3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

Use nullptr.

This commit is contained in:
Bruce Mitchener 2018-02-12 14:05:55 +07:00
parent f01328c65f
commit 76eb7b9ede
625 changed files with 4639 additions and 4639 deletions

View file

@ -63,8 +63,8 @@ namespace rpolynomial {
m_wrapper(w),
m_manager(m),
m_allocator(a),
m_own_allocator(a == 0) {
if (a == 0)
m_own_allocator(a == nullptr) {
if (a == nullptr)
m_allocator = alloc(small_object_allocator, "rpolynomial");
}
@ -107,7 +107,7 @@ namespace rpolynomial {
unsigned sz = p->size();
for (unsigned i = 0; i < sz; i++) {
poly_or_num * pn = p->arg(i);
if (pn == 0)
if (pn == nullptr)
continue;
if (is_num(pn)) {
del_numeral(to_num_ptr(pn));
@ -141,11 +141,11 @@ namespace rpolynomial {
static bool is_const(polynomial const * p) {
SASSERT(p == 0 || (p->max_var() == null_var) == (p->size() == 1 && p->arg(0) != 0 && is_num(p->arg(0))));
return p == 0 || p->max_var() == null_var;
return p == nullptr || p->max_var() == null_var;
}
bool is_zero(polynomial const * p) {
return p == 0;
return p == nullptr;
}
static bool is_univariate(polynomial const * p) {
@ -154,7 +154,7 @@ namespace rpolynomial {
unsigned sz = p->size();
for (unsigned i = 0; i < sz; i++) {
poly_or_num * pn = p->arg(i);
if (pn == 0)
if (pn == nullptr)
continue;
if (is_poly(pn))
return false;
@ -169,7 +169,7 @@ namespace rpolynomial {
SASSERT(sz > 0);
SASSERT(p->arg(sz - 1) != 0);
for (unsigned i = 0; i < sz - 1; i++) {
if (p->arg(i) != 0)
if (p->arg(i) != nullptr)
return false;
}
SASSERT(is_poly(p->arg(sz - 1)));
@ -179,13 +179,13 @@ namespace rpolynomial {
unsigned degree(polynomial const * p) {
SASSERT(p != 0);
SASSERT(p->size() > 0);
return p == 0 ? 0 : p->size() - 1;
return p == nullptr ? 0 : p->size() - 1;
}
bool eq(polynomial const * p1, polynomial const * p2) {
if (p1 == p2)
return true;
if (p1 == 0 || p2 == 0)
if (p1 == nullptr || p2 == nullptr)
return false;
if (p1->size() != p2->size())
return false;
@ -195,9 +195,9 @@ namespace rpolynomial {
for (unsigned i = 0; i < sz; i++) {
poly_or_num * pn1 = p1->arg(i);
poly_or_num * pn2 = p2->arg(i);
if (pn1 == 0 && pn2 == 0)
if (pn1 == nullptr && pn2 == nullptr)
continue;
if (pn1 == 0 || pn2 == 0)
if (pn1 == nullptr || pn2 == nullptr)
return false;
if (is_num(pn1) && is_num(pn2)) {
if (!m_manager.eq(to_num(pn1), to_num(pn2)))
@ -217,7 +217,7 @@ namespace rpolynomial {
void inc_ref_args(unsigned sz, poly_or_num * const * args) {
for (unsigned i = 0; i < sz; i++) {
poly_or_num * pn = args[i];
if (pn == 0 || is_num(pn))
if (pn == nullptr || is_num(pn))
continue;
inc_ref(to_poly(pn));
}
@ -226,7 +226,7 @@ namespace rpolynomial {
void dec_ref_args(unsigned sz, poly_or_num * const * args) {
for (unsigned i = 0; i < sz; i++) {
poly_or_num * pn = args[i];
if (pn == 0 || is_num(pn))
if (pn == nullptr || is_num(pn))
continue;
dec_ref(to_poly(pn));
}
@ -234,7 +234,7 @@ namespace rpolynomial {
unsigned trim(unsigned sz, poly_or_num * const * args) {
while (sz > 0) {
if (args[sz - 1] != 0)
if (args[sz - 1] != nullptr)
return sz;
sz--;
}
@ -281,8 +281,8 @@ namespace rpolynomial {
polynomial * mk_poly(unsigned sz, poly_or_num * const * args, var max_var) {
poly_or_num * _p = mk_poly_core(sz, args, max_var);
if (_p == 0)
return 0;
if (_p == nullptr)
return nullptr;
else if (is_num(_p))
return allocate_poly(1, &_p, null_var);
else
@ -291,7 +291,7 @@ namespace rpolynomial {
polynomial * mk_const(numeral const & n) {
if (m_manager.is_zero(n))
return 0;
return nullptr;
numeral * a = mk_numeral();
m_manager.set(*a, n);
poly_or_num * _a = to_poly_or_num(a);
@ -322,8 +322,8 @@ namespace rpolynomial {
}
poly_or_num * unpack(polynomial const * p) {
if (p == 0) {
return 0;
if (p == nullptr) {
return nullptr;
}
else if (is_const(p)) {
SASSERT(p->size() == 1);
@ -336,8 +336,8 @@ namespace rpolynomial {
}
polynomial * pack(poly_or_num * p) {
if (p == 0)
return 0;
if (p == nullptr)
return nullptr;
else if (is_num(p))
return mk_poly(1, &p, null_var);
else
@ -345,8 +345,8 @@ namespace rpolynomial {
}
poly_or_num * mul_core(numeral const & c, poly_or_num * p) {
if (m_manager.is_zero(c) || p == 0) {
return 0;
if (m_manager.is_zero(c) || p == nullptr) {
return nullptr;
}
else if (is_num(p)) {
numeral * r = mk_numeral();
@ -379,7 +379,7 @@ namespace rpolynomial {
if (m_manager.is_zero(c)) {
return p;
}
else if (p == 0) {
else if (p == nullptr) {
numeral * r = mk_numeral();
m_manager.set(*r, c);
return to_poly_or_num(r);
@ -388,7 +388,7 @@ namespace rpolynomial {
numeral a;
m_manager.add(c, to_num(p), a);
if (m_manager.is_zero(a))
return 0;
return nullptr;
numeral * new_arg = mk_numeral();
m_manager.swap(*new_arg, a);
return to_poly_or_num(new_arg);
@ -662,7 +662,7 @@ namespace rpolynomial {
while (i > 0) {
--i;
poly_or_num * pn = p->arg(i);
if (pn == 0)
if (pn == nullptr)
continue;
if (first)
first = false;
@ -730,7 +730,7 @@ namespace rpolynomial {
}
bool manager::is_zero(polynomial const * p) {
return p == 0;
return p == nullptr;
}
#if 0