mirror of
https://github.com/Z3Prover/z3
synced 2025-11-24 22:51:28 +00:00
factor out coi, use polynomial elaboration for nlsat solver (#8039)
* factor out coi, use polynomial elaboration for nlsat solver Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * remove unused functionality Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> --------- Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
9c588afefe
commit
7395152632
7 changed files with 349 additions and 136 deletions
|
|
@ -2620,8 +2620,10 @@ namespace sls {
|
|||
display(out, ad) << "\n";
|
||||
}
|
||||
};
|
||||
for (var_t v = 0; v < m_vars.size(); ++v) {
|
||||
for (var_t v = 0; v < m_vars.size(); ++v) {
|
||||
if (!eval_is_correct(v)) {
|
||||
// if (m.rlimit().is_canceled())
|
||||
// return;
|
||||
report_error(verbose_stream(), v);
|
||||
TRACE(arith, report_error(tout, v));
|
||||
UNREACHABLE();
|
||||
|
|
|
|||
|
|
@ -24,6 +24,7 @@ z3_add_component(lp
|
|||
monomial_bounds.cpp
|
||||
nex_creator.cpp
|
||||
nla_basics_lemmas.cpp
|
||||
nla_coi.cpp
|
||||
nla_common.cpp
|
||||
nla_core.cpp
|
||||
nla_divisions.cpp
|
||||
|
|
|
|||
88
src/math/lp/nla_coi.cpp
Normal file
88
src/math/lp/nla_coi.cpp
Normal file
|
|
@ -0,0 +1,88 @@
|
|||
|
||||
/*++
|
||||
Copyright (c) 2025 Microsoft Corporation
|
||||
|
||||
Author:
|
||||
Lev Nachmanson (levnach)
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
--*/
|
||||
|
||||
#include "math/lp/nla_core.h"
|
||||
#include "math/lp/nla_coi.h"
|
||||
|
||||
namespace nla {
|
||||
|
||||
void coi::init() {
|
||||
indexed_uint_set visited;
|
||||
unsigned_vector todo;
|
||||
vector<occurs> var2occurs;
|
||||
m_term_set.reset();
|
||||
m_mon_set.reset();
|
||||
m_constraint_set.reset();
|
||||
m_var_set.reset();
|
||||
auto& lra = c.lra_solver();
|
||||
|
||||
for (auto ci : lra.constraints().indices()) {
|
||||
auto const& c = lra.constraints()[ci];
|
||||
if (c.is_auxiliary())
|
||||
continue;
|
||||
for (auto const& [coeff, v] : c.coeffs()) {
|
||||
var2occurs.reserve(v + 1);
|
||||
var2occurs[v].constraints.push_back(ci);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto const& m : c.emons()) {
|
||||
for (auto v : m.vars()) {
|
||||
var2occurs.reserve(v + 1);
|
||||
var2occurs[v].monics.push_back(m.var());
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto *t : lra.terms() ) {
|
||||
for (auto const iv : *t) {
|
||||
auto v = iv.j();
|
||||
var2occurs.reserve(v + 1);
|
||||
var2occurs[v].terms.push_back(t->j());
|
||||
}
|
||||
}
|
||||
|
||||
for (auto const& m : c.to_refine())
|
||||
todo.push_back(m);
|
||||
|
||||
for (unsigned i = 0; i < todo.size(); ++i) {
|
||||
auto v = todo[i];
|
||||
if (visited.contains(v))
|
||||
continue;
|
||||
visited.insert(v);
|
||||
m_var_set.insert(v);
|
||||
var2occurs.reserve(v + 1);
|
||||
for (auto ci : var2occurs[v].constraints) {
|
||||
m_constraint_set.insert(ci);
|
||||
auto const& c = lra.constraints()[ci];
|
||||
for (auto const& [coeff, w] : c.coeffs())
|
||||
todo.push_back(w);
|
||||
}
|
||||
for (auto w : var2occurs[v].monics)
|
||||
todo.push_back(w);
|
||||
|
||||
for (auto ti : var2occurs[v].terms) {
|
||||
for (auto iv : lra.get_term(ti))
|
||||
todo.push_back(iv.j());
|
||||
todo.push_back(ti);
|
||||
}
|
||||
|
||||
if (lra.column_has_term(v)) {
|
||||
m_term_set.insert(v);
|
||||
for (auto kv : lra.get_term(v))
|
||||
todo.push_back(kv.j());
|
||||
}
|
||||
|
||||
if (c.is_monic_var(v)) {
|
||||
m_mon_set.insert(v);
|
||||
for (auto w : c.emons()[v])
|
||||
todo.push_back(w);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
43
src/math/lp/nla_coi.h
Normal file
43
src/math/lp/nla_coi.h
Normal file
|
|
@ -0,0 +1,43 @@
|
|||
|
||||
/*++
|
||||
Copyright (c) 2025 Microsoft Corporation
|
||||
|
||||
Abstract:
|
||||
Class for computing the cone of influence for NL constraints.
|
||||
It includes variables that come from monomials that have incorrect evaluation and
|
||||
transitively all constraints and variables that are connected.
|
||||
|
||||
Author:
|
||||
Lev Nachmanson (levnach)
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace nla {
|
||||
|
||||
class core;
|
||||
|
||||
class coi {
|
||||
core& c;
|
||||
indexed_uint_set m_mon_set, m_constraint_set;
|
||||
indexed_uint_set m_term_set, m_var_set;
|
||||
|
||||
struct occurs {
|
||||
unsigned_vector constraints;
|
||||
unsigned_vector monics;
|
||||
unsigned_vector terms;
|
||||
};
|
||||
|
||||
public:
|
||||
coi(core& c) : c(c) {}
|
||||
|
||||
void init();
|
||||
|
||||
indexed_uint_set const& mons() const { return m_mon_set; }
|
||||
indexed_uint_set const& constraints() const { return m_constraint_set; }
|
||||
indexed_uint_set& terms() { return m_term_set; }
|
||||
indexed_uint_set const &vars() { return m_var_set; }
|
||||
|
||||
};
|
||||
}
|
||||
|
|
@ -450,6 +450,12 @@ public:
|
|||
nla_throttle& throttle() { return m_throttle; }
|
||||
const nla_throttle& throttle() const { return m_throttle; }
|
||||
|
||||
lp::lar_solver& lra_solver() { return lra; }
|
||||
|
||||
indexed_uint_set const& to_refine() const {
|
||||
return m_to_refine;
|
||||
}
|
||||
|
||||
}; // end of core
|
||||
|
||||
struct pp_mon {
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@
|
|||
#include <fstream>
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/nra_solver.h"
|
||||
#include "math/lp/nla_coi.h"
|
||||
#include "nlsat/nlsat_solver.h"
|
||||
#include "math/polynomial/polynomial.h"
|
||||
#include "math/polynomial/algebraic_numbers.h"
|
||||
|
|
@ -25,114 +26,143 @@ typedef nla::mon_eq mon_eq;
|
|||
typedef nla::variable_map_type variable_map_type;
|
||||
|
||||
struct solver::imp {
|
||||
|
||||
lp::lar_solver& lra;
|
||||
reslimit& m_limit;
|
||||
params_ref m_params;
|
||||
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
|
||||
indexed_uint_set m_term_set;
|
||||
scoped_ptr<nlsat::solver> m_nlsat;
|
||||
scoped_ptr<scoped_anum_vector> m_values; // values provided by LRA solver
|
||||
scoped_ptr<scoped_anum> m_tmp1, m_tmp2;
|
||||
nla::coi m_coi;
|
||||
nla::core& m_nla_core;
|
||||
|
||||
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
|
||||
lra(s),
|
||||
m_limit(lim),
|
||||
m_params(p),
|
||||
m_coi(nla_core),
|
||||
m_nla_core(nla_core) {}
|
||||
|
||||
bool need_check() {
|
||||
return m_nla_core.m_to_refine.size() != 0;
|
||||
}
|
||||
|
||||
indexed_uint_set m_mon_set, m_constraint_set;
|
||||
|
||||
struct occurs {
|
||||
unsigned_vector constraints;
|
||||
unsigned_vector monics;
|
||||
unsigned_vector terms;
|
||||
};
|
||||
|
||||
void init_cone_of_influence() {
|
||||
indexed_uint_set visited;
|
||||
unsigned_vector todo;
|
||||
vector<occurs> var2occurs;
|
||||
m_term_set.reset();
|
||||
m_mon_set.reset();
|
||||
m_constraint_set.reset();
|
||||
|
||||
for (auto ci : lra.constraints().indices()) {
|
||||
auto const& c = lra.constraints()[ci];
|
||||
if (c.is_auxiliary())
|
||||
continue;
|
||||
for (auto const& [coeff, v] : c.coeffs()) {
|
||||
var2occurs.reserve(v + 1);
|
||||
var2occurs[v].constraints.push_back(ci);
|
||||
}
|
||||
}
|
||||
|
||||
for (auto const& m : m_nla_core.emons()) {
|
||||
for (auto v : m.vars()) {
|
||||
var2occurs.reserve(v + 1);
|
||||
var2occurs[v].monics.push_back(m.var());
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto *t : lra.terms() ) {
|
||||
for (auto const iv : *t) {
|
||||
auto v = iv.j();
|
||||
var2occurs.reserve(v + 1);
|
||||
var2occurs[v].terms.push_back(t->j());
|
||||
}
|
||||
}
|
||||
|
||||
for (auto const& m : m_nla_core.m_to_refine)
|
||||
todo.push_back(m);
|
||||
|
||||
for (unsigned i = 0; i < todo.size(); ++i) {
|
||||
auto v = todo[i];
|
||||
if (visited.contains(v))
|
||||
continue;
|
||||
visited.insert(v);
|
||||
var2occurs.reserve(v + 1);
|
||||
for (auto ci : var2occurs[v].constraints) {
|
||||
m_constraint_set.insert(ci);
|
||||
auto const& c = lra.constraints()[ci];
|
||||
for (auto const& [coeff, w] : c.coeffs())
|
||||
todo.push_back(w);
|
||||
}
|
||||
for (auto w : var2occurs[v].monics)
|
||||
todo.push_back(w);
|
||||
|
||||
for (auto ti : var2occurs[v].terms) {
|
||||
for (auto iv : lra.get_term(ti))
|
||||
todo.push_back(iv.j());
|
||||
todo.push_back(ti);
|
||||
}
|
||||
|
||||
if (lra.column_has_term(v)) {
|
||||
m_term_set.insert(v);
|
||||
for (auto kv : lra.get_term(v))
|
||||
todo.push_back(kv.j());
|
||||
}
|
||||
|
||||
if (m_nla_core.is_monic_var(v)) {
|
||||
m_mon_set.insert(v);
|
||||
for (auto w : m_nla_core.emons()[v])
|
||||
todo.push_back(w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset() {
|
||||
m_values = nullptr;
|
||||
m_tmp1 = nullptr; m_tmp2 = nullptr;
|
||||
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
|
||||
m_values = alloc(scoped_anum_vector, am());
|
||||
m_term_set.reset();
|
||||
m_lp2nl.reset();
|
||||
}
|
||||
|
||||
// Create polynomial definition for variable v used in setup_assignment_solver.
|
||||
// Side-effects: updates m_vars2mon when v is a monic variable.
|
||||
void mk_definition(unsigned v, polynomial_ref_vector &definitions, vector<rational>& denominators) {
|
||||
auto &pm = m_nlsat->pm();
|
||||
polynomial::polynomial_ref p(pm);
|
||||
rational den(1);
|
||||
if (m_nla_core.emons().is_monic_var(v)) {
|
||||
auto const &m = m_nla_core.emons()[v];
|
||||
for (auto v2 : m.vars()) {
|
||||
polynomial_ref pw(definitions.get(v2), m_nlsat->pm());
|
||||
if (!p)
|
||||
p = pw;
|
||||
else
|
||||
p = p * pw;
|
||||
}
|
||||
}
|
||||
else if (lra.column_has_term(v)) {
|
||||
for (auto const &[w, coeff] : lra.get_term(v)) {
|
||||
den = lcm(denominator(coeff), den);
|
||||
}
|
||||
for (auto const &[w, coeff] : lra.get_term(v)) {
|
||||
auto coeff1 = den * coeff;
|
||||
polynomial_ref pw(definitions.get(w), m_nlsat->pm());
|
||||
if (!p)
|
||||
p = constant(coeff1) * pw;
|
||||
else
|
||||
p = p + (constant(coeff1) * pw);
|
||||
}
|
||||
}
|
||||
else {
|
||||
p = pm.mk_polynomial(lp2nl(v)); // nlsat var index equals v (verified above when created)
|
||||
}
|
||||
definitions.push_back(p);
|
||||
denominators.push_back(den);
|
||||
}
|
||||
|
||||
void setup_solver_poly() {
|
||||
m_coi.init();
|
||||
auto &pm = m_nlsat->pm();
|
||||
polynomial_ref_vector definitions(pm);
|
||||
vector<rational> denominators;
|
||||
for (unsigned v = 0; v < lra.number_of_vars(); ++v) {
|
||||
if (m_coi.vars().contains(v)) {
|
||||
auto j = m_nlsat->mk_var(lra.var_is_int(v));
|
||||
m_lp2nl.insert(v, j); // we don't really need this. It is going to be the identify map.
|
||||
mk_definition(v, definitions, denominators);
|
||||
}
|
||||
else {
|
||||
definitions.push_back(nullptr);
|
||||
denominators.push_back(rational(0));
|
||||
}
|
||||
}
|
||||
|
||||
// we rely on that all information encoded into the tableau is present as a constraint.
|
||||
for (auto ci : m_coi.constraints()) {
|
||||
auto &c = lra.constraints()[ci];
|
||||
auto &pm = m_nlsat->pm();
|
||||
auto k = c.kind();
|
||||
auto rhs = c.rhs();
|
||||
auto lhs = c.coeffs();
|
||||
rational den = denominator(rhs);
|
||||
for (auto [coeff, v] : lhs)
|
||||
den = lcm(lcm(den, denominator(coeff)), denominators[v]);
|
||||
polynomial::polynomial_ref p(pm);
|
||||
p = pm.mk_const(-den * rhs);
|
||||
|
||||
for (auto [coeff, v] : lhs) {
|
||||
polynomial_ref poly(pm);
|
||||
poly = definitions.get(v);
|
||||
poly = poly * constant(den * coeff / denominators[v]);
|
||||
p = p + poly;
|
||||
}
|
||||
auto lit = add_constraint(p, ci, k);
|
||||
}
|
||||
definitions.reset();
|
||||
}
|
||||
|
||||
void setup_solver_terms() {
|
||||
m_coi.init();
|
||||
// add linear inequalities from lra_solver
|
||||
for (auto ci : m_coi.constraints())
|
||||
add_constraint(ci);
|
||||
|
||||
// add polynomial definitions.
|
||||
for (auto const &m : m_coi.mons())
|
||||
add_monic_eq(m_nla_core.emons()[m]);
|
||||
|
||||
// add term definitions.
|
||||
for (unsigned i : m_coi.terms())
|
||||
add_term(i);
|
||||
}
|
||||
|
||||
|
||||
|
||||
polynomial::polynomial_ref sub(polynomial::polynomial *a, polynomial::polynomial *b) {
|
||||
return polynomial_ref(m_nlsat->pm().sub(a, b), m_nlsat->pm());
|
||||
}
|
||||
polynomial::polynomial_ref mul(polynomial::polynomial *a, polynomial::polynomial *b) {
|
||||
return polynomial_ref(m_nlsat->pm().mul(a, b), m_nlsat->pm());
|
||||
}
|
||||
polynomial::polynomial_ref var(lp::lpvar v) {
|
||||
return polynomial_ref(m_nlsat->pm().mk_polynomial(lp2nl(v)), m_nlsat->pm());
|
||||
}
|
||||
polynomial::polynomial_ref constant(rational const& r) {
|
||||
return polynomial_ref(m_nlsat->pm().mk_const(r), m_nlsat->pm());
|
||||
}
|
||||
|
||||
/**
|
||||
\brief one-shot nlsat check.
|
||||
A one shot checker is the least functionality that can
|
||||
|
|
@ -147,24 +177,14 @@ struct solver::imp {
|
|||
lbool check() {
|
||||
SASSERT(need_check());
|
||||
reset();
|
||||
vector<nlsat::assumption, false> core;
|
||||
|
||||
init_cone_of_influence();
|
||||
// add linear inequalities from lra_solver
|
||||
for (auto ci : m_constraint_set)
|
||||
add_constraint(ci);
|
||||
vector<nlsat::assumption, false> core;
|
||||
|
||||
// add polynomial definitions.
|
||||
for (auto const& m : m_mon_set)
|
||||
add_monic_eq(m_nla_core.emons()[m]);
|
||||
smt_params_helper p(m_params);
|
||||
|
||||
// add term definitions.
|
||||
for (unsigned i : m_term_set)
|
||||
add_term(i);
|
||||
setup_solver_poly();
|
||||
|
||||
TRACE(nra, m_nlsat->display(tout));
|
||||
|
||||
smt_params_helper p(m_params);
|
||||
if (p.arith_nl_log()) {
|
||||
static unsigned id = 0;
|
||||
std::stringstream strm;
|
||||
|
|
@ -196,7 +216,8 @@ struct solver::imp {
|
|||
}
|
||||
}
|
||||
m_nlsat->collect_statistics(st);
|
||||
TRACE(nra,
|
||||
TRACE(nra, tout << "nra result " << r << "\n");
|
||||
CTRACE(nra, false,
|
||||
m_nlsat->display(tout << r << "\n");
|
||||
display(tout);
|
||||
for (auto [j, x] : m_lp2nl) tout << "j" << j << " := x" << x << "\n";);
|
||||
|
|
@ -223,14 +244,15 @@ struct solver::imp {
|
|||
case l_false: {
|
||||
lp::explanation ex;
|
||||
m_nlsat->get_core(core);
|
||||
for (auto c : core) {
|
||||
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
|
||||
ex.push_back(idx);
|
||||
TRACE(nra, lra.display_constraint(tout << "ex: " << idx << ": ", idx) << "\n";);
|
||||
}
|
||||
nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
|
||||
for (auto c : core) {
|
||||
unsigned idx = static_cast<unsigned>(static_cast<imp *>(c) - this);
|
||||
ex.push_back(idx);
|
||||
}
|
||||
|
||||
lemma &= ex;
|
||||
m_nla_core.set_use_nra_model(true);
|
||||
TRACE(nra, tout << lemma << "\n");
|
||||
break;
|
||||
}
|
||||
case l_undef:
|
||||
|
|
@ -272,12 +294,25 @@ struct solver::imp {
|
|||
coeffs.push_back(mpz(1));
|
||||
coeffs.push_back(mpz(-1));
|
||||
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.data(), mls), pm);
|
||||
polynomial::polynomial* ps[1] = { p };
|
||||
bool even[1] = { false };
|
||||
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
|
||||
auto lit = mk_literal(p.get(), lp::lconstraint_kind::EQ);
|
||||
nlsat::assumption a = nullptr;
|
||||
m_nlsat->mk_clause(1, &lit, nullptr);
|
||||
}
|
||||
|
||||
nlsat::literal mk_literal(polynomial::polynomial *p, lp::lconstraint_kind k) {
|
||||
polynomial::polynomial *ps[1] = { p };
|
||||
bool is_even[1] = { false };
|
||||
switch (k) {
|
||||
case lp::lconstraint_kind::LE: return ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
||||
case lp::lconstraint_kind::GE: return ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
||||
case lp::lconstraint_kind::LT: return m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
||||
case lp::lconstraint_kind::GT: return m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
||||
case lp::lconstraint_kind::EQ: return m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
|
||||
default: UNREACHABLE(); // unreachable
|
||||
}
|
||||
throw default_exception("uexpected operator");
|
||||
}
|
||||
|
||||
void add_constraint(unsigned idx) {
|
||||
auto& c = lra.constraints()[idx];
|
||||
auto& pm = m_nlsat->pm();
|
||||
|
|
@ -297,30 +332,26 @@ struct solver::imp {
|
|||
}
|
||||
rhs *= den;
|
||||
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.data(), vars.data(), -rhs), pm);
|
||||
polynomial::polynomial* ps[1] = { p };
|
||||
bool is_even[1] = { false };
|
||||
nlsat::literal lit = mk_literal(p.get(), k);
|
||||
nlsat::assumption a = this + idx;
|
||||
m_nlsat->mk_clause(1, &lit, a);
|
||||
}
|
||||
|
||||
nlsat::literal add_constraint(polynomial::polynomial *p, unsigned idx, lp::lconstraint_kind k) {
|
||||
polynomial::polynomial *ps[1] = {p};
|
||||
bool is_even[1] = {false};
|
||||
nlsat::literal lit;
|
||||
nlsat::assumption a = this + idx;
|
||||
switch (k) {
|
||||
case lp::lconstraint_kind::LE:
|
||||
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::GE:
|
||||
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::LT:
|
||||
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::GT:
|
||||
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::EQ:
|
||||
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE(); // unreachable
|
||||
case lp::lconstraint_kind::LE: lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even); break;
|
||||
case lp::lconstraint_kind::GE: lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even); break;
|
||||
case lp::lconstraint_kind::LT: lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even); break;
|
||||
case lp::lconstraint_kind::GT: lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even); break;
|
||||
case lp::lconstraint_kind::EQ: lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even); break;
|
||||
default: UNREACHABLE(); // unreachable
|
||||
}
|
||||
m_nlsat->mk_clause(1, &lit, a);
|
||||
return lit;
|
||||
}
|
||||
|
||||
bool check_monic(mon_eq const& m) {
|
||||
|
|
@ -370,7 +401,7 @@ struct solver::imp {
|
|||
for (auto const& m : m_nla_core.emons())
|
||||
if (any_of(m.vars(), [&](lp::lpvar v) { return m_lp2nl.contains(v); }))
|
||||
add_monic_eq_bound(m);
|
||||
for (unsigned i : m_term_set)
|
||||
for (unsigned i : m_coi.terms())
|
||||
add_term(i);
|
||||
for (auto const& [v, w] : m_lp2nl) {
|
||||
if (lra.column_has_lower_bound(v))
|
||||
|
|
@ -418,6 +449,7 @@ struct solver::imp {
|
|||
ex.push_back(ci);
|
||||
nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
|
||||
lemma &= ex;
|
||||
TRACE(nra, tout << lemma << "\n");
|
||||
break;
|
||||
}
|
||||
case l_undef:
|
||||
|
|
@ -554,8 +586,8 @@ struct solver::imp {
|
|||
if (!m_lp2nl.find(v, r)) {
|
||||
r = m_nlsat->mk_var(is_int(v));
|
||||
m_lp2nl.insert(v, r);
|
||||
if (!m_term_set.contains(v) && lra.column_has_term(v)) {
|
||||
m_term_set.insert(v);
|
||||
if (!m_coi.terms().contains(v) && lra.column_has_term(v)) {
|
||||
m_coi.terms().insert(v);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
|
|
@ -586,20 +618,55 @@ struct solver::imp {
|
|||
m_nlsat->mk_clause(1, &lit, nullptr);
|
||||
}
|
||||
|
||||
nlsat::anum const& value(lp::lpvar v) {
|
||||
polynomial::var pv;
|
||||
if (m_lp2nl.find(v, pv))
|
||||
return m_nlsat->value(pv);
|
||||
else {
|
||||
for (unsigned w = m_values->size(); w <= v; ++w) {
|
||||
scoped_anum a(am());
|
||||
am().set(a, m_nla_core.val(w).to_mpq());
|
||||
nlsat::anum const &value(lp::lpvar v) {
|
||||
init_values(v + 1);
|
||||
return (*m_values)[v];
|
||||
}
|
||||
|
||||
void init_values(unsigned sz) {
|
||||
if (m_values->size() >= sz)
|
||||
return;
|
||||
unsigned w;
|
||||
scoped_anum a(am());
|
||||
for (unsigned v = m_values->size(); v < sz; ++v) {
|
||||
if (m_nla_core.emons().is_monic_var(v)) {
|
||||
am().set(a, 1);
|
||||
auto &m = m_nla_core.emon(v);
|
||||
for (auto x : m.vars())
|
||||
am().mul(a, (*m_values)[x], a);
|
||||
m_values->push_back(a);
|
||||
}
|
||||
return (*m_values)[v];
|
||||
}
|
||||
else if (lra.column_has_term(v)) {
|
||||
scoped_anum b(am());
|
||||
am().set(a, 0);
|
||||
for (auto const &[w, coeff] : lra.get_term(v)) {
|
||||
am().set(b, coeff.to_mpq());
|
||||
am().mul(b, (*m_values)[w], b);
|
||||
am().add(a, b, a);
|
||||
}
|
||||
m_values->push_back(a);
|
||||
}
|
||||
else if (m_lp2nl.find(v, w)) {
|
||||
m_values->push_back(m_nlsat->value(w));
|
||||
}
|
||||
else {
|
||||
am().set(a, m_nla_core.val(v).to_mpq());
|
||||
m_values->push_back(a);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void set_value(lp::lpvar v, rational const& value) {
|
||||
if (!m_values)
|
||||
m_values = alloc(scoped_anum_vector, am());
|
||||
scoped_anum a(am());
|
||||
am().set(a, value.to_mpq());
|
||||
while (m_values->size() <= v)
|
||||
m_values->push_back(a);
|
||||
am().set((*m_values)[v], a);
|
||||
}
|
||||
|
||||
nlsat::anum_manager& am() {
|
||||
return m_nlsat->am();
|
||||
}
|
||||
|
|
@ -680,4 +747,8 @@ void solver::updt_params(params_ref& p) {
|
|||
m_imp->updt_params(p);
|
||||
}
|
||||
|
||||
void solver::set_value(lp::lpvar v, rational const& value) {
|
||||
m_imp->set_value(v, value);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -59,6 +59,8 @@ namespace nra {
|
|||
|
||||
nlsat::anum_manager& am();
|
||||
|
||||
void set_value(lp::lpvar v, rational const &value);
|
||||
|
||||
scoped_anum& tmp1();
|
||||
|
||||
scoped_anum& tmp2();
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue