mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	Implement finite_set_axioms.cpp and fix empty set constructor bug (#7973)
* Initial plan * Add finite_set_axioms.cpp implementation and update CMakeLists.txt Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Fix finite_set_decl_plugin bug and complete implementation Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Use array select instead of function application for map and select axioms Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> * Simplify range assignment in finite_set_decl_plugin --------- Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com> Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									c526c20cfc
								
							
						
					
					
						commit
						75bac9c0ce
					
				
					 2 changed files with 274 additions and 0 deletions
				
			
		|  | @ -22,6 +22,7 @@ z3_add_component(rewriter | |||
|     expr_safe_replace.cpp | ||||
|     factor_equivs.cpp | ||||
|     factor_rewriter.cpp | ||||
|     finite_set_axioms.cpp | ||||
|     finite_set_rewriter.cpp | ||||
|     fpa_rewriter.cpp | ||||
|     func_decl_replace.cpp | ||||
|  |  | |||
							
								
								
									
										273
									
								
								src/ast/rewriter/finite_set_axioms.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										273
									
								
								src/ast/rewriter/finite_set_axioms.cpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,273 @@ | |||
| /*++
 | ||||
| Copyright (c) 2025 Microsoft Corporation | ||||
| 
 | ||||
| Module Name: | ||||
| 
 | ||||
|     finite_set_axioms.cpp | ||||
| 
 | ||||
| Abstract: | ||||
| 
 | ||||
|     This module implements axiom schemas that are invoked by saturating constraints | ||||
|     with respect to the semantics of set operations. | ||||
| 
 | ||||
| Author: | ||||
| 
 | ||||
|     GitHub Copilot Agent 2025 | ||||
| 
 | ||||
| Revision History: | ||||
| 
 | ||||
| --*/ | ||||
| 
 | ||||
| #include "ast/ast.h" | ||||
| #include "ast/finite_set_decl_plugin.h" | ||||
| #include "ast/arith_decl_plugin.h" | ||||
| #include "ast/array_decl_plugin.h" | ||||
| #include "ast/rewriter/finite_set_axioms.h" | ||||
| 
 | ||||
| // a ~ set.empty => not (x in a)
 | ||||
| // x is an element, generate axiom that x is not in any empty set of x's type
 | ||||
| void finite_set_axioms::in_empty_axiom(expr *x) { | ||||
|     // Generate: not (x in empty_set)
 | ||||
|     // where empty_set is the empty set of x's type
 | ||||
|     sort* elem_sort = x->get_sort(); | ||||
|     expr_ref empty_set(u.mk_empty(elem_sort), m); | ||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m); | ||||
|      | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(m.mk_not(x_in_empty)); | ||||
|     m_add_clause(clause); | ||||
| } | ||||
| 
 | ||||
| // a := set.union(b, c) 
 | ||||
| // (x in a) <=> (x in b) or (x in c)
 | ||||
| void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | ||||
|     expr* b = nullptr, *c = nullptr; | ||||
|     if (!u.is_union(a, b, c)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref_vector clause(m); | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b) or (x in c)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     clause1.push_back(x_in_c); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     // (x in b) => (x in a)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_b)); | ||||
|     clause2.push_back(x_in_a); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     // (x in c) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_c)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
| } | ||||
| 
 | ||||
| // a := set.intersect(b, c)
 | ||||
| // (x in a) <=> (x in b) and (x in c)
 | ||||
| void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { | ||||
|     expr* b = nullptr, *c = nullptr; | ||||
|     if (!u.is_intersect(a, b, c)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     // (x in a) => (x in c)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(x_in_c); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     // (x in b) and (x in c) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_b)); | ||||
|     clause3.push_back(m.mk_not(x_in_c)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
| } | ||||
| 
 | ||||
| // a := set.difference(b, c)
 | ||||
| // (x in a) <=> (x in b) and not (x in c)
 | ||||
| void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { | ||||
|     expr* b = nullptr, *c = nullptr; | ||||
|     if (!u.is_difference(a, b, c)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     // (x in a) => not (x in c)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(m.mk_not(x_in_c)); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     // (x in b) and not (x in c) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_b)); | ||||
|     clause3.push_back(x_in_c); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
| } | ||||
| 
 | ||||
| // a := set.singleton(b)
 | ||||
| // (x in a) <=> (x == b)
 | ||||
| void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | ||||
|     expr* b = nullptr; | ||||
|     if (!u.is_singleton(a, b)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_eq_b(m.mk_eq(x, b), m); | ||||
|      | ||||
|     // (x in a) => (x == b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_eq_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     // (x == b) => (x in a)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_eq_b)); | ||||
|     clause2.push_back(x_in_a); | ||||
|     m_add_clause(clause2); | ||||
| } | ||||
| 
 | ||||
| // a := set.range(lo, hi)
 | ||||
| // (x in a) <=> (lo <= x <= hi)
 | ||||
| void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | ||||
|     expr* lo = nullptr, *hi = nullptr; | ||||
|     if (!u.is_range(a, lo, hi)) | ||||
|         return; | ||||
|      | ||||
|     arith_util arith(m); | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref lo_le_x(arith.mk_le(lo, x), m); | ||||
|     expr_ref x_le_hi(arith.mk_le(x, hi), m); | ||||
|      | ||||
|     // (x in a) => (lo <= x)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(lo_le_x); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     // (x in a) => (x <= hi)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(x_le_hi); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     // (lo <= x) and (x <= hi) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(lo_le_x)); | ||||
|     clause3.push_back(m.mk_not(x_le_hi)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
| } | ||||
| 
 | ||||
| // a := set.map(f, b)
 | ||||
| // (x in a) <=> set.map_inverse(f, x, b) in b
 | ||||
| void finite_set_axioms::in_map_axiom(expr *x, expr *a) { | ||||
|     expr* f = nullptr, *b = nullptr; | ||||
|     if (!u.is_map(a, f, b)) | ||||
|         return; | ||||
|      | ||||
|     // For now, we provide a placeholder implementation
 | ||||
|     // The full implementation would require skolemization
 | ||||
|     // to express the inverse relationship properly.
 | ||||
|     // This would be: exists y. f(y) = x and y in b
 | ||||
| } | ||||
| 
 | ||||
| // a := set.map(f, b)
 | ||||
| // (x in b) => f(x) in a
 | ||||
| void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | ||||
|     expr* f = nullptr, *b = nullptr; | ||||
|     if (!u.is_map(a, f, b)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|      | ||||
|     // Apply function f to x using array select
 | ||||
|     array_util autil(m); | ||||
|     expr_ref fx(autil.mk_select(f, x), m); | ||||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||
|      | ||||
|     // (x in b) => f(x) in a
 | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(m.mk_not(x_in_b)); | ||||
|     clause.push_back(fx_in_a); | ||||
|     m_add_clause(clause); | ||||
| } | ||||
| 
 | ||||
| // a := set.select(p, b)
 | ||||
| // (x in a) <=> (x in b) and p(x)
 | ||||
| void finite_set_axioms::in_select_axiom(expr *x, expr *a) { | ||||
|     expr* p = nullptr, *b = nullptr; | ||||
|     if (!u.is_select(a, p, b)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|      | ||||
|     // Apply predicate p to x using array select
 | ||||
|     array_util autil(m); | ||||
|     expr_ref px(autil.mk_select(p, x), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     // (x in a) => p(x)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(px); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     // (x in b) and p(x) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_b)); | ||||
|     clause3.push_back(m.mk_not(px)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
| } | ||||
| 
 | ||||
| // a := set.singleton(b)
 | ||||
| // set.size(a) = 1
 | ||||
| void finite_set_axioms::size_singleton_axiom(expr *a) { | ||||
|     expr* b = nullptr; | ||||
|     if (!u.is_singleton(a, b)) | ||||
|         return; | ||||
|      | ||||
|     arith_util arith(m); | ||||
|     expr_ref size_a(u.mk_size(a), m); | ||||
|     expr_ref one(arith.mk_int(1), m); | ||||
|     expr_ref eq(m.mk_eq(size_a, one), m); | ||||
|      | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(eq); | ||||
|     m_add_clause(clause); | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue