (rational const& other) const { return m->mk_ult(*this, m->mk_num(other, size())); } ///< unsigned comparison
bdd operator> (rational const& other) const { return m->mk_ugt(*this, m->mk_num(other, size())); } ///< unsigned comparison
bdd operator<=(bddv const& other) const { return m.mk_ule(*this, other); } /* signed comparison operators */
bdd operator>=(bddv const& other) const { return m.mk_uge(*this, other); } bdd sle(bddv const& other) const { return m->mk_sle(*this, other); }
bdd operator<(bddv const& other) const { return m.mk_ult(*this, other); } bdd sge(bddv const& other) const { return m->mk_sge(*this, other); }
bdd operator>(bddv const& other) const { return m.mk_ugt(*this, other); } bdd slt(bddv const& other) const { return m->mk_slt(*this, other); }
// TODO: what about the signed versions? bdd sgt(bddv const& other) const { return m->mk_sgt(*this, other); }
// bdd mk_sle(bddv const& a, bddv const& b);
// bdd mk_sge(bddv const& a, bddv const& b); // { return mk_sle(b, a); }
// bdd mk_slt(bddv const& a, bddv const& b); // { return mk_sle(a, b) && !mk_eq(a, b); }
// bdd mk_sgt(bddv const& a, bddv const& b); // { return mk_slt(b, a); }
bdd operator==(bddv const& other) const { return m.mk_eq(*this, other); } bdd operator==(bddv const& other) const { return m->mk_eq(*this, other); }
bdd operator==(rational const& other) const { return m.mk_eq(*this, other); } bdd operator==(rational const& other) const { return m->mk_eq(*this, other); }
bdd operator!=(bddv const& other) const { return !m.mk_eq(*this, other); } bdd operator!=(bddv const& other) const { return !m->mk_eq(*this, other); }
bdd operator!=(rational const& other) const { return !m.mk_eq(*this, other); } bdd operator!=(rational const& other) const { return !m->mk_eq(*this, other); }
bddv operator+(bddv const& other) const { return m.mk_add(*this, other); }
bddv operator+(rational const& other) const { return m.mk_add(*this, m.mk_num(other, size())); }
bddv operator-(bddv const& other) const { return m.mk_sub(*this, other); }
bddv operator*(bddv const& other) const { return m.mk_mul(*this, other); }
bddv operator*(rational const& other) const { return m.mk_mul(*this, other); }
bddv operator*(bool_vector const& other) const { return m.mk_mul(*this, other); }
// void mk_quot_rem(bddv const& a, bddv const& b, bddv& quot, bddv& rem); bddv operator+(bddv const& other) const { return m->mk_add(*this, other); }
bddv operator+(rational const& other) const { return m->mk_add(*this, m->mk_num(other, size())); }
bddv operator-(bddv const& other) const { return m->mk_sub(*this, other); }
bddv operator-(rational const& other) const { return m->mk_sub(*this, m->mk_num(other, size())); }
bddv rev_sub(rational const& other) const { return m->mk_sub(m->mk_num(other, size()), *this); }
bddv operator*(bddv const& other) const { return m->mk_mul(*this, other); }
bddv operator*(rational const& other) const { return m->mk_mul(*this, other); }
bddv operator*(bool_vector const& other) const { return m->mk_mul(*this, other); }
bool is_const() const { return m.is_constv(*this); } void quot_rem(bddv const& divisor, bddv& quot, bddv& rem) const { m->mk_quot_rem(*this, divisor, quot, rem); }
rational to_val() const { return m.to_val(*this); }
bool is_const() const { return m->is_constv(*this); }
rational to_val() const { return m->to_val(*this); }
}; };
inline bdd operator<=(rational const& r, bddv const& a) { return a >= r; } ///< unsigned comparison
inline bdd operator>=(rational const& r, bddv const& a) { return a <= r; } ///< unsigned comparison
inline bdd operator< (rational const& r, bddv const& a) { return a > r; } ///< unsigned comparison
inline bdd operator> (rational const& r, bddv const& a) { return a < r; } ///< unsigned comparison
inline bdd operator==(rational const& r, bddv const& a) { return a == r; }
inline bdd operator!=(rational const& r, bddv const& a) { return a != r; }
inline bddv operator*(rational const& r, bddv const& a) { return a * r; } inline bddv operator*(rational const& r, bddv const& a) { return a * r; }
inline bddv operator+(rational const& r, bddv const& a) { return a + r; }
inline bddv operator-(rational const& r, bddv const& a) { return a.rev_sub(r); }
} }

88
src/math/dd/dd_fdd.cpp Normal file
View file

@ -0,0 +1,88 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
dd_fdd
Abstract:
Finite domain abstraction for using BDDs as sets of integers, inspired by BuDDy's fdd module.
Author:
Nikolaj Bjorner (nbjorner) 2021-04-20
Jakob Rath 2021-04-20
--*/
#include "math/dd/dd_fdd.h"
namespace dd {
fdd::fdd(bdd_manager& manager, unsigned_vector&& vars)
: m_pos2var(std::move(vars))
, m_var2pos()
// , m(&manager)
, m_var(manager.mk_var(m_pos2var))
{
for (unsigned pos = 0; pos < m_pos2var.size(); ++pos) {
unsigned const var = m_pos2var[pos];
while (var >= m_var2pos.size())
m_var2pos.push_back(UINT_MAX);
m_var2pos[var] = pos;
}
}
unsigned fdd::var2pos(unsigned var) const {
return var < m_var2pos.size() ? m_var2pos[var] : UINT_MAX;
}
bool fdd::contains(bdd b, rational const& val) const {
while (!b.is_const()) {
unsigned const pos = var2pos(b.var());
SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
b = val.get_bit(pos) ? b.hi() : b.lo();
}
return b.is_true();
}
find_t fdd::find(bdd b, rational& out_val) const {
out_val = 0;
if (b.is_false())
return find_t::empty;
bool is_unique = true;
unsigned num_vars = 0;
while (!b.is_true()) {
++num_vars;
unsigned const pos = var2pos(b.var());
SASSERT(pos != UINT_MAX && "Unexpected BDD variable");
if (b.lo().is_false()) {
out_val += rational::power_of_two(pos);
b = b.hi();
}
else {
if (!b.hi().is_false())
is_unique = false;
b = b.lo();
}
}
if (num_vars != num_bits())
is_unique = false;
return is_unique ? find_t::singleton : find_t::multiple;
}
std::ostream& operator<<(std::ostream& out, find_t x) {
switch (x) {
case find_t::empty:
return out << "empty";
case find_t::singleton:
return out << "singleton";
case find_t::multiple:
return out << "multiple";
}
UNREACHABLE();
return out;
}
}

69
src/math/dd/dd_fdd.h Normal file
View file

@ -0,0 +1,69 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
dd_fdd
Abstract:
Finite domain abstraction for using BDDs as sets of integers, inspired by BuDDy's fdd module.
Author:
Nikolaj Bjorner (nbjorner) 2021-04-20
Jakob Rath 2021-04-20
--*/
#pragma once
#include "math/dd/dd_bdd.h"
#include "util/vector.h"
#include "util/rational.h"
namespace dd {
enum class find_t { empty, singleton, multiple };
std::ostream& operator<<(std::ostream& out, find_t x);
/**
* Finite domain abstraction over BDDs.
*/
class fdd {
unsigned_vector m_pos2var; // pos -> BDD var
unsigned_vector m_var2pos; // var -> pos (pos = place number in the bit representation, 0 is LSB's place)
// bdd_manager* m; // NOTE: currently unused
bddv m_var;
static unsigned_vector seq(unsigned count) {
unsigned_vector result;
for (unsigned i = 0; i < count; ++i)
result.push_back(i);
return result;
}
unsigned var2pos(unsigned var) const;
public:
/** Initialize FDD using BDD variables from 0 to num_bits-1. */
fdd(bdd_manager& manager, unsigned num_bits) : fdd(manager, seq(num_bits)) { }
fdd(bdd_manager& manager, unsigned_vector const& vars) : fdd(manager, unsigned_vector(vars)) { }
fdd(bdd_manager& manager, unsigned_vector&& vars);
unsigned num_bits() const { return m_pos2var.size(); }
unsigned_vector const& bdd_vars() const { return m_pos2var; }
bddv const& var() const { return m_var; }
/** Checks whether the integer val is contained in the BDD when viewed as set of integers.
* Precondition: the bdd only contains variables managed by this fdd.
*/
bool contains(bdd b, rational const& val) const;
/** Returns an integer contained in the BDD, if any, and whether the BDD is a singleton.
* Precondition: the bdd only contains variables managed by this fdd.
*/
find_t find(bdd b, rational& out_val) const;
};
}

View file

@ -57,13 +57,13 @@ namespace polysat {
if (try_narrow_with(q, s)) { if (try_narrow_with(q, s)) {
rational val; rational val;
switch (s.find_viable(other_var, val)) { switch (s.find_viable(other_var, val)) {
case dd::find_result::empty: case dd::find_t::empty:
s.set_conflict(*this); s.set_conflict(*this);
return false; return false;
case dd::find_result::singleton: case dd::find_t::singleton:
s.propagate(other_var, val, *this); s.propagate(other_var, val, *this);
return false; return false;
case dd::find_result::multiple: case dd::find_t::multiple:
/* do nothing */ /* do nothing */
break; break;
} }
@ -95,7 +95,7 @@ namespace polysat {
pvar v = q.var(); pvar v = q.var();
rational a = q.hi().val(); rational a = q.hi().val();
rational b = q.lo().val(); rational b = q.lo().val();
bddv const& x = s.m_bdd.mk_var(s.sz2bits(s.size(v))); bddv const& x = s.sz2bits(s.size(v)).var();
bdd xs = (a * x + b == rational(0)); bdd xs = (a * x + b == rational(0));
s.intersect_viable(v, xs); s.intersect_viable(v, xs);
s.push_cjust(v, this); s.push_cjust(v, this);

View file

@ -29,20 +29,18 @@ namespace polysat {
return *m_pdd[sz]; return *m_pdd[sz];
} }
unsigned_vector const& solver::sz2bits(unsigned sz) { dd::fdd const& solver::sz2bits(unsigned sz) {
m_bits.reserve(sz + 1); m_bits.reserve(sz + 1);
auto* bits = m_bits[sz]; auto* bits = m_bits[sz];
if (!bits) { if (!bits) {
m_bits.set(sz, alloc(unsigned_vector)); m_bits.set(sz, alloc(dd::fdd, m_bdd, sz));
bits = m_bits[sz]; bits = m_bits[sz];
for (unsigned i = 0; i < sz; ++i)
bits->push_back(i);
} }
return *bits; return *bits;
} }
bool solver::is_viable(pvar v, rational const& val) { bool solver::is_viable(pvar v, rational const& val) {
return m_viable[v].contains_num(val, sz2bits(size(v))); return sz2bits(size(v)).contains(m_viable[v], val);
} }
void solver::add_non_viable(pvar v, rational const& val) { void solver::add_non_viable(pvar v, rational const& val) {
@ -50,7 +48,7 @@ namespace polysat {
TRACE("polysat", tout << "v" << v << " /= " << val << "\n";); TRACE("polysat", tout << "v" << v << " /= " << val << "\n";);
SASSERT(is_viable(v, val)); SASSERT(is_viable(v, val));
auto& bits = sz2bits(size(v)); auto& bits = sz2bits(size(v));
intersect_viable(v, !m_bdd.mk_eq(bits, val)); intersect_viable(v, bits.var() != val);
} }
void solver::intersect_viable(pvar v, bdd vals) { void solver::intersect_viable(pvar v, bdd vals) {
@ -60,8 +58,8 @@ namespace polysat {
set_conflict(v); set_conflict(v);
} }
dd::find_result solver::find_viable(pvar v, rational & val) { dd::find_t solver::find_viable(pvar v, rational & val) {
return m_viable[v].find_num(sz2bits(size(v)), val); return sz2bits(size(v)).find(m_viable[v], val);
} }
solver::solver(reslimit& lim): solver::solver(reslimit& lim):
@ -323,15 +321,15 @@ namespace polysat {
IF_LOGGING(log_viable(v)); IF_LOGGING(log_viable(v));
rational val; rational val;
switch (find_viable(v, val)) { switch (find_viable(v, val)) {
case dd::find_result::empty: case dd::find_t::empty:
LOG("Conflict: no value for pvar " << v); LOG("Conflict: no value for pvar " << v);
set_conflict(v); set_conflict(v);
break; break;
case dd::find_result::singleton: case dd::find_t::singleton:
LOG("Propagation: pvar " << v << " := " << val << " (due to unique value)"); LOG("Propagation: pvar " << v << " := " << val << " (due to unique value)");
assign_core(v, val, justification::propagation(m_level)); assign_core(v, val, justification::propagation(m_level));
break; break;
case dd::find_result::multiple: case dd::find_t::multiple:
LOG("Decision: pvar " << v << " := " << val); LOG("Decision: pvar " << v << " := " << val);
push_level(); push_level();
assign_core(v, val, justification::decision(m_level)); assign_core(v, val, justification::decision(m_level));

View file

@ -45,7 +45,7 @@ namespace polysat {
reslimit& m_lim; reslimit& m_lim;
scoped_ptr_vector<dd::pdd_manager> m_pdd; scoped_ptr_vector<dd::pdd_manager> m_pdd;
scoped_ptr_vector<unsigned_vector> m_bits; scoped_ptr_vector<dd::fdd> m_bits;
dd::bdd_manager m_bdd; dd::bdd_manager m_bdd;
dep_value_manager m_value_manager; dep_value_manager m_value_manager;
small_object_allocator m_alloc; small_object_allocator m_alloc;
@ -132,7 +132,7 @@ namespace polysat {
/** /**
* Find a next viable value for variable. * Find a next viable value for variable.
*/ */
dd::find_result find_viable(pvar v, rational & val); dd::find_t find_viable(pvar v, rational & val);
/** Log all viable values for the given variable. /** Log all viable values for the given variable.
* (Inefficient, but useful for debugging small instances.) * (Inefficient, but useful for debugging small instances.)
@ -147,7 +147,7 @@ namespace polysat {
void del_var(); void del_var();
dd::pdd_manager& sz2pdd(unsigned sz); dd::pdd_manager& sz2pdd(unsigned sz);
unsigned_vector const& sz2bits(unsigned sz); dd::fdd const& sz2bits(unsigned sz);
void push_level(); void push_level();
void pop_levels(unsigned num_levels); void pop_levels(unsigned num_levels);

View file

@ -20,6 +20,7 @@ Author:
#include "util/ref_vector.h" #include "util/ref_vector.h"
#include "math/dd/dd_pdd.h" #include "math/dd/dd_pdd.h"
#include "math/dd/dd_bdd.h" #include "math/dd/dd_bdd.h"
#include "math/dd/dd_fdd.h"
namespace polysat { namespace polysat {

View file

@ -1,6 +1,11 @@
#include "math/dd/dd_bdd.h" #include "math/dd/dd_bdd.h"
#include "math/dd/dd_fdd.h"
namespace dd { namespace dd {
class test_bdd {
public:
static void test1() { static void test1() {
bdd_manager m(20); bdd_manager m(20);
bdd v0 = m.mk_var(0); bdd v0 = m.mk_var(0);
@ -86,52 +91,65 @@ namespace dd {
} }
static void test_bddv_ops_on_constants() { static void test_bddv_ops_on_constants() {
unsigned const num_bits = 4; std::cout << "test_bddv_ops_on_constants\n";
unsigned const num_bits = 3;
rational const modulus = rational::power_of_two(num_bits); rational const modulus = rational::power_of_two(num_bits);
bdd_manager m(num_bits); bdd_manager m(num_bits);
SASSERT_EQ(m.to_val(m.mk_zero(num_bits)), rational(0)); SASSERT_EQ(m.to_val(m.mk_zero(num_bits)), rational(0));
SASSERT_EQ(m.to_val(m.mk_ones(num_bits)), modulus - 1); SASSERT_EQ(m.to_val(m.mk_ones(num_bits)), modulus - 1);
for (unsigned n = 0; n < 16; ++n) { for (unsigned n = 0; n < 8; ++n) {
rational const nr(n); rational const nr(n);
SASSERT_EQ(m.to_val(m.mk_num(nr, num_bits)), nr); SASSERT_EQ(m.to_val(m.mk_num(nr, num_bits)), nr);
} }
for (unsigned n = 0; n < 16; ++n) { for (unsigned n = 0; n < 8; ++n) {
for (unsigned k = 0; k < 16; ++k) { for (unsigned k = 0; k < 8; ++k) {
rational const nr(n); rational const nr(n);
rational const kr(k); rational const kr(k);
bddv const nv = m.mk_num(nr, num_bits); bddv const nv = m.mk_num(nr, num_bits);
bddv const kv = m.mk_num(kr, num_bits); bddv const kv = m.mk_num(kr, num_bits);
SASSERT_EQ((nv + kv).to_val(), (nr + kr) % modulus); SASSERT_EQ((nv + kv).to_val(), (nr + kr) % modulus);
SASSERT_EQ((nv - kv).to_val(), (nr - kr + modulus) % modulus);
SASSERT_EQ((nv * kr).to_val(), (nr * kr) % modulus); SASSERT_EQ((nv * kr).to_val(), (nr * kr) % modulus);
SASSERT_EQ((nv * kv).to_val(), (nr * kr) % modulus); SASSERT_EQ((nv * kv).to_val(), (nr * kr) % modulus);
bdd eq = m.mk_eq(nv, kv); bdd eq = m.mk_eq(nv, kv);
SASSERT((eq.is_true() || eq.is_false()) && (eq.is_true() == (n == k))); SASSERT(eq.is_const() && (eq.is_true() == (n == k)));
eq = m.mk_eq(nv, kr); eq = m.mk_eq(nv, kr);
SASSERT((eq.is_true() || eq.is_false()) && (eq.is_true() == (n == k))); SASSERT(eq.is_const() && (eq.is_true() == (n == k)));
bddv quotv = m.mk_zero(num_bits);
bddv remv = m.mk_zero(num_bits);
nv.quot_rem(kv, quotv, remv);
if (k != 0) {
SASSERT_EQ(quotv.to_val(), rational(n / k));
SASSERT_EQ(remv.to_val(), rational(n % k));
} else {
// std::cout << "n=" << n << " k=" << k << "\n";
// std::cout << " quot: " << quotv.to_val() << "\n";
// std::cout << " rem: " << remv.to_val() << "\n";
}
} }
} }
} }
static void test_bddv_eqfind_small() { static void test_bddv_eqfind_small() {
std::cout << "test_bddv_eqfind_small\n";
bdd_manager m(4); bdd_manager m(4);
unsigned_vector bits; fdd const x_dom(m, 1);
bits.push_back(0); bddv const x = x_dom.var();
bddv const x = m.mk_var(bits); bdd x_is_one = (x == rational(1));
bddv const one = m.mk_num(rational(1), bits.size());
bdd x_is_one = m.mk_eq(x, one);
std::cout << "x_is_one:\n" << x_is_one << "\n"; std::cout << "x_is_one:\n" << x_is_one << "\n";
rational r; rational r;
auto res = x_is_one.find_num(bits, r); auto res = x_dom.find(x_is_one, r);
SASSERT_EQ(res, find_result::singleton); SASSERT_EQ(res, find_t::singleton);
SASSERT_EQ(r, rational(1)); SASSERT_EQ(r, rational(1));
} }
static void test_bddv_eqfind() { static void test_bddv_eqfind() {
unsigned const num_bits = 4; std::cout << "test_bddv_eqfind\n";
bdd_manager m(num_bits); bdd_manager m(4);
unsigned_vector bits; unsigned_vector bits;
bits.push_back(0); bits.push_back(0);
@ -139,43 +157,60 @@ namespace dd {
bits.push_back(4); bits.push_back(4);
bits.push_back(27); bits.push_back(27);
bddv const x = m.mk_var(bits); fdd const x_dom(m, bits);
bddv const zero = m.mk_zero(num_bits); bddv const x = x_dom.var();
bddv const one = m.mk_num(rational(1), num_bits); bddv const zero = m.mk_zero(x_dom.num_bits());
bddv const five = m.mk_num(rational(5), num_bits); bddv const one = m.mk_num(rational(1), x_dom.num_bits());
bddv const five = m.mk_num(rational(5), x_dom.num_bits());
SASSERT(m.mk_eq(one, rational(1)).is_true()); SASSERT((one == rational(1)).is_true());
SASSERT(m.mk_eq(five, rational(5)).is_true()); SASSERT((five == rational(5)).is_true());
SASSERT(m.mk_eq(five, rational(4)).is_false()); SASSERT((five == rational(4)).is_false());
SASSERT(m.mk_eq(five, five).is_true()); SASSERT((five == five).is_true());
SASSERT(m.mk_eq(five, one).is_false()); SASSERT((five == one).is_false());
// Test the three different mk_eq overloads
{ {
bdd const x_is_five = m.mk_eq(x, rational(5)); bdd const x_is_five = m.mk_eq(x, rational(5));
rational r; rational r;
auto res = x_is_five.find_num(bits, r); auto res = x_dom.find(x_is_five, r);
SASSERT_EQ(res, find_result::singleton); SASSERT_EQ(res, find_t::singleton);
SASSERT_EQ(r, rational(5)); SASSERT_EQ(r, 5);
} }
{ {
bdd const x_is_five = m.mk_eq(bits, rational(5)); bdd const x_is_five = m.mk_eq(bits, rational(5));
rational r; rational r;
auto res = x_is_five.find_num(bits, r); auto res = x_dom.find(x_is_five, r);
SASSERT_EQ(res, find_result::singleton); SASSERT_EQ(res, find_t::singleton);
SASSERT_EQ(r, rational(5)); SASSERT_EQ(r, 5);
} }
{ {
bdd const x_is_five = m.mk_eq(x, five); bdd const x_is_five = m.mk_eq(x, five);
rational r; rational r;
auto res = x_is_five.find_num(bits, r); auto res = x_dom.find(x_is_five, r);
SASSERT_EQ(res, find_result::singleton); SASSERT_EQ(res, find_t::singleton);
SASSERT_EQ(r, rational(5)); SASSERT_EQ(r, 5);
} }
} }
static void test_bddv_addsub() {
std::cout << "test_bddv_addsub\n";
unsigned_vector bits;
bits.push_back(0);
bits.push_back(1);
bits.push_back(2);
bdd_manager m(bits.size());
bddv const x = m.mk_var(bits);
SASSERT_EQ(x - rational(3) == rational(2), x == rational(5));
SASSERT_EQ(x + rational(3) == rational(5), x == rational(2));
SASSERT_EQ(x - rational(3) == rational(6), x == rational(1));
SASSERT_EQ(x + rational(3) == rational(2), x == rational(7));
}
static void test_bddv_mul() { static void test_bddv_mul() {
std::cout << "test_bddv_mul\n";
unsigned const num_bits = 4; unsigned const num_bits = 4;
bdd_manager m(num_bits); bdd_manager m(num_bits);
@ -191,112 +226,164 @@ namespace dd {
bddv const five = m.mk_num(rational(5), num_bits); bddv const five = m.mk_num(rational(5), num_bits);
bddv const six = m.mk_num(rational(6), num_bits); bddv const six = m.mk_num(rational(6), num_bits);
{ // 5*x == 1 (mod 16) => x == 13 (mod 16)
// 5*x == 1 (mod 16) => x == 13 (mod 16) bdd const five_inv = x * five == one;
bdd const five_inv = x * five == one; SASSERT_EQ(five_inv, x == rational(13));
rational r;
auto res = five_inv.find_num(bits, r);
SASSERT_EQ(res, find_result::singleton);
SASSERT_EQ(r, rational(13));
}
{ // 6*x == 1 (mod 16) => no solution for x
// 6*x == 1 (mod 16) => no solution for x bdd const six_inv = x * six == one;
bdd const six_inv = x * six == one; SASSERT(six_inv.is_false());
rational r;
auto res = six_inv.find_num(bits, r);
SASSERT_EQ(res, find_result::empty);
SASSERT(six_inv.is_false());
}
{ // 6*x == 0 (mod 16) => x is either 0 or 8 (mod 16)
// 6*x == 0 (mod 16) => x is either 0 or 8 (mod 16) bdd const b = six * x == zero;
bdd const b = six * x == zero; SASSERT_EQ(b, x == rational(0) || x == rational(8));
rational r; SASSERT((b && (x != rational(0)) && (x != rational(8))).is_false());
SASSERT(b.contains_num(rational(0), bits)); SASSERT_EQ(b && (x != rational(0)), x == rational(8));
SASSERT(b.contains_num(rational(8), bits));
SASSERT((b && (x != rational(0)) && (x != rational(8))).is_false());
SASSERT((b && (x != rational(0))) == (x == rational(8)));
}
SASSERT_EQ((x * zero).get_bits(), (x * rational(0)).get_bits()); SASSERT_EQ((x * zero).bits(), (x * rational(0)).bits());
SASSERT_EQ((x * one).get_bits(), (x * rational(1)).get_bits()); SASSERT_EQ((x * one).bits(), (x * rational(1)).bits());
SASSERT_EQ((x * five).get_bits(), (x * rational(5)).get_bits()); SASSERT_EQ((x * five).bits(), (x * rational(5)).bits());
SASSERT_EQ((x * six).get_bits(), (x * rational(6)).get_bits()); SASSERT_EQ((x * six).bits(), (x * rational(6)).bits());
} }
static void test_int() { static void test_bddv_ule() {
unsigned const w = 3; // bit width std::cout << "test_bddv_ule\n";
unsigned const num_bits = 4;
bdd_manager m(num_bits);
unsigned_vector bits; unsigned_vector bits;
bits.push_back(0); bits.push_back(0);
bits.push_back(1); bits.push_back(1);
bits.push_back(2); bits.push_back(2);
bdd_manager m(w); bits.push_back(3);
bddv const x = m.mk_var(bits); bddv const x = m.mk_var(bits);
bddv const three = m.mk_num(rational(3), num_bits);
bddv const four = m.mk_num(rational(4), num_bits);
bddv const five = m.mk_num(rational(5), num_bits);
SASSERT_EQ(x >= four && x < five, x == four);
SASSERT_EQ(four <= x && x < five, x == four);
SASSERT_EQ(three < x && x < five, x == four);
SASSERT_EQ(three < x && x <= four, x == four);
SASSERT_EQ(three <= x && x < five, x == four || x == three);
}
static void test_fdd3() {
std::cout << "test_fdd3\n";
unsigned const w = 3; // bit width
bdd_manager m(w);
fdd const x_dom(m, w);
bddv const& x = x_dom.var();
// Encodes the values x satisfying a*x + b == 0 (mod 2^w) as BDD. // Encodes the values x satisfying a*x + b == 0 (mod 2^w) as BDD.
auto mk_affine = [] (rational const& a, bddv const& x, rational const& b) { auto mk_affine = [] (unsigned a, bddv const& x, unsigned b) {
return (a*x + b == rational(0)); return (rational(a)*x + rational(b) == rational(0));
}; };
vector<bdd> num; vector<bdd> num;
for (unsigned n = 0; n < (1<<w); ++n) for (unsigned n = 0; n < (1<<w); ++n)
num.push_back(m.mk_eq(x, rational(n))); num.push_back(x == rational(n));
for (unsigned k = 0; k < (1 << w); ++k) { for (unsigned k = 0; k < (1 << w); ++k) {
for (unsigned n = 0; n < (1 << w); ++n) { for (unsigned n = 0; n < (1 << w); ++n) {
SASSERT(num[k].contains_num(rational(n), bits) == (n == k)); SASSERT(x_dom.contains(num[k], rational(n)) == (n == k));
rational r; rational r;
SASSERT_EQ((num[n] || num[k]).find_num(bits, r), (n == k) ? find_result::singleton : find_result::multiple); SASSERT_EQ(x_dom.find(num[n] || num[k], r), (n == k) ? find_t::singleton : find_t::multiple);
SASSERT(r == n || r == k); SASSERT(r == n || r == k);
} }
} }
bdd s0127 = num[0] || num[1] || num[2] || num[7]; bdd s0127 = num[0] || num[1] || num[2] || num[7];
SASSERT(s0127.contains_num(rational(0), bits)); SASSERT( x_dom.contains(s0127, rational(0)));
SASSERT(s0127.contains_num(rational(1), bits)); SASSERT( x_dom.contains(s0127, rational(1)));
SASSERT(s0127.contains_num(rational(2), bits)); SASSERT( x_dom.contains(s0127, rational(2)));
SASSERT(!s0127.contains_num(rational(3), bits)); SASSERT(!x_dom.contains(s0127, rational(3)));
SASSERT(!s0127.contains_num(rational(4), bits)); SASSERT(!x_dom.contains(s0127, rational(4)));
SASSERT(!s0127.contains_num(rational(5), bits)); SASSERT(!x_dom.contains(s0127, rational(5)));
SASSERT(!s0127.contains_num(rational(6), bits)); SASSERT(!x_dom.contains(s0127, rational(6)));
SASSERT(s0127.contains_num(rational(7), bits)); SASSERT( x_dom.contains(s0127, rational(7)));
bdd s123 = num[1] || num[2] || num[3]; bdd s123 = num[1] || num[2] || num[3];
SASSERT((s0127 && s123) == (num[1] || num[2])); SASSERT((s0127 && s123) == (num[1] || num[2]));
SASSERT(mk_affine(rational(0), x, rational(0)).is_true()); SASSERT(mk_affine(0, x, 0).is_true());
SASSERT(mk_affine(rational(0), x, rational(1)).is_false()); SASSERT(mk_affine(0, x, 1).is_false());
// 2*x == 0 (mod 2^3) has the solutions 0, 4 // 2*x == 0 (mod 2^3) has the solutions 0, 4
SASSERT(mk_affine(rational(2), x, rational(0)) == (num[0] || num[4])); SASSERT(mk_affine(2, x, 0) == (num[0] || num[4]));
// 4*x + 2 == 0 (mod 2^3) has no solutions // 4*x + 2 == 0 (mod 2^3) has no solutions
SASSERT(mk_affine(rational(4), x, rational(2)).is_false()); SASSERT(mk_affine(4, x, 2).is_false());
// 3*x + 2 == 0 (mod 2^3) has the unique solution 2 // 3*x + 2 == 0 (mod 2^3) has the unique solution 2
SASSERT(mk_affine(rational(3), x, rational(2)) == num[2]); SASSERT(mk_affine(3, x, 2) == num[2]);
// 2*x + 2 == 0 (mod 2^3) has the solutions 3, 7 // 2*x + 2 == 0 (mod 2^3) has the solutions 3, 7
SASSERT(mk_affine(rational(2), x, rational(2)) == (num[3] || num[7])); SASSERT(mk_affine(2, x, 2) == (num[3] || num[7]));
unsigned_vector bits4 = bits;
bits4.push_back(10);
bddv const x4 = m.mk_var(bits4);
// 12*x + 8 == 0 (mod 2^4) has the solutions 2, 6, 10, 14
bdd expected = m.mk_eq(x4, rational(2)) || m.mk_eq(x4, rational(6)) || m.mk_eq(x4, rational(10)) || m.mk_eq(x4, rational(14));
SASSERT(mk_affine(rational(12), x4, rational(8)) == expected);
} }
static void test_fdd4() {
std::cout << "test_fdd4\n";
bdd_manager m(4);
fdd const y_dom(m, 4);
bddv const& y = y_dom.var();
// 12*y + 8 == 0 (mod 2^4) has the solutions 2, 6, 10, 14
bdd equation = rational(12) * y + rational(8) == rational(0);
bdd expected = (y == rational(2)) || (y == rational(6)) || (y == rational(10)) || (y == rational(14));
SASSERT(equation == expected);
}
static void test_fdd_reorder() {
std::cout << "test_fdd_reorder\n";
bdd_manager m(4);
fdd const x_dom(m, 4);
bddv const& x = x_dom.var();
vector<bdd> num;
for (unsigned n = 0; n < (1 << x_dom.num_bits()); ++n) {
num.push_back(x == rational(n));
SASSERT(x_dom.contains(num[n], rational(n)));
rational r;
SASSERT_EQ(x_dom.find(num[n], r), find_t::singleton);
SASSERT_EQ(r, n);
}
// need something extra to skew costs and trigger a reorder
bdd atleast3 = (x >= rational(3));
SASSERT(x_dom.contains(atleast3, rational(3)));
auto const old_levels = m.m_var2level;
std::cout << "old levels: " << old_levels << "\n";
m.gc();
m.try_reorder();
std::cout << "new levels: " << m.m_var2level << "\n";
SASSERT(old_levels != m.m_var2level); // ensure that reorder actually did something.
// Should still give the correct answer after reordering
for (unsigned n = 0; n < (1 << x_dom.num_bits()); ++n) {
SASSERT(x_dom.contains(num[n], rational(n)));
rational r;
SASSERT_EQ(x_dom.find(num[n], r), find_t::singleton);
SASSERT_EQ(r, n);
}
}
};
} }
void tst_bdd() { void tst_bdd() {
dd::test1(); dd::test_bdd::test1();
dd::test2(); dd::test_bdd::test2();
dd::test3(); dd::test_bdd::test3();
dd::test4(); dd::test_bdd::test4();
dd::test_xor(); dd::test_bdd::test_xor();
dd::test_bddv_ops_on_constants(); dd::test_bdd::test_bddv_ops_on_constants();
dd::test_bddv_eqfind_small(); dd::test_bdd::test_bddv_eqfind_small();
dd::test_bddv_eqfind(); dd::test_bdd::test_bddv_eqfind();
dd::test_bddv_mul(); dd::test_bdd::test_bddv_addsub();
dd::test_int(); dd::test_bdd::test_bddv_mul();
dd::test_bdd::test_bddv_ule();
dd::test_bdd::test_fdd3();
dd::test_bdd::test_fdd4();
dd::test_bdd::test_fdd_reorder();
} }