mirror of
https://github.com/Z3Prover/z3
synced 2025-04-28 19:35:50 +00:00
Use nullptr.
This commit is contained in:
parent
f01328c65f
commit
76eb7b9ede
625 changed files with 4639 additions and 4639 deletions
|
@ -49,7 +49,7 @@ void mpz_matrix_manager::mk(unsigned m, unsigned n, mpz_matrix & A) {
|
|||
}
|
||||
|
||||
void mpz_matrix_manager::del(mpz_matrix & A) {
|
||||
if (A.a_ij != 0) {
|
||||
if (A.a_ij != nullptr) {
|
||||
for (unsigned i = 0; i < A.m; i++)
|
||||
for (unsigned j = 0; j < A.n; j++)
|
||||
nm().del(A(i,j));
|
||||
|
@ -57,7 +57,7 @@ void mpz_matrix_manager::del(mpz_matrix & A) {
|
|||
m_allocator.deallocate(sz, A.a_ij);
|
||||
A.m = 0;
|
||||
A.n = 0;
|
||||
A.a_ij = 0;
|
||||
A.a_ij = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -208,7 +208,7 @@ bool mpz_matrix_manager::eliminate(mpz_matrix & A, mpz * b, unsigned k1, unsigne
|
|||
// a_ik <- 0
|
||||
nm().set(A(i, k2), 0);
|
||||
// normalize row i
|
||||
if (!normalize_row(A.row(i), A.n, b ? &(b[i]) : 0, int_solver))
|
||||
if (!normalize_row(A.row(i), A.n, b ? &(b[i]) : nullptr, int_solver))
|
||||
return false;
|
||||
}
|
||||
SASSERT(nm().is_zero(A(i, k2)));
|
||||
|
@ -386,7 +386,7 @@ unsigned mpz_matrix_manager::linear_independent_rows(mpz_matrix const & _A, unsi
|
|||
r_sz++;
|
||||
if (r_sz >= A.n())
|
||||
break;
|
||||
eliminate(A, 0, k1, k2, false);
|
||||
eliminate(A, nullptr, k1, k2, false);
|
||||
k2++;
|
||||
}
|
||||
std::sort(r, r + r_sz);
|
||||
|
|
|
@ -45,7 +45,7 @@ class mpz_matrix {
|
|||
unsigned n;
|
||||
mpz * a_ij;
|
||||
public:
|
||||
mpz_matrix():m(0), n(0), a_ij(0) {}
|
||||
mpz_matrix():m(0), n(0), a_ij(nullptr) {}
|
||||
mpz const & operator()(unsigned i, unsigned j) const {
|
||||
SASSERT(i < m);
|
||||
SASSERT(j < n);
|
||||
|
|
|
@ -162,7 +162,7 @@ namespace realclosure {
|
|||
// To cope with this issue, we cache the value m_interval in m_old_interval whenever the width of m_interval is below
|
||||
// a give threshold. Then, after finishing OP, we restore the old_interval.
|
||||
mpbqi * m_old_interval;
|
||||
value(bool rat):m_ref_count(0), m_rational(rat), m_old_interval(0) {}
|
||||
value(bool rat):m_ref_count(0), m_rational(rat), m_old_interval(nullptr) {}
|
||||
bool is_rational() const { return m_rational; }
|
||||
mpbqi const & interval() const { return m_interval; }
|
||||
mpbqi & interval() { return m_interval; }
|
||||
|
@ -220,7 +220,7 @@ namespace realclosure {
|
|||
mpbqi m_interval;
|
||||
mpbqi * m_old_interval;
|
||||
|
||||
extension(kind k, unsigned idx):m_ref_count(0), m_kind(k), m_idx(idx), m_old_interval(0) {}
|
||||
extension(kind k, unsigned idx):m_ref_count(0), m_kind(k), m_idx(idx), m_old_interval(nullptr) {}
|
||||
|
||||
unsigned idx() const { return m_idx; }
|
||||
kind knd() const { return static_cast<kind>(m_kind); }
|
||||
|
@ -256,7 +256,7 @@ namespace realclosure {
|
|||
unsigned m_mark:1; // auxiliary mark used during deletion
|
||||
int m_sign; // Sign of the polynomial associated with m_q_idx
|
||||
sign_condition * m_prev; // Antecedent
|
||||
sign_condition():m_q_idx(0), m_mark(false), m_sign(0), m_prev(0) {}
|
||||
sign_condition():m_q_idx(0), m_mark(false), m_sign(0), m_prev(nullptr) {}
|
||||
sign_condition(unsigned qidx, int sign, sign_condition * prev):m_q_idx(qidx), m_mark(false), m_sign(sign), m_prev(prev) {}
|
||||
|
||||
sign_condition * prev() const { return m_prev; }
|
||||
|
@ -287,13 +287,13 @@ namespace realclosure {
|
|||
unsigned m_sc_idx; //!< != UINT_MAX if m_sign_det != 0, in this case m_sc_idx < m_sign_det->m_sign_conditions.size()
|
||||
bool m_depends_on_infinitesimals; //!< True if the polynomial p depends on infinitesimal extensions.
|
||||
|
||||
algebraic(unsigned idx):extension(ALGEBRAIC, idx), m_sign_det(0), m_sc_idx(0), m_depends_on_infinitesimals(false) {}
|
||||
algebraic(unsigned idx):extension(ALGEBRAIC, idx), m_sign_det(nullptr), m_sc_idx(0), m_depends_on_infinitesimals(false) {}
|
||||
|
||||
polynomial const & p() const { return m_p; }
|
||||
bool depends_on_infinitesimals() const { return m_depends_on_infinitesimals; }
|
||||
sign_det * sdt() const { return m_sign_det; }
|
||||
unsigned sc_idx() const { return m_sc_idx; }
|
||||
unsigned num_roots_inside_interval() const { return m_sign_det == 0 ? 1 : m_sign_det->num_roots(); }
|
||||
unsigned num_roots_inside_interval() const { return m_sign_det == nullptr ? 1 : m_sign_det->num_roots(); }
|
||||
mpbqi & iso_interval() { return m_iso_interval; }
|
||||
};
|
||||
|
||||
|
@ -497,8 +497,8 @@ namespace realclosure {
|
|||
|
||||
imp(reslimit& lim, unsynch_mpq_manager & qm, params_ref const & p, small_object_allocator * a):
|
||||
m_limit(lim),
|
||||
m_allocator(a == 0 ? alloc(small_object_allocator, "realclosure") : a),
|
||||
m_own_allocator(a == 0),
|
||||
m_allocator(a == nullptr ? alloc(small_object_allocator, "realclosure") : a),
|
||||
m_own_allocator(a == nullptr),
|
||||
m_qm(qm),
|
||||
m_mm(m_qm, *m_allocator),
|
||||
m_bqm(m_qm),
|
||||
|
@ -509,8 +509,8 @@ namespace realclosure {
|
|||
mpq one(1);
|
||||
m_one = mk_rational(one);
|
||||
inc_ref(m_one);
|
||||
m_pi = 0;
|
||||
m_e = 0;
|
||||
m_pi = nullptr;
|
||||
m_e = nullptr;
|
||||
|
||||
m_exec_depth = 0;
|
||||
|
||||
|
@ -657,7 +657,7 @@ namespace realclosure {
|
|||
*/
|
||||
template<typename T>
|
||||
void save_interval(T * v, ptr_vector<T> & to_restore) {
|
||||
if (v->m_old_interval != 0)
|
||||
if (v->m_old_interval != nullptr)
|
||||
return; // interval was already saved.
|
||||
to_restore.push_back(v);
|
||||
inc_ref(v);
|
||||
|
@ -698,7 +698,7 @@ namespace realclosure {
|
|||
set_interval(v->m_interval, *(v->m_old_interval));
|
||||
bqim().del(*(v->m_old_interval));
|
||||
allocator().deallocate(sizeof(mpbqi), v->m_old_interval);
|
||||
v->m_old_interval = 0;
|
||||
v->m_old_interval = nullptr;
|
||||
dec_ref(v);
|
||||
}
|
||||
to_restore.reset();
|
||||
|
@ -811,12 +811,12 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void inc_ref_sign_det(sign_det * sd) {
|
||||
if (sd != 0)
|
||||
if (sd != nullptr)
|
||||
sd->m_ref_count++;
|
||||
}
|
||||
|
||||
void dec_ref_sign_det(sign_det * sd) {
|
||||
if (sd != 0) {
|
||||
if (sd != nullptr) {
|
||||
sd->m_ref_count--;
|
||||
if (sd->m_ref_count == 0) {
|
||||
del_sign_det(sd);
|
||||
|
@ -887,7 +887,7 @@ namespace realclosure {
|
|||
|
||||
void del(numeral & a) {
|
||||
dec_ref(a.m_value);
|
||||
a.m_value = 0;
|
||||
a.m_value = nullptr;
|
||||
}
|
||||
|
||||
void del(numeral_vector & v) {
|
||||
|
@ -910,7 +910,7 @@ namespace realclosure {
|
|||
\brief Return true if v is zero.
|
||||
*/
|
||||
static bool is_zero(value * v) {
|
||||
return v == 0;
|
||||
return v == nullptr;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1260,14 +1260,14 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
rational_function_value * mk_rational_function_value_core(algebraic * ext, unsigned num_sz, value * const * num) {
|
||||
return mk_rational_function_value_core(ext, num_sz, num, 0, 0);
|
||||
return mk_rational_function_value_core(ext, num_sz, num, 0, nullptr);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Create a value using the given extension.
|
||||
*/
|
||||
rational_function_value * mk_rational_function_value(extension * ext) {
|
||||
value * num[2] = { 0, one() };
|
||||
value * num[2] = { nullptr, one() };
|
||||
value * den[1] = { one() };
|
||||
rational_function_value * v = mk_rational_function_value_core(ext, 2, num, 1, den);
|
||||
set_interval(v->interval(), ext->interval());
|
||||
|
@ -1838,7 +1838,7 @@ namespace realclosure {
|
|||
interval contains only one root of p.
|
||||
*/
|
||||
void add_root(unsigned p_sz, value * const * p, mpbqi const & interval, mpbqi const & iso_interval, numeral_vector & roots) {
|
||||
add_root(p_sz, p, interval, iso_interval, 0, UINT_MAX, roots);
|
||||
add_root(p_sz, p, interval, iso_interval, nullptr, UINT_MAX, roots);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1965,7 +1965,7 @@ namespace realclosure {
|
|||
// Sequence of sign conditions associated with the columns of M_s
|
||||
// These are sign conditions on the polynomials in qs.
|
||||
scoped_sign_conditions scs(*this);
|
||||
scs.push_back(0);
|
||||
scs.push_back(nullptr);
|
||||
|
||||
// Starting configuration
|
||||
//
|
||||
|
@ -2322,7 +2322,7 @@ namespace realclosure {
|
|||
|
||||
if (num_neg_roots > 0) {
|
||||
if (num_neg_roots == 1) {
|
||||
add_root(n, p, neg_interval, minf_zero, 0, UINT_MAX, roots);
|
||||
add_root(n, p, neg_interval, minf_zero, nullptr, UINT_MAX, roots);
|
||||
}
|
||||
else {
|
||||
if (has_neg_lower) {
|
||||
|
@ -2336,7 +2336,7 @@ namespace realclosure {
|
|||
|
||||
if (num_pos_roots > 0) {
|
||||
if (num_pos_roots == 1) {
|
||||
add_root(n, p, pos_interval, zero_inf, 0, UINT_MAX, roots);
|
||||
add_root(n, p, pos_interval, zero_inf, nullptr, UINT_MAX, roots);
|
||||
}
|
||||
else {
|
||||
if (has_pos_upper) {
|
||||
|
@ -2668,7 +2668,7 @@ namespace realclosure {
|
|||
\brief Remove 0s
|
||||
*/
|
||||
void adjust_size(value_ref_buffer & r) {
|
||||
while (!r.empty() && r.back() == 0) {
|
||||
while (!r.empty() && r.back() == nullptr) {
|
||||
r.pop_back();
|
||||
}
|
||||
}
|
||||
|
@ -2753,7 +2753,7 @@ namespace realclosure {
|
|||
void mul(value * a, unsigned sz, value * const * p, value_ref_buffer & r) {
|
||||
SASSERT(p != r.c_ptr());
|
||||
r.reset();
|
||||
if (a == 0)
|
||||
if (a == nullptr)
|
||||
return;
|
||||
value_ref a_i(*this);
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
|
@ -2778,7 +2778,7 @@ namespace realclosure {
|
|||
value_ref tmp(*this);
|
||||
for (unsigned i = 0; i < sz1; i++) {
|
||||
checkpoint();
|
||||
if (p1[i] == 0)
|
||||
if (p1[i] == nullptr)
|
||||
continue;
|
||||
for (unsigned j = 0; j < sz2; j++) {
|
||||
// r[i+j] <- r[i+j] + p1[i]*p2[j]
|
||||
|
@ -3060,7 +3060,7 @@ namespace realclosure {
|
|||
bool struct_eq(value * a, value * b) const {
|
||||
if (a == b)
|
||||
return true;
|
||||
else if (a == 0 || b == 0)
|
||||
else if (a == nullptr || b == nullptr)
|
||||
return false;
|
||||
else if (is_nz_rational(a) && is_nz_rational(b))
|
||||
return qm().eq(to_mpq(a), to_mpq(b));
|
||||
|
@ -3112,7 +3112,7 @@ namespace realclosure {
|
|||
- a is a rational_function_value of the form p_a(x)/1 where the coefficients of p_a also have clean denominators.
|
||||
*/
|
||||
bool has_clean_denominators(value * a) const {
|
||||
if (a == 0)
|
||||
if (a == nullptr)
|
||||
return true;
|
||||
else if (is_nz_rational(a))
|
||||
return qm().is_int(to_mpq(a));
|
||||
|
@ -3150,7 +3150,7 @@ namespace realclosure {
|
|||
INC_DEPTH();
|
||||
TRACE("rcf_clean", tout << "clean_denominators_core [" << m_exec_depth << "]\na: "; display(tout, a, false); tout << "\n";);
|
||||
p.reset(); q.reset();
|
||||
if (a == 0) {
|
||||
if (a == nullptr) {
|
||||
p = a;
|
||||
q = one();
|
||||
}
|
||||
|
@ -3205,8 +3205,8 @@ namespace realclosure {
|
|||
dens.push_back(a_d);
|
||||
}
|
||||
else {
|
||||
nums.push_back(0);
|
||||
dens.push_back(0);
|
||||
nums.push_back(nullptr);
|
||||
dens.push_back(nullptr);
|
||||
}
|
||||
}
|
||||
if (all_one) {
|
||||
|
@ -3258,7 +3258,7 @@ namespace realclosure {
|
|||
value_ref m(*this);
|
||||
for (unsigned i = 0; i < p_sz; i++) {
|
||||
if (!nums[i]) {
|
||||
norm_p.push_back(0);
|
||||
norm_p.push_back(nullptr);
|
||||
}
|
||||
else {
|
||||
SASSERT(dens[i]);
|
||||
|
@ -3348,7 +3348,7 @@ namespace realclosure {
|
|||
If g != 0, then it will compute the gcd of g and the coefficients in a.
|
||||
*/
|
||||
bool gcd_int_coeffs(value * a, mpz & g) {
|
||||
if (a == 0) {
|
||||
if (a == nullptr) {
|
||||
return false;
|
||||
}
|
||||
else if (is_nz_rational(a)) {
|
||||
|
@ -3410,7 +3410,7 @@ namespace realclosure {
|
|||
for (unsigned i = 0; i < p.size(); i++) {
|
||||
if (p[i]) {
|
||||
a = p[i];
|
||||
p.set(i, 0);
|
||||
p.set(i, nullptr);
|
||||
exact_div_z(a, g);
|
||||
p.set(i, a);
|
||||
}
|
||||
|
@ -3448,7 +3448,7 @@ namespace realclosure {
|
|||
new_ais.push_back(ai);
|
||||
}
|
||||
else {
|
||||
new_ais.push_back(0);
|
||||
new_ais.push_back(nullptr);
|
||||
}
|
||||
}
|
||||
rational_function_value * r = mk_rational_function_value_core(rf->ext(), new_ais.size(), new_ais.c_ptr(), 1, &m_one);
|
||||
|
@ -3759,7 +3759,7 @@ namespace realclosure {
|
|||
while (i > 0) {
|
||||
checkpoint();
|
||||
--i;
|
||||
if (p[i] != 0)
|
||||
if (p[i] != nullptr)
|
||||
bqim().add(r, interval(p[i]), r);
|
||||
if (i > 0)
|
||||
bqim().mul(r, bi, r);
|
||||
|
@ -3772,7 +3772,7 @@ namespace realclosure {
|
|||
*/
|
||||
bool has_refineable_approx_coeffs(unsigned n, value * const * p) {
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
if (p[i] != 0) {
|
||||
if (p[i] != nullptr) {
|
||||
mpbqi & a_i = interval(p[i]);
|
||||
if (a_i.lower_is_inf() || a_i.upper_is_inf())
|
||||
return false;
|
||||
|
@ -3786,7 +3786,7 @@ namespace realclosure {
|
|||
*/
|
||||
void mk_polynomial_value(unsigned n, value * const * p, value * b, value_ref & r) {
|
||||
SASSERT(n > 0);
|
||||
if (n == 1 || b == 0) {
|
||||
if (n == 1 || b == nullptr) {
|
||||
r = p[0];
|
||||
}
|
||||
else {
|
||||
|
@ -3798,7 +3798,7 @@ namespace realclosure {
|
|||
unsigned i = n - 1;
|
||||
while (i > 0) {
|
||||
--i;
|
||||
if (p[i] != 0)
|
||||
if (p[i] != nullptr)
|
||||
add(r, p[i], r); // r <- r + a_i
|
||||
if (i > 0)
|
||||
mul(r, b, r); // r <- r * b
|
||||
|
@ -3856,7 +3856,7 @@ namespace realclosure {
|
|||
int find_biggest_interval_magnitude(unsigned n, value * const * p) {
|
||||
int r = INT_MIN;
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
if (p[i] != 0) {
|
||||
if (p[i] != nullptr) {
|
||||
mpbqi & a_i = interval(p[i]);
|
||||
SASSERT(!a_i.lower_is_inf() && !a_i.upper_is_inf());
|
||||
int m = magnitude(a_i);
|
||||
|
@ -4089,7 +4089,7 @@ namespace realclosure {
|
|||
*/
|
||||
bool refine_coeffs_interval(unsigned n, value * const * p, unsigned prec) {
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
if (p[i] != 0 && !refine_interval(p[i], prec))
|
||||
if (p[i] != nullptr && !refine_interval(p[i], prec))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -4243,7 +4243,7 @@ namespace realclosure {
|
|||
|
||||
bool refine_algebraic_interval(algebraic * a, unsigned prec) {
|
||||
save_interval_if_too_small(a, prec);
|
||||
if (a->sdt() != 0) {
|
||||
if (a->sdt() != nullptr) {
|
||||
// We don't bisect the interval, since it contains more than one root.
|
||||
// To bisect this kind of interval we would have to use Tarski queries.
|
||||
return false;
|
||||
|
@ -4941,7 +4941,7 @@ namespace realclosure {
|
|||
}
|
||||
else {
|
||||
// The new value is 0
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -4979,7 +4979,7 @@ namespace realclosure {
|
|||
// num <- a + b * ad
|
||||
add(an.size(), an.c_ptr(), b_ad.size(), b_ad.c_ptr(), num);
|
||||
if (num.empty())
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
else {
|
||||
value_ref_buffer new_num(*this);
|
||||
value_ref_buffer new_den(*this);
|
||||
|
@ -5003,7 +5003,7 @@ namespace realclosure {
|
|||
value_ref_buffer new_num(*this);
|
||||
add(an.size(), an.c_ptr(), bn.size(), bn.c_ptr(), new_num);
|
||||
if (new_num.empty())
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
else {
|
||||
// We don't need to invoke normalize_algebraic even if x (== a->ext()) is algebraic.
|
||||
// Reason: by construction the polynomials a->num() and b->num() are "normalized".
|
||||
|
@ -5035,7 +5035,7 @@ namespace realclosure {
|
|||
value_ref_buffer num(*this);
|
||||
add(an_bd.size(), an_bd.c_ptr(), bn_ad.size(), bn_ad.c_ptr(), num);
|
||||
if (num.empty()) {
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
}
|
||||
else {
|
||||
value_ref_buffer den(*this);
|
||||
|
@ -5050,17 +5050,17 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void add(value * a, value * b, value_ref & r) {
|
||||
if (a == 0) {
|
||||
if (a == nullptr) {
|
||||
r = b;
|
||||
}
|
||||
else if (b == 0) {
|
||||
else if (b == nullptr) {
|
||||
r = a;
|
||||
}
|
||||
else if (is_nz_rational(a) && is_nz_rational(b)) {
|
||||
scoped_mpq v(qm());
|
||||
qm().add(to_mpq(a), to_mpq(b), v);
|
||||
if (qm().is_zero(v))
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
else
|
||||
r = mk_rational_and_swap(v);
|
||||
}
|
||||
|
@ -5079,17 +5079,17 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void sub(value * a, value * b, value_ref & r) {
|
||||
if (a == 0) {
|
||||
if (a == nullptr) {
|
||||
neg(b, r);
|
||||
}
|
||||
else if (b == 0) {
|
||||
else if (b == nullptr) {
|
||||
r = a;
|
||||
}
|
||||
else if (is_nz_rational(a) && is_nz_rational(b)) {
|
||||
scoped_mpq v(qm());
|
||||
qm().sub(to_mpq(a), to_mpq(b), v);
|
||||
if (qm().is_zero(v))
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
else
|
||||
r = mk_rational_and_swap(v);
|
||||
}
|
||||
|
@ -5118,8 +5118,8 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void neg(value * a, value_ref & r) {
|
||||
if (a == 0) {
|
||||
r = 0;
|
||||
if (a == nullptr) {
|
||||
r = nullptr;
|
||||
}
|
||||
else if (is_nz_rational(a)) {
|
||||
scoped_mpq v(qm());
|
||||
|
@ -5155,7 +5155,7 @@ namespace realclosure {
|
|||
}
|
||||
else {
|
||||
// The new value is 0
|
||||
r = 0;
|
||||
r = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5252,8 +5252,8 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void mul(value * a, value * b, value_ref & r) {
|
||||
if (a == 0 || b == 0) {
|
||||
r = 0;
|
||||
if (a == nullptr || b == nullptr) {
|
||||
r = nullptr;
|
||||
}
|
||||
else if (is_rational_one(a)) {
|
||||
r = b;
|
||||
|
@ -5287,10 +5287,10 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void div(value * a, value * b, value_ref & r) {
|
||||
if (a == 0) {
|
||||
r = 0;
|
||||
if (a == nullptr) {
|
||||
r = nullptr;
|
||||
}
|
||||
else if (b == 0) {
|
||||
else if (b == nullptr) {
|
||||
throw exception("division by zero");
|
||||
}
|
||||
else if (is_rational_one(b)) {
|
||||
|
@ -5461,7 +5461,7 @@ namespace realclosure {
|
|||
// r == 1/inv(new_a)
|
||||
inv(new_a, r);
|
||||
}
|
||||
else if (alpha->sdt() == 0) {
|
||||
else if (alpha->sdt() == nullptr) {
|
||||
// Another easy case: we just have to replace
|
||||
// alpha->p() with new_p.
|
||||
// The m_iso_interval for p() is also an isolating interval for new_p,
|
||||
|
@ -5552,7 +5552,7 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void inv(value * a, value_ref & r) {
|
||||
if (a == 0) {
|
||||
if (a == nullptr) {
|
||||
throw exception("division by zero");
|
||||
}
|
||||
if (is_nz_rational(a)) {
|
||||
|
@ -5644,7 +5644,7 @@ namespace realclosure {
|
|||
neg(a.m_value, neg_a);
|
||||
p.push_back(neg_a);
|
||||
for (unsigned i = 0; i < k - 1; i++)
|
||||
p.push_back(0);
|
||||
p.push_back(nullptr);
|
||||
p.push_back(one());
|
||||
|
||||
numeral_vector roots;
|
||||
|
@ -5687,9 +5687,9 @@ namespace realclosure {
|
|||
// ---------------------------------
|
||||
|
||||
int compare(value * a, value * b) {
|
||||
if (a == 0)
|
||||
if (a == nullptr)
|
||||
return -sign(b);
|
||||
else if (b == 0)
|
||||
else if (b == nullptr)
|
||||
return sign(a);
|
||||
else if (is_nz_rational(a) && is_nz_rational(b)) {
|
||||
if (qm().eq(to_mpq(a), to_mpq(b)))
|
||||
|
@ -5744,7 +5744,7 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void mark(value * v) {
|
||||
if (v == 0 || is_nz_rational(v))
|
||||
if (v == nullptr || is_nz_rational(v))
|
||||
return;
|
||||
rational_function_value * rf = to_rational_function(v);
|
||||
mark(rf->ext());
|
||||
|
@ -5779,7 +5779,7 @@ namespace realclosure {
|
|||
bool first = true;
|
||||
while (i > 0) {
|
||||
--i;
|
||||
if (p[i] == 0)
|
||||
if (p[i] == nullptr)
|
||||
continue;
|
||||
if (first)
|
||||
first = false;
|
||||
|
@ -5893,7 +5893,7 @@ namespace realclosure {
|
|||
out << ", ";
|
||||
display_interval(out, a->iso_interval(), pp);
|
||||
out << ", ";
|
||||
if (a->sdt() != 0)
|
||||
if (a->sdt() != nullptr)
|
||||
display_sign_conditions(out, a->sdt()->sc(a->sc_idx()), a->sdt()->qs(), compact, pp);
|
||||
else
|
||||
out << "{}";
|
||||
|
@ -5931,7 +5931,7 @@ namespace realclosure {
|
|||
}
|
||||
|
||||
void display(std::ostream & out, value * v, bool compact, bool pp=false) const {
|
||||
if (v == 0)
|
||||
if (v == nullptr)
|
||||
out << "0";
|
||||
else if (is_nz_rational(v))
|
||||
qm().display(out, to_mpq(v));
|
||||
|
|
|
@ -48,7 +48,7 @@ namespace realclosure {
|
|||
friend class save_interval_ctx;
|
||||
imp * m_imp;
|
||||
public:
|
||||
manager(reslimit& lim, unsynch_mpq_manager & m, params_ref const & p = params_ref(), small_object_allocator * a = 0);
|
||||
manager(reslimit& lim, unsynch_mpq_manager & m, params_ref const & p = params_ref(), small_object_allocator * a = nullptr);
|
||||
~manager();
|
||||
typedef num numeral;
|
||||
typedef svector<numeral> numeral_vector;
|
||||
|
@ -271,7 +271,7 @@ namespace realclosure {
|
|||
friend struct manager::imp;
|
||||
value * m_value;
|
||||
public:
|
||||
num():m_value(0) {}
|
||||
num():m_value(nullptr) {}
|
||||
|
||||
// Low level functions for implementing the C API
|
||||
void * c_ptr() { return m_value; }
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue