3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

Merge pull request #6905 from Z3Prover/unit_prop_on_monomials

This commit is contained in:
Lev Nachmanson 2023-10-08 18:20:44 -07:00 committed by GitHub
commit 75e29b2a6d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
22 changed files with 392 additions and 242 deletions

View file

@ -26,6 +26,8 @@ Revision History:
#include "math/lp/test_bound_analyzer.h"
namespace lp {
template <typename C, typename B> // C plays a role of a container, B - lp_bound_propagator
class bound_analyzer_on_row {
const C& m_row;
@ -91,39 +93,17 @@ private:
}
bool bound_is_available(unsigned j, bool lower_bound) {
return (lower_bound && lower_bound_is_available(j)) ||
(!lower_bound && upper_bound_is_available(j));
}
bool upper_bound_is_available(unsigned j) const {
switch (m_bp.get_column_type(j)) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return true;
default:
return false;
}
}
bool lower_bound_is_available(unsigned j) const {
switch (m_bp.get_column_type(j)) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return true;
default:
return false;
}
return (lower_bound && m_bp.lower_bound_is_available(j)) ||
(!lower_bound && m_bp.upper_bound_is_available(j));
}
const impq & ub(unsigned j) const {
lp_assert(upper_bound_is_available(j));
lp_assert(m_bp.upper_bound_is_available(j));
return m_bp.get_upper_bound(j);
}
const impq & lb(unsigned j) const {
lp_assert(lower_bound_is_available(j));
lp_assert(m_bp.lower_bound_is_available(j));
return m_bp.get_lower_bound(j);
}
@ -301,10 +281,32 @@ private:
// */
// }
void limit_j(unsigned j, const mpq& u, bool coeff_before_j_is_pos, bool is_lower_bound, bool strict){
m_bp.try_add_bound(u, j, is_lower_bound, coeff_before_j_is_pos, m_row_index, strict);
void limit_j(unsigned bound_j, const mpq& u, bool coeff_before_j_is_pos, bool is_lower_bound, bool strict)
{
unsigned row_index = this->m_row_index;
auto* lar = &m_bp.lp();
auto explain = [bound_j, coeff_before_j_is_pos, is_lower_bound, strict, row_index, lar]() {
TRACE("bound_analyzer", tout << "explain_bound_on_var_on_coeff, bound_j = " << bound_j << ", coeff_before_j_is_pos = " << coeff_before_j_is_pos << ", is_lower_bound = " << is_lower_bound << ", strict = " << strict << ", row_index = " << row_index << "\n";);
int bound_sign = (is_lower_bound ? 1 : -1);
int j_sign = (coeff_before_j_is_pos ? 1 : -1) * bound_sign;
SASSERT(!tv::is_term(bound_j));
u_dependency* ret = nullptr;
for (auto const& r : lar->get_row(row_index)) {
unsigned j = r.var();
if (j == bound_j)
continue;
mpq const& a = r.coeff();
int a_sign = is_pos(a) ? 1 : -1;
int sign = j_sign * a_sign;
u_dependency* witness = sign > 0 ? lar->get_column_upper_bound_witness(j) : lar->get_column_lower_bound_witness(j);
ret = lar->join_deps(ret, witness);
}
return ret;
};
m_bp.add_bound(u, bound_j, is_lower_bound, strict, explain);
}
void advance_u(unsigned j) {
m_column_of_u = (m_column_of_u == -1) ? j : -2;
}
@ -335,6 +337,9 @@ private:
break;
}
}
};
}

View file

@ -279,10 +279,12 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print()
print_row(i);
}
m_out << std::endl;
if (m_core_solver.inf_heap().size()) {
m_out << "inf columns: ";
if (!m_core_solver.inf_heap().empty()) {
m_out << "inf columns: size() = " << m_core_solver.inf_heap().size() << std::endl;
print_vector(m_core_solver.inf_heap(), m_out);
m_out << std::endl;
} else {
m_out << "inf columns: none\n";
}
}

View file

@ -417,7 +417,7 @@ int gomory::find_basic_var() {
}
lia_move gomory::operator()() {
lra.move_non_basic_columns_to_bounds(true);
lra.move_non_basic_columns_to_bounds();
int j = find_basic_var();
if (j == -1)
return lia_move::undef;

View file

@ -21,37 +21,40 @@ Revision History:
#include "math/lp/lp_settings.h"
#include "math/lp/lar_constraints.h"
namespace lp {
struct implied_bound {
class implied_bound {
public:
mpq m_bound;
unsigned m_j; // the column for which the bound has been found
// It is either the column for which the bound has been found, or,
// in the case the column was created as
// the slack variable to a term, it is the term index.
// It is the same index that was returned by lar_solver::add_var(), or
// by lar_solver::add_term()
unsigned m_j;
bool m_is_lower_bound;
bool m_coeff_before_j_is_pos;
unsigned m_row_or_term_index;
bool m_strict;
private:
std::function<u_dependency*()> m_explain_bound = nullptr;
public:
// s is expected to be the pointer to lp_bound_propagator.
u_dependency* explain_implied() const { return m_explain_bound(); }
void set_explain(std::function<u_dependency*()> f) { m_explain_bound = f; }
lconstraint_kind kind() const {
lconstraint_kind k = m_is_lower_bound? GE : LE;
if (m_strict)
k = static_cast<lconstraint_kind>(k / 2);
return k;
}
bool operator==(const implied_bound & o) const {
return m_j == o.m_j && m_is_lower_bound == o.m_is_lower_bound && m_bound == o.m_bound &&
m_coeff_before_j_is_pos == o.m_coeff_before_j_is_pos &&
m_row_or_term_index == o.m_row_or_term_index && m_strict == o.m_strict;
}
implied_bound(){}
implied_bound(const mpq & a,
unsigned j,
bool lower_bound,
bool coeff_before_j_is_pos,
unsigned row_or_term_index,
bool strict):
bool is_lower_bound,
bool is_strict,
std::function<u_dependency*()> get_dep):
m_bound(a),
m_j(j),
m_is_lower_bound(lower_bound),
m_coeff_before_j_is_pos(coeff_before_j_is_pos),
m_row_or_term_index(row_or_term_index),
m_strict(strict) {
m_is_lower_bound(is_lower_bound),
m_strict(is_strict),
m_explain_bound(get_dep) {
}
};
}

View file

@ -24,7 +24,7 @@ namespace lp {
int_branch::int_branch(int_solver& lia):lia(lia), lra(lia.lra) {}
lia_move int_branch::operator()() {
lra.move_non_basic_columns_to_bounds(true);
lra.move_non_basic_columns_to_bounds();
int j = find_inf_int_base_column();
return j == -1? lia_move::sat : create_branch_on_column(j);
}

View file

@ -43,7 +43,7 @@ namespace lp {
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("cube", tout << "cannot find a feasible solution";);
lra.pop();
lra.move_non_basic_columns_to_bounds(false);
lra.move_non_basic_columns_to_bounds();
// it can happen that we found an integer solution here
return !lra.r_basis_has_inf_int()? lia_move::sat: lia_move::undef;
}

View file

@ -22,7 +22,8 @@ namespace lp {
}
lar_solver::lar_solver() :
m_crossed_bounds_column(-1),
m_crossed_bounds_column(null_lpvar),
m_crossed_bounds_deps(nullptr),
m_mpq_lar_core_solver(m_settings, *this),
m_var_register(false),
m_term_register(true),
@ -180,7 +181,10 @@ namespace lp {
lp_status lar_solver::get_status() const { return m_status; }
void lar_solver::set_status(lp_status s) { m_status = s; }
void lar_solver::set_status(lp_status s) {
TRACE("lar_solver", tout << "setting status to " << s << "\n";);
m_status = s;
}
lp_status lar_solver::find_feasible_solution() {
stats().m_make_feasible++;
@ -199,9 +203,9 @@ namespace lp {
}
lp_status lar_solver::solve() {
if (m_status == lp_status::INFEASIBLE) {
if (m_status == lp_status::INFEASIBLE)
return m_status;
}
solve_with_core_solver();
if (m_status != lp_status::INFEASIBLE) {
if (m_settings.bound_propagation())
@ -213,17 +217,10 @@ namespace lp {
}
void lar_solver::fill_explanation_from_crossed_bounds_column(explanation& evidence) const {
lp_assert(static_cast<int>(get_column_type(m_crossed_bounds_column)) >= static_cast<int>(column_type::boxed));
lp_assert(!column_is_feasible(m_crossed_bounds_column));
// this is the case when the lower bound is in conflict with the upper one
const ul_pair& ul = m_columns_to_ul_pairs[m_crossed_bounds_column];
svector<constraint_index> deps;
m_dependencies.linearize(ul.upper_bound_witness(), deps);
for (auto d : deps)
evidence.add_pair(d, numeric_traits<mpq>::one());
deps.reset();
m_dependencies.linearize(ul.lower_bound_witness(), deps);
SASSERT(m_crossed_bounds_deps != nullptr);
m_dependencies.linearize(m_crossed_bounds_deps, deps);
for (auto d : deps)
evidence.add_pair(d, -numeric_traits<mpq>::one());
}
@ -232,7 +229,8 @@ namespace lp {
m_simplex_strategy = m_settings.simplex_strategy();
m_simplex_strategy.push();
m_columns_to_ul_pairs.push();
m_crossed_bounds_column.push();
m_crossed_bounds_column = null_lpvar;
m_crossed_bounds_deps = nullptr;
m_mpq_lar_core_solver.push();
m_term_count = m_terms.size();
m_term_count.push();
@ -262,7 +260,8 @@ namespace lp {
void lar_solver::pop(unsigned k) {
TRACE("lar_solver", tout << "k = " << k << std::endl;);
m_crossed_bounds_column.pop(k);
m_crossed_bounds_column = null_lpvar;
m_crossed_bounds_deps = nullptr;
unsigned n = m_columns_to_ul_pairs.peek_size(k);
m_var_register.shrink(n);
pop_tableau(n);
@ -403,7 +402,7 @@ namespace lp {
void lar_solver::prepare_costs_for_r_solver(const lar_term& term) {
TRACE("lar_solver", print_term(term, tout << "prepare: ") << "\n";);
move_non_basic_columns_to_bounds(false);
move_non_basic_columns_to_bounds();
auto& rslv = m_mpq_lar_core_solver.m_r_solver;
lp_assert(costs_are_zeros_for_r_solver());
lp_assert(reduced_costs_are_zeroes_for_r_solver());
@ -420,11 +419,11 @@ namespace lp {
lp_assert(rslv.reduced_costs_are_correct_tableau());
}
void lar_solver::move_non_basic_columns_to_bounds(bool shift_randomly) {
void lar_solver::move_non_basic_columns_to_bounds() {
auto& lcs = m_mpq_lar_core_solver;
bool change = false;
for (unsigned j : lcs.m_r_nbasis) {
if (move_non_basic_column_to_bounds(j, shift_randomly))
if (move_non_basic_column_to_bounds(j))
change = true;
}
if (!change)
@ -435,46 +434,40 @@ namespace lp {
find_feasible_solution();
}
bool lar_solver::move_non_basic_column_to_bounds(unsigned j, bool force_change) {
bool lar_solver::move_non_basic_column_to_bounds(unsigned j) {
auto& lcs = m_mpq_lar_core_solver;
auto& val = lcs.m_r_x[j];
switch (lcs.m_column_types()[j]) {
case column_type::boxed: {
bool at_l = val == lcs.m_r_lower_bounds()[j];
bool at_u = !at_l && (val == lcs.m_r_upper_bounds()[j]);
if (!at_l && !at_u) {
if (m_settings.random_next() % 2)
set_value_for_nbasic_column(j, lcs.m_r_lower_bounds()[j]);
else
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
const auto& l = lcs.m_r_lower_bounds()[j];
if (val == l || val == lcs.m_r_upper_bounds()[j]) return false;
set_value_for_nbasic_column(j, l);
return true;
}
case column_type::lower_bound: {
const auto& l = lcs.m_r_lower_bounds()[j];
if (val != l) {
set_value_for_nbasic_column(j, l);
return true;
}
else if (force_change && m_settings.random_next() % 3 == 0) {
set_value_for_nbasic_column(j,
at_l ? lcs.m_r_upper_bounds()[j] : lcs.m_r_lower_bounds()[j]);
return true;
}
break;
}
case column_type::lower_bound:
if (val != lcs.m_r_lower_bounds()[j]) {
set_value_for_nbasic_column(j, lcs.m_r_lower_bounds()[j]);
return true;
}
break;
return false;
}
case column_type::fixed:
case column_type::upper_bound:
if (val != lcs.m_r_upper_bounds()[j]) {
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
case column_type::upper_bound: {
const auto & u = lcs.m_r_upper_bounds()[j];
if (val != u) {
set_value_for_nbasic_column(j, u);
return true;
}
break;
return false;
}
case column_type::free_column:
if (column_is_int(j) && !val.is_int()) {
set_value_for_nbasic_column(j, impq(floor(val)));
return true;
}
break;
return false;
default:
SASSERT(false);
}
@ -486,6 +479,8 @@ namespace lp {
auto& x = m_mpq_lar_core_solver.m_r_x[j];
auto delta = new_val - x;
x = new_val;
TRACE("lar_solver_feas", tout << "setting " << j << " to "
<< new_val << (column_is_feasible(j)?"feas":"non-feas") << "\n";);
change_basic_columns_dependend_on_a_given_nb_column(j, delta);
}
@ -793,6 +788,8 @@ namespace lp {
void lar_solver::detect_rows_with_changed_bounds() {
for (auto j : m_columns_with_changed_bounds)
detect_rows_with_changed_bounds_for_column(j);
if (m_find_monics_with_changed_bounds_func)
m_find_monics_with_changed_bounds_func(m_columns_with_changed_bounds);
}
void lar_solver::update_x_and_inf_costs_for_columns_with_changed_bounds_tableau() {
@ -1021,7 +1018,7 @@ namespace lp {
void lar_solver::get_infeasibility_explanation(explanation& exp) const {
exp.clear();
if (m_crossed_bounds_column != -1) {
if (m_crossed_bounds_column != null_lpvar) {
fill_explanation_from_crossed_bounds_column(exp);
return;
}
@ -1073,12 +1070,16 @@ namespace lp {
}
bool lar_solver::init_model() const {
if (get_status() != lp_status::OPTIMAL && get_status() != lp_status::FEASIBLE)
CTRACE("lar_solver_model",!m_columns_with_changed_bounds.empty(), tout << "non-empty changed bounds\n");
TRACE("lar_solver_model", tout << get_status() << "\n");
auto status = get_status();
SASSERT((status != lp_status::OPTIMAL && status != lp_status::FEASIBLE)
|| m_mpq_lar_core_solver.m_r_solver.calc_current_x_is_feasible_include_non_basis());
if (status != lp_status::OPTIMAL && status != lp_status::FEASIBLE)
return false;
if (!m_columns_with_changed_bounds.empty())
return false;
lp_assert(m_mpq_lar_core_solver.m_r_solver.calc_current_x_is_feasible_include_non_basis());
m_delta = m_mpq_lar_core_solver.find_delta_for_strict_bounds(mpq(1));
unsigned j;
unsigned n = m_mpq_lar_core_solver.m_r_x.size();
@ -1625,10 +1626,9 @@ namespace lp {
SASSERT(m_terms.size() == m_term_register.size());
unsigned adjusted_term_index = m_terms.size() - 1;
var_index ret = tv::mask_term(adjusted_term_index);
if (!coeffs.empty()) {
if (!coeffs.empty())
add_row_from_term_no_constraint(m_terms.back(), ret);
add_touched_row(A_r().row_count() - 1);
}
lp_assert(m_var_register.size() == A_r().column_count());
if (m_need_register_terms)
register_normalized_term(*t, A_r().column_count() - 1);
@ -1828,7 +1828,6 @@ namespace lp {
if (is_base(j) && column_is_fixed(j))
m_fixed_base_var_set.insert(j);
TRACE("lar_solver_feas", tout << "j = " << j << " became " << (this->column_is_feasible(j) ? "feas" : "non-feas") << ", and " << (this->column_is_bounded(j) ? "bounded" : "non-bounded") << std::endl;);
}
@ -1924,7 +1923,6 @@ namespace lp {
}
}
// clang-format on
void lar_solver::update_bound_with_ub_lb(var_index j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep) {
lp_assert(column_has_lower_bound(j) && column_has_upper_bound(j));
lp_assert(m_mpq_lar_core_solver.m_column_types[j] == column_type::boxed ||
@ -1937,12 +1935,14 @@ namespace lp {
case LE: {
auto up = numeric_pair<mpq>(right_side, y_of_bound);
if (up < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
set_infeasible_column(j);
set_crossed_bounds_column_and_deps(j, true, dep);
}
else {
if (up >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) return;
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
set_upper_bound_witness(j, dep);
insert_to_columns_with_changed_bounds(j);
}
if (up >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) return;
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
set_upper_bound_witness(j, dep);
insert_to_columns_with_changed_bounds(j);
break;
}
case GT:
@ -1950,25 +1950,33 @@ namespace lp {
case GE: {
auto low = numeric_pair<mpq>(right_side, y_of_bound);
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
set_infeasible_column(j);
set_crossed_bounds_column_and_deps(j, false, dep);
} else {
if (low < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
return;
}
m_mpq_lar_core_solver.m_r_lower_bounds[j] = low;
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_column_types[j] = (low == m_mpq_lar_core_solver.m_r_upper_bounds[j] ? column_type::fixed : column_type::boxed);
insert_to_columns_with_changed_bounds(j);
}
if (low < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
return;
}
m_mpq_lar_core_solver.m_r_lower_bounds[j] = low;
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_column_types[j] = (low == m_mpq_lar_core_solver.m_r_upper_bounds[j] ? column_type::fixed : column_type::boxed);
insert_to_columns_with_changed_bounds(j);
break;
}
case EQ: {
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j] || v < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
set_infeasible_column(j);
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]){
set_crossed_bounds_column_and_deps(j, false, dep);
}
else if (v < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
set_crossed_bounds_column_and_deps(j, true, dep);
}
else {
set_upper_bound_witness(j, dep);
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = m_mpq_lar_core_solver.m_r_lower_bounds[j] = v;
insert_to_columns_with_changed_bounds(j);
}
set_upper_bound_witness(j, dep);
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = m_mpq_lar_core_solver.m_r_lower_bounds[j] = v;
break;
}
@ -1979,7 +1987,7 @@ namespace lp {
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
}
}
// clang-format off
void lar_solver::update_bound_with_no_ub_lb(var_index j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep) {
lp_assert(column_has_lower_bound(j) && !column_has_upper_bound(j));
lp_assert(m_mpq_lar_core_solver.m_column_types[j] == column_type::lower_bound);
@ -1991,12 +1999,14 @@ namespace lp {
case LE: {
auto up = numeric_pair<mpq>(right_side, y_of_bound);
if (up < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
set_infeasible_column(j);
set_crossed_bounds_column_and_deps(j, true, dep);
}
else {
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
set_upper_bound_witness(j, dep);
m_mpq_lar_core_solver.m_column_types[j] = (up == m_mpq_lar_core_solver.m_r_lower_bounds[j] ? column_type::fixed : column_type::boxed);
insert_to_columns_with_changed_bounds(j);
}
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
set_upper_bound_witness(j, dep);
m_mpq_lar_core_solver.m_column_types[j] = (up == m_mpq_lar_core_solver.m_r_lower_bounds[j] ? column_type::fixed : column_type::boxed);
insert_to_columns_with_changed_bounds(j);
break;
}
case GT:
@ -2014,13 +2024,15 @@ namespace lp {
case EQ: {
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
if (v < m_mpq_lar_core_solver.m_r_lower_bounds[j]) {
set_infeasible_column(j);
set_crossed_bounds_column_and_deps(j, true, dep);
}
else {
set_upper_bound_witness(j, dep);
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = m_mpq_lar_core_solver.m_r_lower_bounds[j] = v;
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
insert_to_columns_with_changed_bounds(j);
}
set_upper_bound_witness(j, dep);
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = m_mpq_lar_core_solver.m_r_lower_bounds[j] = v;
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
break;
}
@ -2051,26 +2063,29 @@ namespace lp {
{
auto low = numeric_pair<mpq>(right_side, y_of_bound);
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
set_infeasible_column(j);
set_crossed_bounds_column_and_deps(j, false, dep);
}
else {
m_mpq_lar_core_solver.m_r_lower_bounds[j] = low;
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_column_types[j] = (low == m_mpq_lar_core_solver.m_r_upper_bounds[j] ? column_type::fixed : column_type::boxed);
insert_to_columns_with_changed_bounds(j);
}
m_mpq_lar_core_solver.m_r_lower_bounds[j] = low;
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_column_types[j] = (low == m_mpq_lar_core_solver.m_r_upper_bounds[j] ? column_type::fixed : column_type::boxed);
insert_to_columns_with_changed_bounds(j);
}
break;
case EQ:
{
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
set_infeasible_column(j);
set_crossed_bounds_column_and_deps(j, false, dep);
}
else {
set_upper_bound_witness(j, dep);
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = m_mpq_lar_core_solver.m_r_lower_bounds[j] = v;
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
insert_to_columns_with_changed_bounds(j);
}
set_upper_bound_witness(j, dep);
set_lower_bound_witness(j, dep);
m_mpq_lar_core_solver.m_r_upper_bounds[j] = m_mpq_lar_core_solver.m_r_lower_bounds[j] = v;
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
break;
}
@ -2345,6 +2360,27 @@ namespace lp {
return false;
return true;
}
// If lower_bound is true than the new asserted upper bound is less than the existing lower bound.
// Otherwise the new asserted lower bound is is greater than the existing upper bound.
// dep is the reason for the new bound
void lar_solver::set_crossed_bounds_column_and_deps(unsigned j, bool lower_bound, u_dependency* dep) {
if (m_crossed_bounds_column != null_lpvar) return; // already set
SASSERT(m_crossed_bounds_deps == nullptr);
set_status(lp_status::INFEASIBLE);
m_crossed_bounds_column = j;
const auto& ul = this->m_columns_to_ul_pairs()[j];
u_dependency* bdep = lower_bound? ul.lower_bound_witness() : ul.upper_bound_witness();
SASSERT(bdep != nullptr);
m_crossed_bounds_deps = m_dependencies.mk_join(bdep, dep);
insert_to_columns_with_changed_bounds(j);
}
void lar_solver::collect_more_rows_for_lp_propagation(){
for (auto j : m_columns_with_changed_bounds)
detect_rows_with_changed_bounds_for_column(j);
}
} // namespace lp

View file

@ -78,7 +78,8 @@ class lar_solver : public column_namer {
lp_status m_status = lp_status::UNKNOWN;
stacked_value<simplex_strategy_enum> m_simplex_strategy;
// such can be found at the initialization step: u < l
stacked_value<int> m_crossed_bounds_column;
lpvar m_crossed_bounds_column;
u_dependency* m_crossed_bounds_deps;
lar_core_solver m_mpq_lar_core_solver;
int_solver* m_int_solver = nullptr;
bool m_need_register_terms = false;
@ -139,12 +140,22 @@ class lar_solver : public column_namer {
bool compare_values(impq const& lhs, lconstraint_kind k, const mpq& rhs);
inline void clear_columns_with_changed_bounds() { m_columns_with_changed_bounds.reset(); }
public:
const auto& columns_with_changed_bounds() const { return m_columns_with_changed_bounds; }
void insert_to_columns_with_changed_bounds(unsigned j);
const u_dependency* crossed_bounds_deps() const { return m_crossed_bounds_deps;}
u_dependency*& crossed_bounds_deps() { return m_crossed_bounds_deps;}
lpvar crossed_bounds_column() const { return m_crossed_bounds_column; }
lpvar& crossed_bounds_column() { return m_crossed_bounds_column; }
private:
void update_column_type_and_bound_check_on_equal(unsigned j, const mpq& right_side, constraint_index ci, unsigned&);
void update_column_type_and_bound(unsigned j, const mpq& right_side, constraint_index ci);
public:
public:
void update_column_type_and_bound(unsigned j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep);
private:
private:
void update_column_type_and_bound_with_ub(var_index j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep);
void update_column_type_and_bound_with_no_ub(var_index j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep);
void update_bound_with_ub_lb(var_index j, lconstraint_kind kind, const mpq& right_side, u_dependency* dep);
@ -154,10 +165,7 @@ private:
void register_in_fixed_var_table(unsigned, unsigned&);
void remove_non_fixed_from_fixed_var_table();
constraint_index add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq& right_side);
inline void set_infeasible_column(unsigned j) {
set_status(lp_status::INFEASIBLE);
m_crossed_bounds_column = j;
}
void set_crossed_bounds_column_and_deps(unsigned j, bool lower_bound, u_dependency* dep);
constraint_index add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term,
lconstraint_kind kind, const mpq& right_side);
unsigned row_of_basic_column(unsigned) const;
@ -304,26 +312,34 @@ private:
template <typename T>
void explain_implied_bound(const implied_bound& ib, lp_bound_propagator<T>& bp) {
unsigned i = ib.m_row_or_term_index;
int bound_sign = (ib.m_is_lower_bound ? 1 : -1);
int j_sign = (ib.m_coeff_before_j_is_pos ? 1 : -1) * bound_sign;
unsigned bound_j = ib.m_j;
if (tv::is_term(bound_j))
bound_j = m_var_register.external_to_local(bound_j);
u_dependency* dep = ib.explain_implied();
for (auto ci : flatten(dep))
bp.consume(mpq(1), ci); // TODO: flatten should provide the coefficients
/*
if (ib.m_is_monic) {
NOT_IMPLEMENTED_YET();
} else {
unsigned i = ib.m_row_or_term_index;
int bound_sign = (ib.m_is_lower_bound ? 1 : -1);
int j_sign = (ib.m_coeff_before_j_is_pos ? 1 : -1) * bound_sign;
unsigned bound_j = ib.m_j;
if (tv::is_term(bound_j))
bound_j = m_var_register.external_to_local(bound_j);
for (auto const& r : get_row(i)) {
unsigned j = r.var();
if (j == bound_j)
continue;
mpq const& a = r.coeff();
int a_sign = is_pos(a) ? 1 : -1;
int sign = j_sign * a_sign;
const ul_pair& ul = m_columns_to_ul_pairs[j];
auto* witness = sign > 0 ? ul.upper_bound_witness() : ul.lower_bound_witness();
lp_assert(witness);
for (auto ci : flatten(witness))
bp.consume(a, ci);
}
for (auto const& r : get_row(i)) {
unsigned j = r.var();
if (j == bound_j)
continue;
mpq const& a = r.coeff();
int a_sign = is_pos(a) ? 1 : -1;
int sign = j_sign * a_sign;
const ul_pair& ul = m_columns_to_ul_pairs[j];
auto* witness = sign > 0 ? ul.upper_bound_witness() : ul.lower_bound_witness();
lp_assert(witness);
for (auto ci : flatten(witness))
bp.consume(a, ci);
}
}*/
}
void set_value_for_nbasic_column(unsigned j, const impq& new_val);
@ -363,7 +379,7 @@ private:
}
m_touched_rows.reset();
}
void collect_more_rows_for_lp_propagation();
template <typename T>
void check_missed_propagations(lp_bound_propagator<T>& bp) {
for (unsigned i = 0; i < A_r().row_count(); i++)
@ -557,6 +573,16 @@ private:
const ul_pair& ul = m_columns_to_ul_pairs[j];
return m_dependencies.mk_join(ul.lower_bound_witness(), ul.upper_bound_witness());
}
template <typename T>
u_dependency* get_bound_constraint_witnesses_for_columns(const T& collection) {
u_dependency* dep = nullptr;
for (auto j : collection) {
u_dependency* d = get_bound_constraint_witnesses_for_column(j);
dep = m_dependencies.mk_join(dep, d);
}
return dep;
}
u_dependency* join_deps(u_dependency* a, u_dependency *b) { return m_dependencies.mk_join(a, b); }
inline constraint_set const& constraints() const { return m_constraints; }
void push();
void pop();
@ -609,8 +635,8 @@ private:
return *m_terms[t.id()];
}
lp_status find_feasible_solution();
void move_non_basic_columns_to_bounds(bool);
bool move_non_basic_column_to_bounds(unsigned j, bool);
void move_non_basic_columns_to_bounds();
bool move_non_basic_column_to_bounds(unsigned j);
inline bool r_basis_has_inf_int() const {
for (unsigned j : r_basis()) {
if (column_is_int(j) && !column_value_is_int(j))
@ -663,6 +689,7 @@ private:
return 0;
return m_usage_in_terms[j];
}
std::function<void (const indexed_uint_set& columns_with_changed_bound)> m_find_monics_with_changed_bounds_func = nullptr;
friend int_solver;
friend int_branch;
};

View file

@ -6,19 +6,21 @@
*/
#pragma once
#include <utility>
#include "math/lp/lp_settings.h"
#include "util/uint_set.h"
#include "math/lp/implied_bound.h"
#include "util/vector.h"
namespace lp {
template <typename T>
class lp_bound_propagator {
uint_set m_visited_rows;
uint_set m_visited_rows;
// these maps map a column index to the corresponding index in ibounds
std::unordered_map<unsigned, unsigned> m_improved_lower_bounds;
std::unordered_map<unsigned, unsigned> m_improved_upper_bounds;
u_map<unsigned> m_improved_lower_bounds;
u_map<unsigned> m_improved_upper_bounds;
T& m_imp;
vector<implied_bound> m_ibounds;
std_vector<implied_bound>& m_ibounds;
map<mpq, unsigned, obj_hash<mpq>, default_eq<mpq>> m_val2fixed_row;
// works for rows of the form x + y + sum of fixed = 0
@ -39,7 +41,30 @@ class lp_bound_propagator {
}
return x != UINT_MAX;
}
public:
const lar_solver& lp() const { return m_imp.lp(); }
lar_solver& lp() { return m_imp.lp(); }
bool upper_bound_is_available(unsigned j) const {
switch (get_column_type(j)) {
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return true;
default:
return false;
}
}
bool lower_bound_is_available(unsigned j) const {
switch (get_column_type(j)) {
case column_type::fixed:
case column_type::boxed:
case column_type::lower_bound:
return true;
default:
return false;
}
}
private:
void try_add_equation_with_internal_fixed_tables(unsigned r1) {
unsigned v1, v2;
if (!only_one_nfixed(r1, v1))
@ -83,21 +108,18 @@ class lp_bound_propagator {
~reset_cheap_eq() { p.reset_cheap_eq_eh(); }
};
public:
lp_bound_propagator(T& imp) : m_imp(imp) {}
public:
lp_bound_propagator(T& imp, std_vector<implied_bound> & ibounds) : m_imp(imp), m_ibounds(ibounds) {}
const vector<implied_bound>& ibounds() const { return m_ibounds; }
const std_vector<implied_bound>& ibounds() const { return m_ibounds; }
void init() {
m_improved_upper_bounds.clear();
m_improved_lower_bounds.clear();
m_ibounds.reset();
m_improved_upper_bounds.reset();
m_improved_lower_bounds.reset();
m_ibounds.clear();
m_column_types = &lp().get_column_types();
}
const lar_solver& lp() const { return m_imp.lp(); }
lar_solver& lp() { return m_imp.lp(); }
column_type get_column_type(unsigned j) const {
return (*m_column_types)[j];
}
@ -123,7 +145,8 @@ class lp_bound_propagator {
return (*m_column_types)[j] == column_type::fixed && get_lower_bound(j).y.is_zero();
}
void try_add_bound(mpq const& v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
void add_bound(mpq const& v, unsigned j, bool is_low, bool strict, std::function<u_dependency* ()> explain_bound) {
j = lp().column_to_reported_index(j);
lconstraint_kind kind = is_low ? GE : LE;
@ -132,30 +155,37 @@ class lp_bound_propagator {
if (!m_imp.bound_is_interesting(j, kind, v))
return;
unsigned k; // index to ibounds
if (is_low) {
if (try_get_value(m_improved_lower_bounds, j, k)) {
unsigned k;
if (m_improved_lower_bounds.find(j, k)) {
auto& found_bound = m_ibounds[k];
if (v > found_bound.m_bound || (v == found_bound.m_bound && !found_bound.m_strict && strict)) {
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
TRACE("try_add_bound", lp().print_implied_bound(found_bound, tout););
found_bound.m_bound = v;
found_bound.m_strict = strict;
found_bound.set_explain(explain_bound);
TRACE("add_bound", lp().print_implied_bound(found_bound, tout););
}
} else {
m_improved_lower_bounds[j] = m_ibounds.size();
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
TRACE("try_add_bound", lp().print_implied_bound(m_ibounds.back(), tout););
m_improved_lower_bounds.insert(j, static_cast<unsigned>(m_ibounds.size()));
m_ibounds.push_back(implied_bound(v, j, is_low, strict, explain_bound));
TRACE("add_bound", lp().print_implied_bound(m_ibounds.back(), tout););
}
} else { // the upper bound case
if (try_get_value(m_improved_upper_bounds, j, k)) {
unsigned k;
if (m_improved_upper_bounds.find(j, k)) {
auto& found_bound = m_ibounds[k];
if (v < found_bound.m_bound || (v == found_bound.m_bound && !found_bound.m_strict && strict)) {
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
TRACE("try_add_bound", lp().print_implied_bound(found_bound, tout););
found_bound.m_bound = v;
found_bound.m_strict = strict;
found_bound.set_explain(explain_bound);
TRACE("add_bound", lp().print_implied_bound(found_bound, tout););
}
} else {
m_improved_upper_bounds[j] = m_ibounds.size();
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
TRACE("try_add_bound", lp().print_implied_bound(m_ibounds.back(), tout););
m_improved_upper_bounds.insert(j, static_cast<unsigned>(m_ibounds.size()));
m_ibounds.push_back(implied_bound(v, j, is_low, strict, explain_bound));
TRACE("add_bound", lp().print_implied_bound(m_ibounds.back(), tout););
}
}
}
@ -383,7 +413,8 @@ class lp_bound_propagator {
lp_assert(y_sign == 1 || y_sign == -1);
auto& table = y_sign == 1 ? m_row2index_pos : m_row2index_neg;
const auto& v = val(x);
unsigned found_i;
unsigned found_i;;
if (!table.find(v, found_i)) {
table.insert(v, i);
} else {

View file

@ -540,9 +540,9 @@ public:
}
void add_delta_to_x_and_track_feasibility(unsigned j, const X & del) {
TRACE("lar_solver_feas_bug", tout << "del = " << del << ", was x[" << j << "] = " << m_x[j] << "\n";);
TRACE("lar_solver_feas", tout << "del = " << del << ", was x[" << j << "] = " << m_x[j] << "\n";);
m_x[j] += del;
TRACE("lar_solver_feas_bug", tout << "became x[" << j << "] = " << m_x[j] << "\n";);
TRACE("lar_solver_feas", tout << "became x[" << j << "] = " << m_x[j] << "\n";);
track_column_feasibility(j);
}
@ -564,6 +564,7 @@ public:
}
void insert_column_into_inf_heap(unsigned j) {
if (!m_inf_heap.contains(j)) {
m_inf_heap.reserve(j+1);
m_inf_heap.insert(j);
TRACE("lar_solver_inf_heap", tout << "insert into inf_heap j = " << j << "\n";);
}
@ -571,7 +572,7 @@ public:
}
void remove_column_from_inf_heap(unsigned j) {
if (m_inf_heap.contains(j)) {
TRACE("lar_solver_inf_heap", tout << "insert into heap j = " << j << "\n";);
TRACE("lar_solver_inf_heap", tout << "erase from heap j = " << j << "\n";);
m_inf_heap.erase(j);
}
lp_assert(column_is_feasible(j));

View file

@ -115,10 +115,12 @@ pretty_print(std::ostream & out) {
template <typename T, typename X> void lp_core_solver_base<T, X>::
add_delta_to_entering(unsigned entering, const X& delta) {
m_x[entering] += delta;
m_x[entering] += delta;
TRACE("lar_solver_feas", tout << "not tracking feas entering = " << entering << " = " << m_x[entering] << (column_is_feasible(entering) ? " feas" : " non-feas") << "\n";);
for (const auto & c : m_A.m_columns[entering]) {
unsigned i = c.var();
m_x[m_basis[i]] -= delta * m_A.get_val(c);
TRACE("lar_solver_feas", tout << "not tracking feas m_basis[i] = " << m_basis[i] << " = " << m_x[m_basis[i]] << (column_is_feasible(m_basis[i]) ? " feas" : " non-feas") << "\n";);
}
}

View file

@ -394,9 +394,10 @@ namespace lp {
const X &new_val_for_leaving = get_val_for_leaving(leaving);
X theta = (this->m_x[leaving] - new_val_for_leaving) / a_ent;
this->m_x[leaving] = new_val_for_leaving;
// this will remove the leaving from the heap
TRACE("lar_solver_inf_heap", tout << "leaving = " << leaving
TRACE("lar_solver_feas", tout << "entering = " << entering << ", leaving = " << leaving << ", new_val_for_leaving = " << new_val_for_leaving << ", theta = " << theta << "\n";);
TRACE("lar_solver_feas", tout << "leaving = " << leaving
<< " removed from inf_heap()\n";);
// this will remove the leaving from the heap
this->inf_heap().erase_min();
advance_on_entering_and_leaving_tableau_rows(entering, leaving, theta);
if (this->current_x_is_feasible())

View file

@ -260,20 +260,31 @@ namespace nla {
}
void monomial_bounds::unit_propagate() {
for (auto const& m : c().m_emons)
unit_propagate(m);
for (lpvar v : c().m_monics_with_changed_bounds) {
if (!c().is_monic_var(v)) continue;
unit_propagate(c().emons()[v]);
if (c().lra.get_status() == lp::lp_status::INFEASIBLE) {
lp::explanation exp;
c().lra.get_infeasibility_explanation(exp);
new_lemma lemma(c(), "propagate fixed - infeasible lra");
lemma &= exp;
break;
}
if (c().m_conflicts > 0 ) {
break;
}
}
}
void monomial_bounds::unit_propagate(monic const& m) {
void monomial_bounds::unit_propagate(monic & m) {
if (m.is_propagated())
return;
if (!is_linear(m))
return;
c().m_emons.set_propagated(m);
c().emons().set_propagated(m);
rational k = fixed_var_product(m);
lpvar w = non_fixed_var(m);
if (w == null_lpvar || k == 0)
@ -297,10 +308,12 @@ namespace nla {
lp::impq val(k);
c().lra.set_value_for_nbasic_column(m.var(), val);
}
TRACE("nla_solver", tout << "propagate fixed " << m << " = " << k << "\n";);
c().lra.update_column_type_and_bound(m.var(), lp::lconstraint_kind::EQ, k, dep);
// propagate fixed equality
auto exp = get_explanation(dep);
c().add_fixed_equality(m.var(), k, exp);
auto exp = get_explanation(dep);
c().add_fixed_equality(c().lra.column_to_reported_index(m.var()), k, exp);
}
void monomial_bounds::propagate_nonfixed(monic const& m, rational const& k, lpvar w) {
@ -311,11 +324,12 @@ namespace nla {
lp::lpvar term_index = c().lra.add_term(coeffs, UINT_MAX);
auto* dep = explain_fixed(m, k);
term_index = c().lra.map_term_index_to_column_index(term_index);
TRACE("nla_solver", tout << "propagate nonfixed " << m << " = " << k << " " << w << "\n";);
c().lra.update_column_type_and_bound(term_index, lp::lconstraint_kind::EQ, mpq(0), dep);
if (k == 1) {
lp::explanation exp = get_explanation(dep);
c().add_equality(m.var(), w, exp);
c().add_equality(c().lra.column_to_reported_index(m.var()), c().lra.column_to_reported_index(w), exp);
}
}
@ -356,8 +370,9 @@ namespace nla {
rational monomial_bounds::fixed_var_product(monic const& m) {
rational r(1);
for (lpvar v : m) {
// we have to use the column bounds here, because the column value may be outside the bounds
if (c().var_is_fixed(v))
r *= c().lra.get_column_value(v).x;
r *= c().lra.get_lower_bound(v).x;
}
return r;
}

View file

@ -35,11 +35,10 @@ namespace nla {
bool is_zero(lpvar v) const;
// monomial propagation
void unit_propagate(monic const& m);
void unit_propagate(monic & m);
bool is_linear(monic const& m);
rational fixed_var_product(monic const& m);
lpvar non_fixed_var(monic const& m);
public:
monomial_bounds(core* core);
void propagate();

View file

@ -41,6 +41,17 @@ core::core(lp::lar_solver& s, params_ref const& p, reslimit & lim) :
m_nra(s, m_nra_lim, *this)
{
m_nlsat_delay = lp_settings().nlsat_delay();
lra.m_find_monics_with_changed_bounds_func = [&](const indexed_uint_set& columns_with_changed_bounds) {
for (lpvar j : columns_with_changed_bounds) {
if (is_monic_var(j))
m_monics_with_changed_bounds.insert(j);
else {
for (const auto & m: m_emons.get_use_list(j)) {
m_monics_with_changed_bounds.insert(m.var());
}
}
}
};
}
bool core::compare_holds(const rational& ls, llc cmp, const rational& rs) const {
@ -137,6 +148,7 @@ void core::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
m_add_buffer[i] = j;
}
m_emons.add(v, m_add_buffer);
m_monics_with_changed_bounds.insert(v);
}
void core::push() {
@ -812,6 +824,7 @@ void core::clear() {
m_literals.clear();
m_fixed_equalities.clear();
m_equalities.clear();
m_conflicts = 0;
}
void core::init_search() {
@ -1065,6 +1078,9 @@ new_lemma::~new_lemma() {
(void)i;
(void)name;
// code for checking lemma can be added here
if (current().is_conflict()) {
c.m_conflicts++;
}
TRACE("nla_solver", tout << name << " " << (++i) << "\n" << *this; );
}
@ -1813,6 +1829,7 @@ bool core::improve_bounds() {
void core::propagate() {
clear();
m_monomial_bounds.unit_propagate();
m_monics_with_changed_bounds.reset();
}

View file

@ -89,6 +89,7 @@ class core {
vector<equality> m_equalities;
vector<fixed_equality> m_fixed_equalities;
indexed_uint_set m_to_refine;
indexed_uint_set m_monics_with_changed_bounds;
tangents m_tangents;
basics m_basics;
order m_order;
@ -97,7 +98,7 @@ class core {
divisions m_divisions;
intervals m_intervals;
monomial_bounds m_monomial_bounds;
unsigned m_conflicts;
horner m_horner;
grobner m_grobner;
emonics m_emons;
@ -120,7 +121,7 @@ class core {
public:
// constructor
core(lp::lar_solver& s, params_ref const& p, reslimit&);
const auto& monics_with_changed_bounds() const { return m_monics_with_changed_bounds; }
void insert_to_refine(lpvar j);
void erase_from_to_refine(lpvar j);

View file

@ -26,7 +26,7 @@ namespace nla {
solver(lp::lar_solver& s, params_ref const& p, reslimit& limit);
~solver();
const auto& monics_with_changed_bounds() const { return m_core->monics_with_changed_bounds(); }
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
void add_idivision(lpvar q, lpvar x, lpvar y);
void add_rdivision(lpvar q, lpvar x, lpvar y);

View file

@ -26,7 +26,7 @@ namespace arith {
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
m_local_search(*this),
m_resource_limit(*this),
m_bp(*this),
m_bp(*this, m_implied_bounds),
a(m),
m_bound_terms(m),
m_bound_predicate(m)

View file

@ -243,6 +243,7 @@ namespace arith {
resource_limit m_resource_limit;
lp_bounds m_new_bounds;
symbol m_farkas;
std_vector<lp::implied_bound> m_implied_bounds;
lp::lp_bound_propagator<solver> m_bp;
mutable vector<std::pair<lp::tv, rational>> m_todo_terms;

View file

@ -225,6 +225,7 @@ class theory_lra::imp {
lp_bounds m_new_bounds;
symbol m_farkas;
vector<parameter> m_bound_params;
std_vector<lp::implied_bound> m_implied_bounds;
lp::lp_bound_propagator<imp> m_bp;
context& ctx() const { return th.get_context(); }
@ -873,7 +874,7 @@ public:
m_solver(nullptr),
m_resource_limit(*this),
m_farkas("farkas"),
m_bp(*this),
m_bp(*this, m_implied_bounds),
m_bounded_range_idx(0),
m_bounded_range_lit(null_literal),
m_bound_terms(m),
@ -2113,12 +2114,13 @@ public:
m_model_is_initialized = false;
flush_bound_axioms();
// disabled in master:
// propagate_nla();
propagate_nla();
if (ctx().inconsistent())
return true;
if (!can_propagate_core())
if (!can_propagate_core())
return false;
m_new_def = false;
while (m_asserted_qhead < m_asserted_atoms.size() && !ctx().inconsistent() && m.inc()) {
auto [bv, is_true] = m_asserted_atoms[m_asserted_qhead];
@ -2151,6 +2153,7 @@ public:
propagate_bounds_with_lp_solver();
break;
case l_undef:
UNREACHABLE();
break;
}
return true;
@ -2161,6 +2164,7 @@ public:
m_nla->propagate();
add_lemmas();
add_equalities();
lp().collect_more_rows_for_lp_propagation();
}
}
@ -2225,13 +2229,11 @@ public:
// verbose_stream() << "unsat\n";
}
else {
unsigned count = 0, prop = 0;
for (auto& ib : m_bp.ibounds()) {
m.inc();
if (ctx().inconsistent())
break;
++prop;
count += propagate_lp_solver_bound(ib);
propagate_lp_solver_bound(ib);
}
}
}

View file

@ -193,9 +193,9 @@ void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0() {
VERIFY(nla.get_core().test_check() == l_false);
auto const& lv = nla.get_core().lemmas();
nla.get_core().print_lemma(lv.back(), std::cout);
auto const& lemmas = nla.get_core().lemmas();
nla.get_core().print_lemma(lemmas.back(), std::cout);
ineq i0(lp_ac, llc::NE, 1);
lp::lar_term t1, t2;
@ -208,7 +208,7 @@ void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0() {
bool found0 = false;
bool found1 = false;
bool found2 = false;
for (const auto& k : lv[0].ineqs()){
for (const auto& k : lemmas[0].ineqs()){
if (k == i0) {
found0 = true;
} else if (k == i1) {
@ -250,6 +250,7 @@ void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1() {
svector<lpvar> v; v.push_back(lp_b);v.push_back(lp_d);v.push_back(lp_e);
nla.add_monic(lp_bde, v.size(), v.begin());
s_set_column_value_test(s, lp_a, rational(1));
s_set_column_value_test(s, lp_b, rational(1));
s_set_column_value_test(s, lp_c, rational(1));
@ -395,6 +396,7 @@ void test_basic_lemma_for_mon_zero_from_monomial_to_factors() {
VERIFY(nla.get_core().test_check() == l_false);
auto const& lemma = nla.get_core().lemmas();
nla.get_core().print_lemma(lemma.back(), std::cout);
ineq i0(lp_a, llc::EQ, 0);
@ -511,7 +513,8 @@ void test_horner() {
reslimit l;
params_ref p;
solver nla(s, p, l);
std_vector<lp::implied_bound> ib;
solver nla(s, p, l, ib);
vector<lpvar> v;
v.push_back(a); v.push_back(b);
nla.add_monic(lp_ab, v.size(), v.begin());
@ -583,6 +586,7 @@ void test_basic_sign_lemma() {
VERIFY(nla.get_core().test_check() == l_false);
auto const& lemmas = nla.get_core().lemmas();
lp::lar_term t;
t.add_var(lp_bde);
t.add_var(lp_acd);
@ -622,7 +626,8 @@ void test_order_lemma_params(bool var_equiv, int sign) {
reslimit l;
params_ref p;
solver nla(s,p,l);
std_vector<lp::implied_bound> ib;
solver nla(s,p,l,ib);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
@ -753,7 +758,8 @@ void test_monotone_lemma() {
reslimit l;
params_ref p;
solver nla(s, p, l);
std_vector<lp::implied_bound> ib;
solver nla(s, p, l, ib);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);
@ -880,7 +886,8 @@ void test_tangent_lemma_equiv() {
s_set_column_value_test(s, lp_a, - s.get_column_value(lp_k));
reslimit l;
params_ref p;
solver nla(s, p, l);
std_vector<lp::implied_bound> ib;
solver nla(s, p, l, ib);
// create monomial ab
vector<unsigned> vec;
vec.push_back(lp_a);

View file

@ -159,7 +159,7 @@ public:
}
unsigned size() const {
return m_value2indices.size();
return m_values.size() - 1;
}
void reserve(int s) {