3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

adding conditions and smallest depth expressions

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-08-10 18:32:47 -07:00
parent 2209d09cd9
commit 75894a10c1
2 changed files with 84 additions and 68 deletions

View file

@ -15,6 +15,8 @@ Author:
#include "util/heap.h"
#include "ast/for_each_expr.h"
#include "ast/synth_decl_plugin.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "ast/rewriter/th_rewriter.h"
#include "sat/smt/synth_solver.h"
#include "sat/smt/euf_solver.h"
@ -39,35 +41,6 @@ namespace synth {
return any_of(subterms::all(expr_ref(e, m)), [&](expr* a) { return (is_app(a) && m_uncomputable.contains(to_app(a)->get_decl())) || is_output(a); });
}
sat::literal solver::synthesize(app* e) {
if (e->get_num_args() == 0)
return sat::null_literal;
expr_ref sol = compute_solution(e);
if (!sol)
return sat::null_literal;
IF_VERBOSE(0, verbose_stream() << sol << "\n");
return eq_internalize(synth_output(e), sol);
}
// block current model using realizer by E-graph (and arithmetic)
//
sat::check_result solver::check() {
sat::literal_vector clause;
for (app* e : m_synth) {
auto lit = synthesize(e);
if (lit == sat::null_literal)
return sat::check_result::CR_GIVEUP;
clause.push_back(~lit);
}
if (clause.empty())
return sat::check_result::CR_DONE;
add_clause(clause);
return sat::check_result::CR_CONTINUE;
}
void solver::add_uncomputable(app* e) {
for (expr* arg : *e) {
if (is_app(arg)) {
@ -91,35 +64,44 @@ namespace synth {
sat::literal lit = ctx.mk_literal(arg);
sat::bool_var bv = ctx.get_si().add_bool_var(e);
sat::literal lit_e(bv, false);
ctx.attach_lit(lit_e, e);
ctx.attach_lit(lit_e, e);
add_clause(~lit_e, lit);
ctx.push_vec(m_spec, arg);
ctx.push_vec(m_spec, arg);
}
// recognize synthesis objectives here.
sat::literal solver::internalize(expr* e, bool sign, bool root) {
internalize(e);
sat::literal lit = ctx.expr2literal(e);
if (sign)
lit.neg();
sat::literal lit = ctx.expr2literal(e);
if (sign)
lit.neg();
return lit;
}
// recognize synthesis objectives here and above
void solver::internalize(expr* e) {
SASSERT(is_app(e));
sat::bool_var bv = ctx.get_si().add_bool_var(e);
sat::bool_var bv = ctx.get_si().add_bool_var(e);
sat::literal lit(bv, false);
ctx.attach_lit(lit, e);
ctx.attach_lit(lit, e);
synth::util util(m);
app* a = to_app(e);
app* a = to_app(e);
expr* arg = nullptr;
if (util.is_synthesiz3(e))
add_synth_objective(a);
if (util.is_grammar(e))
add_uncomputable(a);
if (util.is_specification(e, arg))
add_specification(a, arg);
add_uncomputable(a);
if (util.is_specification(e, arg))
add_specification(a, arg);
}
sat::check_result solver::check() {
// TODO: need to know if there are quantifiers to instantiate
if (m_solved.size() < m_synth.size())
return sat::check_result::CR_DONE;
if (!compute_solutions())
return sat::check_result::CR_GIVEUP;
return sat::check_result::CR_CONTINUE;
}
// display current state (eg. current set of realizers)
@ -189,27 +171,16 @@ namespace synth {
IF_VERBOSE(2, verbose_stream() << "propagate\n");
ctx.push(value_trail(m_is_solved));
m_is_solved = true;
sat::literal_vector clause;
for (app* e : m_synth) {
auto lit = synthesize(e);
if (lit == sat::null_literal)
return false;
clause.push_back(~lit);
}
add_clause(clause);
return true;
return compute_solutions();
}
expr_ref solver::compute_solution(app* e) {
auto* n = expr2enode(synth_output(e));
expr_ref_vector solver::compute_rep() {
expr_ref_vector repr(m);
auto get_rep = [&](euf::enode* n) { return repr.get(n->get_root_id(), nullptr); };
auto has_rep = [&](euf::enode* n) { return !!get_rep(n); };
auto set_rep = [&](euf::enode* n, expr* e) { repr.setx(n->get_root_id(), e); };
auto is_uncomputable = [&](func_decl* f) { return m_uncomputable.contains(f); };
struct rep_lt {
expr_ref_vector const& repr;
rep_lt(expr_ref_vector& repr) : repr(repr) {}
@ -227,12 +198,14 @@ namespace synth {
nodes[id] = n->get_root();
heap.reserve(id + 1);
heap.insert(id);
};
};
for (unsigned i = 1; i < e->get_num_args(); ++i) {
expr* arg = e->get_arg(i);
auto* narg = expr2enode(arg);
insert_repr(narg, arg);
for (auto* e : m_synth) {
for (unsigned i = 1; i < e->get_num_args(); ++i) {
expr* arg = e->get_arg(i);
auto* narg = expr2enode(arg);
insert_repr(narg, arg);
}
}
// make sure we only insert non-input symbols.
for (auto* n : ctx.get_egraph().nodes()) {
@ -262,7 +235,50 @@ namespace synth {
insert_repr(p, papp);
}
}
return expr_ref(get_rep(n), m);
return repr;
}
expr_ref solver::compute_solution(expr_ref_vector const& repr, app* e) {
auto* n = expr2enode(synth_output(e));
return expr_ref(repr.get(n->get_root_id(), nullptr), m);
}
expr_ref solver::compute_condition(expr_ref_vector const& repr) {
expr_ref result(m.mk_and(m_spec), m);
expr_safe_replace replace(m);
for (auto* e : m_synth)
replace.insert(synth_output(e), compute_solution(repr, e));
replace(result);
th_rewriter rw(m);
rw(result);
return result;
}
sat::literal solver::synthesize(expr_ref_vector const& repr, app* e) {
if (e->get_num_args() == 0)
return sat::null_literal;
expr_ref sol = compute_solution(repr, e);
if (!sol)
return sat::null_literal;
IF_VERBOSE(0, verbose_stream() << sol << "\n");
return eq_internalize(synth_output(e), sol);
}
bool solver::compute_solutions() {
sat::literal_vector clause;
auto repr = compute_rep();
for (app* e : m_synth) {
auto lit = synthesize(repr, e);
if (lit == sat::null_literal)
return false;
clause.push_back(~lit);
}
add_clause(clause);
expr_ref cond = compute_condition(repr);
IF_VERBOSE(0, verbose_stream() << "if " << cond << "\n");
return true;
}
}

View file

@ -39,24 +39,24 @@ namespace synth {
euf::th_solver* clone(euf::solver& ctx) override;
private:
sat::literal synthesize(app* e);
void add_uncomputable(app* e);
sat::literal synthesize(expr_ref_vector const& repr, app* e);
void add_uncomputable(app* e);
void add_synth_objective(app* e);
void add_specification(app* e, expr* arg);
bool contains_uncomputable(expr* e);
void add_specification(app* e, expr* arg);
bool contains_uncomputable(expr* e);
void on_merge_eh(euf::enode* root, euf::enode* other);
expr_ref compute_solution(app* synth_objective);
expr_ref compute_solution(expr_ref_vector const& repr, app* synth_objective);
expr* synth_output(expr* e) const { return to_app(e)->get_arg(0); }
expr_ref compute_condition(expr_ref_vector const& repr);
bool compute_solutions();
expr_ref_vector compute_rep();
bool_vector m_is_computable;
bool m_is_solved = false;
ptr_vector<app> m_solved;
ptr_vector<app> m_synth;
obj_hashtable<func_decl> m_uncomputable;
obj_hashtable<func_decl> m_uncomputable;
ptr_vector<expr> m_spec;
};