3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00

Typo fixes.

This commit is contained in:
Bruce Mitchener 2018-01-02 22:47:52 +07:00
parent e8a9e1a58b
commit 73b3da37d8
33 changed files with 120 additions and 120 deletions

View file

@ -2262,7 +2262,7 @@ namespace Microsoft.Z3
/// Maps f on the argument arrays.
/// </summary>
/// <remarks>
/// Eeach element of <c>args</c> must be of an array sort <c>[domain_i -> range_i]</c>.
/// Each element of <c>args</c> must be of an array sort <c>[domain_i -> range_i]</c>.
/// The function declaration <c>f</c> must have type <c> range_1 .. range_n -> range</c>.
/// <c>v</c> must have sort range. The sort of the result is <c>[domain_i -> range]</c>.
/// <seealso cref="MkArraySort(Sort, Sort)"/>
@ -2862,7 +2862,7 @@ namespace Microsoft.Z3
}
/// <summary>
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
/// It is slightly faster than <c>MakeNumeral</c> since it is not necessary to parse a string.
/// </summary>
/// <param name="v">Value of the numeral</param>
@ -2878,7 +2878,7 @@ namespace Microsoft.Z3
}
/// <summary>
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
/// It is slightly faster than <c>MakeNumeral</c> since it is not necessary to parse a string.
/// </summary>
/// <param name="v">Value of the numeral</param>
@ -2894,7 +2894,7 @@ namespace Microsoft.Z3
}
/// <summary>
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
/// It is slightly faster than <c>MakeNumeral</c> since it is not necessary to parse a string.
/// </summary>
/// <param name="v">Value of the numeral</param>
@ -2910,7 +2910,7 @@ namespace Microsoft.Z3
}
/// <summary>
/// Create a Term of a given sort. This function can be use to create numerals that fit in a machine integer.
/// Create a Term of a given sort. This function can be used to create numerals that fit in a machine integer.
/// It is slightly faster than <c>MakeNumeral</c> since it is not necessary to parse a string.
/// </summary>
/// <param name="v">Value of the numeral</param>
@ -3211,7 +3211,7 @@ namespace Microsoft.Z3
/// Create an existential Quantifier.
/// </summary>
/// <remarks>
/// Creates an existential quantifier using de-Brujin indexed variables.
/// Creates an existential quantifier using de-Bruijn indexed variables.
/// (<see cref="MkForall(Sort[], Symbol[], Expr, uint, Pattern[], Expr[], Symbol, Symbol)"/>).
/// </remarks>
public Quantifier MkExists(Sort[] sorts, Symbol[] names, Expr body, uint weight = 1, Pattern[] patterns = null, Expr[] noPatterns = null, Symbol quantifierID = null, Symbol skolemID = null)

View file

@ -959,7 +959,7 @@ namespace Microsoft.Z3
/// Tn: (R t_n s_n)
/// [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
/// Remark: if t_i == s_i, then the antecedent Ti is suppressed.
/// That is, reflexivity proofs are supressed to save space.
/// That is, reflexivity proofs are suppressed to save space.
/// </remarks>
public bool IsProofMonotonicity { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_MONOTONICITY; } }
@ -1002,7 +1002,7 @@ namespace Microsoft.Z3
public bool IsProofAndElimination { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_AND_ELIM; } }
/// <summary>
/// Indicates whether the term is a proof by eliminiation of not-or
/// Indicates whether the term is a proof by elimination of not-or
/// </summary>
/// <remarks>
/// Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
@ -1112,7 +1112,7 @@ namespace Microsoft.Z3
public bool IsProofQuantInst { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_QUANT_INST; } }
/// <summary>
/// Indicates whether the term is a hypthesis marker.
/// Indicates whether the term is a hypothesis marker.
/// </summary>
/// <remarks>Mark a hypothesis in a natural deduction style proof.</remarks>
public bool IsProofHypothesis { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_PR_HYPOTHESIS; } }
@ -1433,7 +1433,7 @@ namespace Microsoft.Z3
/// <remarks>
/// Filter (restrict) a relation with respect to a predicate.
/// The first argument is a relation.
/// The second argument is a predicate with free de-Brujin indices
/// The second argument is a predicate with free de-Bruijn indices
/// corresponding to the columns of the relation.
/// So the first column in the relation has index 0.
/// </remarks>
@ -1649,7 +1649,7 @@ namespace Microsoft.Z3
public bool IsFPMul { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_MUL; } }
/// <summary>
/// Indicates whether the term is a floating-point divison term
/// Indicates whether the term is a floating-point division term
/// </summary>
public bool IsFPDiv { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_DIV; } }
@ -1709,7 +1709,7 @@ namespace Microsoft.Z3
public bool IsFPLe { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_LE; } }
/// <summary>
/// Indicates whether the term is a floating-point greater-than or erqual term
/// Indicates whether the term is a floating-point greater-than or equal term
/// </summary>
public bool IsFPGe { get { return IsApp && FuncDecl.DeclKind == Z3_decl_kind.Z3_OP_FPA_GE; } }
@ -1789,7 +1789,7 @@ namespace Microsoft.Z3
#region Bound Variables
/// <summary>
/// The de-Burijn index of a bound variable.
/// The de-Bruijn index of a bound variable.
/// </summary>
/// <remarks>
/// Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain

View file

@ -253,7 +253,7 @@ namespace Microsoft.Z3
/// The uninterpreted sorts that the model has an interpretation for.
/// </summary>
/// <remarks>
/// Z3 also provides an intepretation for uninterpreted sorts used in a formula.
/// Z3 also provides an interpretation for uninterpreted sorts used in a formula.
/// The interpretation for a sort is a finite set of distinct values. We say this finite set is
/// the "universe" of the sort.
/// </remarks>