3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00

adding skeleton for local search

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-02-21 20:34:39 -08:00
parent 77aac8d96f
commit 747ff19aba
4 changed files with 226 additions and 12 deletions

View file

@ -12,6 +12,7 @@ z3_add_component(sat
sat_elim_eqs.cpp
sat_iff3_finder.cpp
sat_integrity_checker.cpp
sat_local_search.cpp
sat_model_converter.cpp
sat_mus.cpp
sat_parallel.cpp

View file

@ -0,0 +1,77 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_local_search.cpp
Abstract:
Local search module for cardinality clauses.
Author:
Sixue Liu 2017-2-21
Notes:
--*/
#include "sat_local_search.h"
namespace sat {
void local_search::init() {
}
bool_var local_search::pick_var() {
return null_bool_var;
}
void local_search::flip(bool_var v) {
}
bool local_search::tie_breaker_sat(int, int) {
return false;
}
bool local_search::tie_breaker_ccd(int, int) {
return false;
}
void local_search::calculate_and_update_ob() {
}
void local_search::verify_solution() {
}
void local_search::display(std::ostream& out) {
}
local_search::local_search(solver& s) {
}
local_search::~local_search() {
}
void local_search::add_soft(literal l, double weight) {
}
lbool local_search::operator()() {
return l_undef;
}
}

125
src/sat/sat_local_search.h Normal file
View file

@ -0,0 +1,125 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_local_search.h
Abstract:
Local search module for cardinality clauses.
Author:
Sixue Liu 2017-2-21
Notes:
--*/
#ifndef _SAT_LOCAL_SEARCH_H_
#define _SAT_LOCAL_SEARCH_H_
#include "vector.h"
#include "sat_types.h"
namespace sat {
class local_search {
typedef svector<bool> bool_vector;
// data structure for a term in objective function
struct ob_term {
int var_id; // variable id, begin with 1
int coefficient; // non-zero integer
};
// data structure for a term in constraint
struct term {
int constraint_id; // constraint it belongs to
int var_id; // variable id, begin with 1
bool sense; // 1 for positive, 0 for negative
//int coefficient; // all constraints are cardinality: coefficient=1
};
// parameters of the instance
int num_vars; // var index from 1 to num_vars
int num_constraints; // constraint index from 1 to num_constraint
int max_constraint_len;
int min_constraint_len;
// objective function: maximize
int ob_num_terms; // how many terms are in the objective function
ob_term* ob_constraint; // the objective function *constraint*, sorting as decending order
// terms arrays
vector<svector<term> > var_term; //var_term[i][j] means the j'th term of var i
vector<svector<term> > constraint_term; // constraint_term[i][j] means the j'th term of constraint i
// information about the variable
int_vector coefficient_in_ob_constraint; // initilized to be 0
int_vector score;
int_vector sscore; // slack score
int_vector time_stamp; // the flip time stamp
bool_vector conf_change; // whether its configure changes since its last flip
int_vector cscc; // how many times its constraint state configure changes since its last flip
vector<int_vector> var_neighbor; // all of its neighborhoods variable
/* TBD: other scores */
// information about the constraints
int_vector constraint_k; // the right side k of a constraint
int_vector constraint_slack; // =constraint_k[i]-true_terms[i], if >=0 then sat
int_vector nb_slack; // constraint_k - ob_var(same in ob) - none_ob_true_terms_count. if < 0: some ob var might be flipped to false, result in an ob decreasing
bool_vector has_true_ob_terms;
// unsat constraint stack
int_vector unsat_stack; // store all the unsat constraits
int_vector index_in_unsat_stack; // which position is a contraint in the unsat_stack
// configuration changed decreasing variables (score>0 and conf_change==true)
int_vector goodvar_stack;
bool_vector already_in_goodvar_stack;
// information about solution
bool_vector cur_solution; // the current solution
int objective_value; // the objective function value corresponds to the current solution
bool_vector best_solution; // the best solution so far
int best_objective_value = 0; // the objective value corresponds to the best solution so far
// for non-known instance, set as maximal
int best_known_value = INT_MAX; // best known value for this instance
// cutoff
int cutoff_time = 1; // seconds
int max_steps = 2000000000; // < 2147483647
// for tuning
int s_id = 0; // strategy id
void init();
bool_var pick_var();
void flip(bool_var v);
bool tie_breaker_sat(int, int);
bool tie_breaker_ccd(int, int);
void calculate_and_update_ob();
void verify_solution();
void display(std::ostream& out);
public:
local_search(solver& s);
~local_search();
void add_soft(literal l, double weight);
lbool operator()();
};
}
#endif

View file

@ -281,7 +281,7 @@ namespace sat {
}
//
// lit1 => lit2.
// lit1 => lit2.n
// if lit2 is a node, put lit1 above lit2
//
@ -351,23 +351,34 @@ namespace sat {
}
}
lbool backtrack(literal_vector& trail) {
if (inconsistent()) {
if (trail.empty()) return l_false;
pop();
assign(~trail.back());
trail.pop_back();
return l_true;
}
return l_undef;
}
lbool search() {
literal_vector trail;
#define BACKTRACK \
if (inconsistent()) { \
if (trail.empty()) return l_false; \
pop(); \
assign(~trail.back()); \
trail.pop_back(); \
continue; \
} \
while (true) {
s.checkpoint();
BACKTRACK;
switch (backtrack(trail)) {
case l_true: continue;
case l_false: return l_false;
case l_undef: break;
}
literal l = choose();
BACKTRACK;
switch (backtrack(trail)) {
case l_true: continue;
case l_false: return l_false;
case l_undef: break;
}
if (l == null_literal) {
return l_true;
}