3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

adding unit test entry point

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-02-22 11:46:47 -08:00
parent d8bb10d37f
commit 748ada2acc
8 changed files with 260 additions and 45 deletions

View file

@ -129,7 +129,6 @@ extern "C" {
cancel_eh<reslimit> eh(mk_c(c)->m().limit());
unsigned timeout = to_optimize_ptr(o)->get_params().get_uint("timeout", mk_c(c)->get_timeout());
unsigned rlimit = mk_c(c)->get_rlimit();
std::cout << "Timeout: " << timeout << "\n";
api::context::set_interruptable si(*(mk_c(c)), eh);
{
scoped_timer timer(timeout, &eh);

View file

@ -741,9 +741,16 @@ namespace sat {
unsigned index = 2*m_cards.size();
card* c = new (memory::allocate(card::get_obj_size(lits.size()))) card(index, literal(v, false), lits, k);
m_cards.push_back(c);
init_watch(v);
m_var_infos[v].m_card = c;
m_var_trail.push_back(v);
if (v == null_bool_var) {
// it is an axiom.
init_watch(*c, true);
m_card_axioms.push_back(c);
}
else {
init_watch(v);
m_var_infos[v].m_card = c;
m_var_trail.push_back(v);
}
}
void card_extension::add_xor(bool_var v, literal_vector const& lits) {

View file

@ -21,10 +21,14 @@ Revision History:
#include"sat_extension.h"
#include"sat_solver.h"
#include"scoped_ptr_vector.h"
namespace sat {
class card_extension : public extension {
friend class local_search;
struct stats {
unsigned m_num_propagations;
unsigned m_num_conflicts;
@ -118,6 +122,8 @@ namespace sat {
ptr_vector<card> m_cards;
ptr_vector<xor> m_xors;
scoped_ptr_vector<card> m_card_axioms;
// watch literals
svector<var_info> m_var_infos;
unsigned_vector m_var_trail;

View file

@ -19,6 +19,7 @@
#include "sat_local_search.h"
#include "sat_solver.h"
#include "card_extension.h"
namespace sat {
@ -153,29 +154,32 @@ namespace sat {
}
void local_search::add_clause(unsigned sz, literal const* c) {
add_cardinality(sz, c, sz - 1);
}
void local_search::add_cardinality(unsigned sz, literal const* c, unsigned k) {
unsigned id = constraint_term.size();
constraint_term.push_back(svector<term>());
for (unsigned i = 0; i < sz; ++i) {
term t;
t.constraint_id = id;
t.var_id = c[i].var();
t.sense = c[i].sign();
var_term[t.var_id].push_back(t);
constraint_term[id].push_back(t);
}
constraint_k.push_back(k);
}
local_search::local_search(solver& s) {
// TBD: use solver::copy as a guideline for importing state from a solver.
// TBD initialize variables
s.num_vars();
// copy units
unsigned trail_sz = s.init_trail_size();
for (unsigned i = 0; i < trail_sz; ++i) {
unsigned id = constraint_term.size();
term t;
t.constraint_id = id;
t.var_id = s.m_trail[i].var();
t.sense = s.m_trail[i].sign();
var_term[t.var_id].push_back(t);
constraint_term.push_back(svector<term>());
constraint_term[id].push_back(t);
constraint_k.push_back(0);
add_clause(1, s.m_trail.c_ptr() + i);
}
// TBD copy binary:
s.m_watches.size();
// copy binary clauses
{
unsigned sz = s.m_watches.size();
for (unsigned l_idx = 0; l_idx < sz; ++l_idx) {
@ -189,45 +193,62 @@ namespace sat {
literal l2 = it->get_literal();
if (l.index() > l2.index())
continue;
unsigned id = constraint_term.size();
constraint_term.push_back(svector<term>());
// TBD: add clause l, l2;
constraint_k.push_back(1);
literal ls[2] = { l, l2 };
add_clause(2, ls);
}
}
}
// copy clauses
clause_vector::const_iterator it = s.m_clauses.begin();
clause_vector::const_iterator end = s.m_clauses.end();
for (; it != end; ++it) {
clause const& c = *(*it);
unsigned sz = c.size();
unsigned id = constraint_term.size();
constraint_term.push_back(svector<term>());
for (unsigned i = 0; i < sz; ++i) {
term t;
t.constraint_id = id;
t.var_id = c[i].var();
t.sense = c[i].sign();
var_term[t.var_id].push_back(t);
constraint_term[id].push_back(t);
}
constraint_k.push_back(sz-1);
clause& c = *(*it);
add_clause(c.size(), c.begin());
}
// copy cardinality clauses
card_extension* ext = dynamic_cast<card_extension*>(s.get_extension());
if (ext) {
literal_vector lits;
unsigned sz = ext->m_cards.size();
for (unsigned i = 0; i < sz; ++i) {
card_extension::card& c = *ext->m_cards[i];
unsigned n = c.size();
unsigned k = c.k();
// c.lit() <=> c.lits() >= k
//
// (c.lits() < k) or c.lit()
// = (c.lits() + (n - k - 1)*~c.lit()) <= n
//
// ~c.lit() or (c.lits() >= k)
// = ~c.lit() or (~c.lits() <= n - k)
// = k*c.lit() + ~c.lits() <= n
//
lits.reset();
for (unsigned j = 0; j < n; ++j) lits.push_back(c[j]);
for (unsigned j = 0; j < n - k - 1; ++j) lits.push_back(~c.lit());
add_cardinality(lits.size(), lits.c_ptr(), n);
lits.reset();
for (unsigned j = 0; j < n; ++j) lits.push_back(~c[j]);
for (unsigned j = 0; j < k; ++j) lits.push_back(c.lit());
add_cardinality(lits.size(), lits.c_ptr(), n);
}
//
// optionally handle xor constraints.
//
SASSERT(ext->m_xors.empty());
}
// TBD initialize cardinalities from m_ext, retrieve cardinality constraints.
// optionally handle xor constraints.
num_vars = s.num_vars();
num_constraints = constraint_term.size();
}
local_search::~local_search() {
}
void local_search::add_soft(literal l, double weight) {
@ -235,6 +256,46 @@ namespace sat {
}
lbool local_search::operator()() {
bool reach_cutoff_time = false;
bool reach_known_best_value = false;
bool_var flipvar;
double elapsed_time = 0;
clock_t start = clock(), stop; // TBD, use stopwatch facility
srand(0); // TBD, use random facility and parameters to set random seed.
set_parameters();
// ################## start ######################
//cout << "Start initialize and local search, restart in every " << max_steps << " steps" << endl;
for (unsigned tries = 0; ; ++tries) {
init();
for (int step = 1; step <= max_steps; ++step) {
// feasible
if (m_unsat_stack.empty()) {
calculate_and_update_ob();
if (best_objective_value >= best_known_value) {
reach_known_best_value = true;
break;
}
}
flipvar = pick_var();
flip(flipvar);
time_stamp[flipvar] = step;
}
// take a look at watch
stop = clock();
elapsed_time = (double)(stop - start) / CLOCKS_PER_SEC;
if (elapsed_time > cutoff_time)
reach_cutoff_time = true;
if (reach_known_best_value || reach_cutoff_time)
break;
}
if (reach_known_best_value) {
std::cout << elapsed_time << "\n";
}
else
std::cout << -1 << "\n";
//print_solution();
// TBD: adjust return status
return l_undef;
}

View file

@ -122,6 +122,10 @@ namespace sat {
void unsat(int constraint_id) { m_unsat_stack.push_back(constraint_id); }
void add_clause(unsigned sz, literal const* c);
void add_cardinality(unsigned sz, literal const* c, unsigned k);
// swap the deleted one with the last one and pop
void sat(int c) {
int last_unsat_constraint = m_unsat_stack.back();

View file

@ -230,6 +230,7 @@ int main(int argc, char ** argv) {
TST(get_consequences);
TST(pb2bv);
TST_ARGV(sat_lookahead);
TST_ARGV(sat_local_search);
//TST_ARGV(hs);
}

View file

@ -0,0 +1,136 @@
#include "sat_local_search.h"
#include "sat_solver.h"
static int build_instance(char *filename, sat::solver& s, sat::local_search& ls)
{
char line[16383];
int cur_term;
// for temperally storage
int temp[16383];
int temp_count;
std::ifstream infile(filename);
//if (infile == NULL) //linux
if (!infile)
return 0;
infile.getline(line, 16383);
int num_vars, num_constraints;
sscanf_s(line, "%d %d", &num_vars, &num_constraints);
//cout << "number of variables: " << num_vars << endl;
//cout << "number of constraints: " << num_constraints << endl;
// write in the objective function
temp_count = 0;
infile >> cur_term;
while (cur_term != 0) {
temp[temp_count++] = cur_term;
infile >> cur_term;
}
int ob_num_terms = temp_count;
#if 0
TBD make this compile:
ob_constraint = new ob_term[ob_num_terms + 1];
// coefficient
ob_constraint[0].coefficient = 0; // virtual var: all variables not in ob are pointed to this var
for (i = 1; i <= ob_num_terms; ++i) {
ob_constraint[i].coefficient = temp[i - 1];
}
sat::literal_vector lits;
// ob variable
temp_count = 0;
infile >> cur_term;
while (cur_term != 0) {
temp[temp_count++] = cur_term;
infile >> cur_term;
}
if (temp_count != ob_num_terms) {
cout << "Objective function format error." << endl;
exit(-1);
}
for (i = 1; i <= ob_num_terms; ++i) {
ob_constraint[i].var_id = temp[i - 1];
coefficient_in_ob_constraint[ob_constraint[i].var_id] = ob_constraint[i].coefficient;
}
// read the constraints, one at a time
card_extension* ext = 0;
int k;
for (c = 1; c <= num_constraints; ++c) {
lits.reset();
infile >> cur_term;
while (cur_term != 0) {
lits.push_back(sat::literal(abs(cur_term), cur_term > 0));
infile >> cur_term;
}
infile >> k;
ext->add_at_least(null_bool_var, lits, lits.size() - k);
}
#endif
infile.close();
#if 0
Move all of this to initialization code for local search solver:
// create var_term array
for (v = 1; v <= num_vars; ++v) {
var_term[v] = new term[var_term_count[v]];
var_term_count[v] = 0; // reset to 0, for building up the array
}
// scan all constraints to build up var term arrays
for (c = 1; c <= num_constraints; ++c) {
for (i = 0; i < constraint_term_count[c]; ++i) {
v = constraint_term[c][i].var_id;
var_term[v][var_term_count[v]++] = constraint_term[c][i];
}
}
// build neighborhood relationship
bool *is_neighbor;
is_neighbor = new bool[num_vars + 1];
for (v = 1; v <= num_vars; ++v) {
// init as not neighbor
for (i = 1; i <= num_vars; ++i) {
is_neighbor[i] = false;
}
temp_count = 0;
// for each constraint v appears
for (i = 0; i < var_term_count[v]; ++i) {
c = var_term[v][i].constraint_id;
for (j = 0; j < constraint_term_count[c]; ++j) {
if (constraint_term[c][j].var_id == v)
continue;
// not neighbor yet
if (!is_neighbor[constraint_term[c][j].var_id]) {
is_neighbor[constraint_term[c][j].var_id] = true;
temp[temp_count++] = constraint_term[c][j].var_id;
}
}
}
// create and build neighbor
var_neighbor_count[v] = temp_count;
var_neighbor[v] = new int[var_neighbor_count[v]];
for (i = 0; i < var_neighbor_count[v]; ++i) {
var_neighbor[v][i] = temp[i];
}
}
delete[] is_neighbor;
#endif
return 1;
}
void tst_sat_local_search(char ** argv, int argc, int& i) {
if (argc != i + 2) {
std::cout << "require dimacs file name\n";
return;
}
// sat::solver s;
// populate the sat solver with clauses and cardinality consrtaints from the input
// call the lookahead solver.
// TBD
}