mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
merge
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
commit
733f44d141
151 changed files with 3249 additions and 1504 deletions
|
@ -58,7 +58,7 @@ extern "C" {
|
|||
|
||||
Z3_ast Z3_API Z3_mk_lstring(Z3_context c, unsigned sz, Z3_string str) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_mk_string(c, str);
|
||||
LOG_Z3_mk_lstring(c, sz, str);
|
||||
RESET_ERROR_CODE();
|
||||
unsigned_vector chs;
|
||||
for (unsigned i = 0; i < sz; ++i) chs.push_back((unsigned char)str[i]);
|
||||
|
@ -69,6 +69,17 @@ extern "C" {
|
|||
Z3_CATCH_RETURN(nullptr);
|
||||
}
|
||||
|
||||
Z3_ast Z3_API Z3_mk_u32string(Z3_context c, unsigned sz, unsigned const chars[]) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_mk_u32string(c, sz, chars);
|
||||
RESET_ERROR_CODE();
|
||||
zstring s(sz, chars);
|
||||
app* a = mk_c(c)->sutil().str.mk_string(s);
|
||||
mk_c(c)->save_ast_trail(a);
|
||||
RETURN_Z3(of_ast(a));
|
||||
Z3_CATCH_RETURN(nullptr);
|
||||
}
|
||||
|
||||
Z3_sort Z3_API Z3_mk_string_sort(Z3_context c) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_mk_string_sort(c);
|
||||
|
@ -187,10 +198,9 @@ extern "C" {
|
|||
svector<char> buff;
|
||||
for (unsigned i = 0; i < str.length(); ++i) {
|
||||
unsigned ch = str[i];
|
||||
if (ch <= 32 || ch >= 127) {
|
||||
if (ch == 0 || ch >= 256 || (ch == '\\' && i + 1 < str.length() && str[i+1] == 'u')) {
|
||||
buff.reset();
|
||||
buffer.push_back('\\');
|
||||
// buffer.push_back('\\'); // possibly replace by native non-escaped version?
|
||||
buffer.push_back('u');
|
||||
buffer.push_back('{');
|
||||
while (ch > 0) {
|
||||
|
@ -215,6 +225,38 @@ extern "C" {
|
|||
Z3_CATCH_RETURN("");
|
||||
}
|
||||
|
||||
unsigned Z3_API Z3_get_string_length(Z3_context c, Z3_ast s) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_get_string_length(c, s);
|
||||
RESET_ERROR_CODE();
|
||||
zstring str;
|
||||
if (!mk_c(c)->sutil().str.is_string(to_expr(s), str)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG, "expression is not a string literal");
|
||||
}
|
||||
return str.length();
|
||||
Z3_CATCH_RETURN(0);
|
||||
}
|
||||
|
||||
void Z3_API Z3_get_string_contents(Z3_context c, Z3_ast s, unsigned length, unsigned contents[]) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_get_string_contents(c, s, length, contents);
|
||||
RESET_ERROR_CODE();
|
||||
zstring str;
|
||||
if (!mk_c(c)->sutil().str.is_string(to_expr(s), str)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG, "expression is not a string literal");
|
||||
return;
|
||||
}
|
||||
if (str.length() != length) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG, "string size disagrees with supplied buffer length");
|
||||
return;
|
||||
}
|
||||
for (unsigned i = 0; i < length; ++i)
|
||||
contents[i] = str[i];
|
||||
|
||||
Z3_CATCH;
|
||||
}
|
||||
|
||||
|
||||
#define MK_SORTED(NAME, FN ) \
|
||||
Z3_ast Z3_API NAME(Z3_context c, Z3_sort s) { \
|
||||
Z3_TRY; \
|
||||
|
|
|
@ -875,7 +875,7 @@ extern "C" {
|
|||
init_solver(c, s);
|
||||
solver::push_eh_t _push = push_eh;
|
||||
solver::pop_eh_t _pop = pop_eh;
|
||||
solver::fresh_eh_t _fresh = [&](void * user_ctx, ast_manager& m, solver::context_obj*& _ctx) {
|
||||
solver::fresh_eh_t _fresh = [=](void * user_ctx, ast_manager& m, solver::context_obj*& _ctx) {
|
||||
ast_context_params params;
|
||||
params.set_foreign_manager(&m);
|
||||
auto* ctx = alloc(api::context, ¶ms, false);
|
||||
|
|
|
@ -36,12 +36,12 @@ Notes:
|
|||
\defgroup cppapi C++ API
|
||||
|
||||
*/
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
@name C++ API classes and functions
|
||||
*/
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Z3 C++ namespace
|
||||
|
@ -379,6 +379,7 @@ namespace z3 {
|
|||
expr string_val(char const* s);
|
||||
expr string_val(char const* s, unsigned n);
|
||||
expr string_val(std::string const& s);
|
||||
expr string_val(std::u32string const& s);
|
||||
|
||||
expr num_val(int n, sort const & s);
|
||||
|
||||
|
@ -1100,23 +1101,29 @@ namespace z3 {
|
|||
bool is_string_value() const { return Z3_is_string(ctx(), m_ast); }
|
||||
|
||||
/**
|
||||
\brief for a string value expression return an escaped or unescaped string value.
|
||||
\brief for a string value expression return an escaped string value.
|
||||
\pre expression is for a string value.
|
||||
*/
|
||||
|
||||
std::string get_escaped_string() const {
|
||||
std::string get_string() const {
|
||||
assert(is_string_value());
|
||||
char const* s = Z3_get_string(ctx(), m_ast);
|
||||
check_error();
|
||||
return std::string(s);
|
||||
}
|
||||
|
||||
std::string get_string() const {
|
||||
/**
|
||||
\brief for a string value expression return an unespaced string value.
|
||||
\pre expression is for a string value.
|
||||
*/
|
||||
|
||||
std::u32string get_u32string() const {
|
||||
assert(is_string_value());
|
||||
unsigned n;
|
||||
char const* s = Z3_get_lstring(ctx(), m_ast, &n);
|
||||
check_error();
|
||||
return std::string(s, n);
|
||||
unsigned n = Z3_get_string_length(ctx(), m_ast);
|
||||
std::u32string s;
|
||||
s.resize(n);
|
||||
Z3_get_string_contents(ctx(), m_ast, n, (unsigned*)s.data());
|
||||
return s;
|
||||
}
|
||||
|
||||
operator Z3_app() const { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }
|
||||
|
@ -1516,7 +1523,7 @@ namespace z3 {
|
|||
expr substitute(expr_vector const& dst);
|
||||
|
||||
|
||||
class iterator {
|
||||
class iterator {
|
||||
expr& e;
|
||||
unsigned i;
|
||||
public:
|
||||
|
@ -1912,14 +1919,14 @@ namespace z3 {
|
|||
Z3_ast r;
|
||||
if (a.is_int()) {
|
||||
expr zero = a.ctx().int_val(0);
|
||||
expr ge = a >= zero;
|
||||
expr na = -a;
|
||||
expr ge = a >= zero;
|
||||
expr na = -a;
|
||||
r = Z3_mk_ite(a.ctx(), ge, a, na);
|
||||
}
|
||||
else if (a.is_real()) {
|
||||
expr zero = a.ctx().real_val(0);
|
||||
expr ge = a >= zero;
|
||||
expr na = -a;
|
||||
expr ge = a >= zero;
|
||||
expr na = -a;
|
||||
r = Z3_mk_ite(a.ctx(), ge, a, na);
|
||||
}
|
||||
else {
|
||||
|
@ -3480,6 +3487,7 @@ namespace z3 {
|
|||
inline expr context::string_val(char const* s, unsigned n) { Z3_ast r = Z3_mk_lstring(m_ctx, n, s); check_error(); return expr(*this, r); }
|
||||
inline expr context::string_val(char const* s) { Z3_ast r = Z3_mk_string(m_ctx, s); check_error(); return expr(*this, r); }
|
||||
inline expr context::string_val(std::string const& s) { Z3_ast r = Z3_mk_string(m_ctx, s.c_str()); check_error(); return expr(*this, r); }
|
||||
inline expr context::string_val(std::u32string const& s) { Z3_ast r = Z3_mk_u32string(m_ctx, (unsigned)s.size(), (unsigned const*)s.c_str()); check_error(); return expr(*this, r); }
|
||||
|
||||
inline expr context::num_val(int n, sort const & s) { Z3_ast r = Z3_mk_int(m_ctx, n, s); check_error(); return expr(*this, r); }
|
||||
|
||||
|
@ -3932,6 +3940,8 @@ namespace z3 {
|
|||
virtual void push() = 0;
|
||||
virtual void pop(unsigned num_scopes) = 0;
|
||||
|
||||
virtual ~user_propagator_base() = default;
|
||||
|
||||
/**
|
||||
\brief user_propagators created using \c fresh() are created during
|
||||
search and their lifetimes are restricted to search time. They should
|
||||
|
@ -3954,12 +3964,28 @@ namespace z3 {
|
|||
Z3_solver_propagate_fixed(ctx(), *s, fixed_eh);
|
||||
}
|
||||
|
||||
void register_fixed() {
|
||||
assert(s);
|
||||
m_fixed_eh = [this](unsigned id, expr const& e) {
|
||||
fixed(id, e);
|
||||
};
|
||||
Z3_solver_propagate_fixed(ctx(), *s, fixed_eh);
|
||||
}
|
||||
|
||||
void register_eq(eq_eh_t& f) {
|
||||
assert(s);
|
||||
m_eq_eh = f;
|
||||
Z3_solver_propagate_eq(ctx(), *s, eq_eh);
|
||||
}
|
||||
|
||||
void register_eq() {
|
||||
assert(s);
|
||||
m_eq_eh = [this](unsigned x, unsigned y) {
|
||||
eq(x, y);
|
||||
};
|
||||
Z3_solver_propagate_eq(ctx(), *s, eq_eh);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief register a callback on final-check.
|
||||
During the final check stage, all propagations have been processed.
|
||||
|
@ -3973,6 +3999,21 @@ namespace z3 {
|
|||
m_final_eh = f;
|
||||
Z3_solver_propagate_final(ctx(), *s, final_eh);
|
||||
}
|
||||
|
||||
void register_final() {
|
||||
assert(s);
|
||||
m_final_eh = [this]() {
|
||||
final();
|
||||
};
|
||||
Z3_solver_propagate_final(ctx(), *s, final_eh);
|
||||
}
|
||||
|
||||
|
||||
virtual void fixed(unsigned /*id*/, expr const& /*e*/) { }
|
||||
|
||||
virtual void eq(unsigned /*x*/, unsigned /*y*/) { }
|
||||
|
||||
virtual void final() { }
|
||||
|
||||
/**
|
||||
\brief tracks \c e by a unique identifier that is returned by the call.
|
||||
|
@ -4020,7 +4061,7 @@ namespace z3 {
|
|||
|
||||
}
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
#undef Z3_THROW
|
||||
|
||||
|
|
|
@ -214,7 +214,6 @@ JLCXX_MODULE define_julia_module(jlcxx::Module &m)
|
|||
.MM(expr, numerator)
|
||||
.MM(expr, denominator)
|
||||
.MM(expr, is_string_value)
|
||||
.MM(expr, get_escaped_string)
|
||||
.MM(expr, get_string)
|
||||
.MM(expr, decl)
|
||||
.MM(expr, num_args)
|
||||
|
|
|
@ -76,14 +76,14 @@ int compare_pointers(void* pt1, void* pt2) {
|
|||
return +1;
|
||||
}
|
||||
|
||||
#define MK_CTX_OF(X) \
|
||||
#define MK_CTX_OF(X, USED) \
|
||||
CAMLprim DLL_PUBLIC value n_context_of_ ## X(value v) { \
|
||||
CAMLparam1(v); \
|
||||
CAMLlocal1(result); \
|
||||
Z3_context_plus cp; \
|
||||
Z3_ ## X ## _plus * p = (Z3_ ## X ## _plus *) Data_custom_val(v); \
|
||||
cp = p->cp; \
|
||||
result = caml_alloc_custom(&Z3_context_plus_custom_ops, sizeof(Z3_context_plus), 0, 1); \
|
||||
result = caml_alloc_custom_mem(&Z3_context_plus_custom_ops, sizeof(Z3_context_plus), USED); \
|
||||
*(Z3_context_plus *)Data_custom_val(result) = cp; \
|
||||
/* We increment the usage counter of the context, as we just \
|
||||
created a second custom block holding that context */ \
|
||||
|
@ -102,7 +102,7 @@ int compare_pointers(void* pt1, void* pt2) {
|
|||
CAMLlocal1(result); \
|
||||
Z3_context_plus cp = *(Z3_context_plus*)(Data_custom_val(v)); \
|
||||
Z3_ ## X ## _plus a = Z3_ ## X ## _plus_mk(cp, NULL); \
|
||||
result = caml_alloc_custom(&Z3_ ## X ## _plus_custom_ops, sizeof(Z3_ ## X ## _plus), 0, 1); \
|
||||
result = caml_alloc_custom_mem(&Z3_ ## X ## _plus_custom_ops, sizeof(Z3_ ## X ## _plus), USED); \
|
||||
*(Z3_ ## X ## _plus*)(Data_custom_val(result)) = a; \
|
||||
CAMLreturn(result); \
|
||||
}
|
||||
|
@ -294,9 +294,9 @@ static struct custom_operations Z3_ast_plus_custom_ops = {
|
|||
Z3_ast_compare_ext
|
||||
};
|
||||
|
||||
MK_CTX_OF(ast)
|
||||
MK_CTX_OF(ast, 16) // let's say 16 bytes per ast
|
||||
|
||||
#define MK_PLUS_OBJ_NO_REF(X) \
|
||||
#define MK_PLUS_OBJ_NO_REF(X, USED) \
|
||||
typedef struct { \
|
||||
Z3_context_plus cp; \
|
||||
Z3_ ## X p; \
|
||||
|
@ -349,9 +349,9 @@ MK_CTX_OF(ast)
|
|||
Z3_ ## X ## _compare_ext \
|
||||
}; \
|
||||
\
|
||||
MK_CTX_OF(X)
|
||||
MK_CTX_OF(X, USED)
|
||||
|
||||
#define MK_PLUS_OBJ(X) \
|
||||
#define MK_PLUS_OBJ(X, USED) \
|
||||
typedef struct { \
|
||||
Z3_context_plus cp; \
|
||||
Z3_ ## X p; \
|
||||
|
@ -408,27 +408,27 @@ MK_CTX_OF(ast)
|
|||
Z3_ ## X ## _compare_ext \
|
||||
}; \
|
||||
\
|
||||
MK_CTX_OF(X)
|
||||
MK_CTX_OF(X, USED)
|
||||
|
||||
MK_PLUS_OBJ_NO_REF(symbol)
|
||||
MK_PLUS_OBJ_NO_REF(constructor)
|
||||
MK_PLUS_OBJ_NO_REF(constructor_list)
|
||||
MK_PLUS_OBJ_NO_REF(rcf_num)
|
||||
MK_PLUS_OBJ(params)
|
||||
MK_PLUS_OBJ(param_descrs)
|
||||
MK_PLUS_OBJ(model)
|
||||
MK_PLUS_OBJ(func_interp)
|
||||
MK_PLUS_OBJ(func_entry)
|
||||
MK_PLUS_OBJ(goal)
|
||||
MK_PLUS_OBJ(tactic)
|
||||
MK_PLUS_OBJ(probe)
|
||||
MK_PLUS_OBJ(apply_result)
|
||||
MK_PLUS_OBJ(solver)
|
||||
MK_PLUS_OBJ(stats)
|
||||
MK_PLUS_OBJ(ast_map)
|
||||
MK_PLUS_OBJ(ast_vector)
|
||||
MK_PLUS_OBJ(fixedpoint)
|
||||
MK_PLUS_OBJ(optimize)
|
||||
MK_PLUS_OBJ_NO_REF(symbol, 32)
|
||||
MK_PLUS_OBJ_NO_REF(constructor, 32)
|
||||
MK_PLUS_OBJ_NO_REF(constructor_list, 32)
|
||||
MK_PLUS_OBJ_NO_REF(rcf_num, 32)
|
||||
MK_PLUS_OBJ(params, 128)
|
||||
MK_PLUS_OBJ(param_descrs, 128)
|
||||
MK_PLUS_OBJ(model, 512)
|
||||
MK_PLUS_OBJ(func_interp, 128)
|
||||
MK_PLUS_OBJ(func_entry, 128)
|
||||
MK_PLUS_OBJ(goal, 128)
|
||||
MK_PLUS_OBJ(tactic, 128)
|
||||
MK_PLUS_OBJ(probe, 128)
|
||||
MK_PLUS_OBJ(apply_result, 128)
|
||||
MK_PLUS_OBJ(solver, 20 * 1000 * 1000) // pretend a solver is 20MB
|
||||
MK_PLUS_OBJ(stats, 128)
|
||||
MK_PLUS_OBJ(ast_map, 1024 * 2)
|
||||
MK_PLUS_OBJ(ast_vector, 128)
|
||||
MK_PLUS_OBJ(fixedpoint, 20 * 1000 * 1000)
|
||||
MK_PLUS_OBJ(optimize, 20 * 1000 * 1000)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
|
|
@ -11102,33 +11102,34 @@ class PropClosures:
|
|||
self.bases = {}
|
||||
self.lock = None
|
||||
|
||||
def set_threaded():
|
||||
def set_threaded(self):
|
||||
if self.lock is None:
|
||||
import threading
|
||||
self.lock = threading.thread.Lock()
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def get(self, ctx):
|
||||
if self.lock:
|
||||
self.lock.acquire()
|
||||
r = self.bases[ctx]
|
||||
if self.lock:
|
||||
self.lock.release()
|
||||
with self.lock:
|
||||
r = self.bases[ctx]
|
||||
else:
|
||||
r = self.bases[ctx]
|
||||
return r
|
||||
|
||||
def set(self, ctx, r):
|
||||
if self.lock:
|
||||
self.lock.acquire()
|
||||
self.bases[ctx] = r
|
||||
if self.lock:
|
||||
self.lock.release()
|
||||
with self.lock:
|
||||
self.bases[ctx] = r
|
||||
else:
|
||||
self.bases[ctx] = r
|
||||
|
||||
def insert(self, r):
|
||||
if self.lock:
|
||||
self.lock.acquire()
|
||||
id = len(self.bases) + 3
|
||||
self.bases[id] = r
|
||||
if self.lock:
|
||||
self.lock.release()
|
||||
with self.lock:
|
||||
id = len(self.bases) + 3
|
||||
self.bases[id] = r
|
||||
else:
|
||||
id = len(self.bases) + 3
|
||||
self.bases[id] = r
|
||||
return id
|
||||
|
||||
|
||||
|
@ -11151,8 +11152,9 @@ def user_prop_pop(ctx, num_scopes):
|
|||
|
||||
def user_prop_fresh(id, ctx):
|
||||
_prop_closures.set_threaded()
|
||||
new_prop = UsePropagateBase(None, ctx)
|
||||
_prop_closures.set(new_prop.id, new_prop.fresh())
|
||||
prop = _prop_closures.get(id)
|
||||
new_prop = prop.fresh()
|
||||
_prop_closures.set(new_prop.id, new_prop)
|
||||
return ctypes.c_void_p(new_prop.id)
|
||||
|
||||
|
||||
|
@ -11214,11 +11216,12 @@ class UserPropagateBase:
|
|||
self.eq = None
|
||||
self.diseq = None
|
||||
if ctx:
|
||||
# TBD fresh is broken: ctx is not of the right type when we reach here.
|
||||
self._ctx = Context()
|
||||
Z3_del_context(self._ctx.ctx)
|
||||
self._ctx.ctx = ctx
|
||||
self._ctx.eh = Z3_set_error_handler(ctx, z3_error_handler)
|
||||
Z3_set_ast_print_mode(ctx, Z3_PRINT_SMTLIB2_COMPLIANT)
|
||||
#Z3_del_context(self._ctx.ctx)
|
||||
#self._ctx.ctx = ctx
|
||||
#self._ctx.eh = Z3_set_error_handler(ctx, z3_error_handler)
|
||||
#Z3_set_ast_print_mode(ctx, Z3_PRINT_SMTLIB2_COMPLIANT)
|
||||
if s:
|
||||
Z3_solver_propagate_init(self.ctx_ref(),
|
||||
s.solver,
|
||||
|
|
|
@ -25,10 +25,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Algebraic Numbers */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Return \c true if \c a can be used as value in the Z3 real algebraic
|
||||
number package.
|
||||
|
@ -240,8 +240,8 @@ extern "C" {
|
|||
*/
|
||||
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a);
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
162
src/api/z3_api.h
162
src/api/z3_api.h
|
@ -37,11 +37,11 @@ DEFINE_TYPE(Z3_optimize);
|
|||
DEFINE_TYPE(Z3_rcf_num);
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Types */
|
||||
|
||||
///@{
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
Most of the types in the C API are opaque pointers.
|
||||
|
@ -1449,7 +1449,7 @@ typedef enum
|
|||
Z3_GOAL_UNDER_OVER
|
||||
} Z3_goal_prec;
|
||||
|
||||
///@}
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -1514,7 +1514,7 @@ extern "C" {
|
|||
/**@}*/
|
||||
|
||||
/** @name Create configuration */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a configuration object for the Z3 context object.
|
||||
|
@ -1569,10 +1569,10 @@ extern "C" {
|
|||
*/
|
||||
void Z3_API Z3_set_param_value(Z3_config c, Z3_string param_id, Z3_string param_value);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Context and AST Reference Counting */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a context using the given configuration.
|
||||
|
@ -1678,10 +1678,10 @@ extern "C" {
|
|||
void Z3_API Z3_interrupt(Z3_context c);
|
||||
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Parameters */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a Z3 (empty) parameter set.
|
||||
|
@ -1754,10 +1754,10 @@ extern "C" {
|
|||
*/
|
||||
void Z3_API Z3_params_validate(Z3_context c, Z3_params p, Z3_param_descrs d);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Parameter Descriptions */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Increment the reference counter of the given parameter description set.
|
||||
|
@ -1811,10 +1811,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_string Z3_API Z3_param_descrs_to_string(Z3_context c, Z3_param_descrs p);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Symbols */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a Z3 symbol using an integer.
|
||||
|
@ -1843,10 +1843,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_symbol Z3_API Z3_mk_string_symbol(Z3_context c, Z3_string s);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Sorts */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a free (uninterpreted) type using the given name (symbol).
|
||||
|
@ -2150,10 +2150,10 @@ extern "C" {
|
|||
Z3_func_decl* tester,
|
||||
Z3_func_decl accessors[]);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Constants and Applications */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Declare a constant or function.
|
||||
|
@ -2287,10 +2287,10 @@ extern "C" {
|
|||
*/
|
||||
void Z3_API Z3_add_rec_def(Z3_context c, Z3_func_decl f, unsigned n, Z3_ast args[], Z3_ast body);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Propositional Logic and Equality */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create an AST node representing \c true.
|
||||
|
||||
|
@ -2397,10 +2397,10 @@ extern "C" {
|
|||
def_API('Z3_mk_or', AST, (_in(CONTEXT), _in(UINT), _in_array(1, AST)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[]);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Integers and Reals */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create an AST node representing \ccode{args[0] + ... + args[num_args-1]}.
|
||||
|
||||
|
@ -2573,10 +2573,10 @@ extern "C" {
|
|||
def_API('Z3_mk_is_int', AST, (_in(CONTEXT), _in(AST)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Bit-vectors */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Bitwise negation.
|
||||
|
||||
|
@ -3097,10 +3097,10 @@ extern "C" {
|
|||
def_API('Z3_mk_bvmul_no_underflow', AST, (_in(CONTEXT), _in(AST), _in(AST)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Arrays */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Array read.
|
||||
The argument \c a is the array and \c i is the index of the array that gets read.
|
||||
|
@ -3212,10 +3212,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_ast Z3_API Z3_mk_set_has_size(Z3_context c, Z3_ast set, Z3_ast k);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Sets */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create Set type.
|
||||
|
||||
|
@ -3308,10 +3308,10 @@ extern "C" {
|
|||
*/
|
||||
|
||||
Z3_ast Z3_API Z3_mk_array_ext(Z3_context c, Z3_ast arg1, Z3_ast arg2);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Numerals */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create a numeral of a given sort.
|
||||
|
||||
|
@ -3400,10 +3400,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_ast Z3_API Z3_mk_bv_numeral(Z3_context c, unsigned sz, bool const* bits);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Sequences and regular expressions */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a sequence sort out of the sort for the elements.
|
||||
|
@ -3480,6 +3480,11 @@ extern "C" {
|
|||
|
||||
/**
|
||||
\brief Create a string constant out of the string that is passed in
|
||||
The string may contain escape encoding for non-printable characters
|
||||
or characters outside of the basic printable ASCII range. For example,
|
||||
the escape encoding \u{0} represents the character 0 and the encoding
|
||||
\u{100} represents the character 256.
|
||||
|
||||
def_API('Z3_mk_string', AST, (_in(CONTEXT), _in(STRING)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s);
|
||||
|
@ -3487,12 +3492,22 @@ extern "C" {
|
|||
/**
|
||||
\brief Create a string constant out of the string that is passed in
|
||||
It takes the length of the string as well to take into account
|
||||
0 characters. The string is unescaped.
|
||||
0 characters. The string is treated as if it is unescaped so a sequence
|
||||
of characters \u{0} is treated as 5 characters and not the character 0.
|
||||
|
||||
def_API('Z3_mk_lstring', AST, (_in(CONTEXT), _in(UINT), _in(STRING)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_lstring(Z3_context c, unsigned len, Z3_string s);
|
||||
|
||||
/**
|
||||
\brief Create a string constant out of the string that is passed in
|
||||
It takes the length of the string as well to take into account
|
||||
0 characters. The string is unescaped.
|
||||
|
||||
def_API('Z3_mk_u32string', AST, (_in(CONTEXT), _in(UINT), _in_array(1, UINT)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_u32string(Z3_context c, unsigned len, unsigned const chars[]);
|
||||
|
||||
/**
|
||||
\brief Determine if \c s is a string constant.
|
||||
|
||||
|
@ -3502,6 +3517,7 @@ extern "C" {
|
|||
|
||||
/**
|
||||
\brief Retrieve the string constant stored in \c s.
|
||||
Characters outside the basic printiable ASCII range are escaped.
|
||||
|
||||
\pre Z3_is_string(c, s)
|
||||
|
||||
|
@ -3510,14 +3526,36 @@ extern "C" {
|
|||
Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s);
|
||||
|
||||
/**
|
||||
\brief Retrieve the unescaped string constant stored in \c s.
|
||||
\brief Retrieve the string constant stored in \c s. The string can contain escape sequences.
|
||||
Characters in the range 1 to 255 are literal.
|
||||
Characters in the range 0, and 256 above are escaped.
|
||||
|
||||
\pre Z3_is_string(c, s)
|
||||
|
||||
def_API('Z3_get_lstring', CHAR_PTR, (_in(CONTEXT), _in(AST), _out(UINT)))
|
||||
*/
|
||||
Z3_char_ptr Z3_API Z3_get_lstring(Z3_context c, Z3_ast s, unsigned* length);
|
||||
|
||||
/**
|
||||
\brief Retrieve the length of the unescaped string constant stored in \c s.
|
||||
|
||||
\pre Z3_is_string(c, s)
|
||||
|
||||
def_API('Z3_get_string_length', UINT, (_in(CONTEXT), _in(AST)))
|
||||
*/
|
||||
unsigned Z3_API Z3_get_string_length(Z3_context c, Z3_ast s);
|
||||
|
||||
/**
|
||||
\brief Retrieve the unescaped string constant stored in \c s.
|
||||
|
||||
\pre Z3_is_string(c, s)
|
||||
|
||||
\pre length contains the number of characters in s
|
||||
|
||||
def_API('Z3_get_string_contents', VOID, (_in(CONTEXT), _in(AST), _in(UINT), _out_array(2, UINT)))
|
||||
*/
|
||||
void Z3_API Z3_get_string_contents(Z3_context c, Z3_ast s, unsigned length, unsigned contents[]);
|
||||
|
||||
/**
|
||||
\brief Create an empty sequence of the sequence sort \c seq.
|
||||
|
||||
|
@ -3821,11 +3859,11 @@ extern "C" {
|
|||
*/
|
||||
Z3_ast Z3_API Z3_mk_char_is_digit(Z3_context c, Z3_ast ch);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
|
||||
/** @name Special relations */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief create a linear ordering relation over signature \c a.
|
||||
The relation is identified by the index \c id.
|
||||
|
@ -3866,10 +3904,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_func_decl Z3_API Z3_mk_transitive_closure(Z3_context c, Z3_func_decl f);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Quantifiers */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create a pattern for quantifier instantiation.
|
||||
|
||||
|
@ -4174,10 +4212,10 @@ extern "C" {
|
|||
Z3_ast body);
|
||||
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Accessors */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Return \c Z3_INT_SYMBOL if the symbol was constructed
|
||||
using #Z3_mk_int_symbol, and \c Z3_STRING_SYMBOL if the symbol
|
||||
|
@ -5112,10 +5150,10 @@ extern "C" {
|
|||
def_API('Z3_simplify_get_param_descrs', PARAM_DESCRS, (_in(CONTEXT),))
|
||||
*/
|
||||
Z3_param_descrs Z3_API Z3_simplify_get_param_descrs(Z3_context c);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Modifiers */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Update the arguments of term \c a using the arguments \c args.
|
||||
The number of arguments \c num_args should coincide
|
||||
|
@ -5158,10 +5196,10 @@ extern "C" {
|
|||
def_API('Z3_translate', AST, (_in(CONTEXT), _in(AST), _in(CONTEXT)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_translate(Z3_context source, Z3_ast a, Z3_context target);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Models */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Create a fresh model object. It has reference count 0.
|
||||
|
@ -5496,10 +5534,10 @@ extern "C" {
|
|||
def_API('Z3_func_entry_get_arg', AST, (_in(CONTEXT), _in(FUNC_ENTRY), _in(UINT)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_func_entry_get_arg(Z3_context c, Z3_func_entry e, unsigned i);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Interaction logging */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Log interaction to a file.
|
||||
|
||||
|
@ -5534,10 +5572,10 @@ extern "C" {
|
|||
def_API('Z3_toggle_warning_messages', VOID, (_in(BOOL),))
|
||||
*/
|
||||
void Z3_API Z3_toggle_warning_messages(bool enabled);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name String conversion */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Select mode for the format used for pretty-printing AST nodes.
|
||||
|
||||
|
@ -5624,10 +5662,10 @@ extern "C" {
|
|||
Z3_ast const assumptions[],
|
||||
Z3_ast formula);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Parser interface */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Parse the given string using the SMT-LIB2 parser.
|
||||
|
||||
|
@ -5671,10 +5709,10 @@ extern "C" {
|
|||
|
||||
Z3_string Z3_API Z3_eval_smtlib2_string(Z3_context, Z3_string str);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Error Handling */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
#ifndef SAFE_ERRORS
|
||||
/**
|
||||
\brief Return the error code for the last API call.
|
||||
|
@ -5717,10 +5755,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_string Z3_API Z3_get_error_msg(Z3_context c, Z3_error_code err);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Miscellaneous */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Return Z3 version number information.
|
||||
|
@ -5781,10 +5819,10 @@ extern "C" {
|
|||
def_API('Z3_finalize_memory', VOID, ())
|
||||
*/
|
||||
void Z3_API Z3_finalize_memory(void);
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Goals */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create a goal (aka problem). A goal is essentially a set
|
||||
of formulas, that can be solved and/or transformed using
|
||||
|
@ -5934,10 +5972,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_string Z3_API Z3_goal_to_dimacs_string(Z3_context c, Z3_goal g, bool include_names);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Tactics and Probes */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Return a tactic associated with the given name.
|
||||
The complete list of tactics may be obtained using the procedures #Z3_get_num_tactics and #Z3_get_tactic_name.
|
||||
|
@ -6286,10 +6324,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_goal Z3_API Z3_apply_result_get_subgoal(Z3_context c, Z3_apply_result r, unsigned i);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Solvers*/
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create a new solver. This solver is a "combined solver" (see
|
||||
combined_solver module) that internally uses a non-incremental (solver1) and an
|
||||
|
@ -6812,10 +6850,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s, bool include_names);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name Statistics */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Convert a statistics into a string.
|
||||
|
@ -6897,11 +6935,11 @@ extern "C" {
|
|||
*/
|
||||
uint64_t Z3_API Z3_get_estimated_alloc_size(void);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif // __cplusplus
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
|
|
|
@ -23,10 +23,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name AST vectors */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Return an empty AST vector.
|
||||
|
||||
|
@ -104,10 +104,10 @@ extern "C" {
|
|||
*/
|
||||
Z3_string Z3_API Z3_ast_vector_to_string(Z3_context c, Z3_ast_vector v);
|
||||
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
|
||||
/** @name AST maps */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Return an empty mapping from AST to AST
|
||||
|
||||
|
@ -189,8 +189,8 @@ extern "C" {
|
|||
def_API('Z3_ast_map_to_string', STRING, (_in(CONTEXT), _in(AST_MAP)))
|
||||
*/
|
||||
Z3_string Z3_API Z3_ast_map_to_string(Z3_context c, Z3_ast_map m);
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -23,10 +23,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Fixedpoint facilities */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create a new fixedpoint context.
|
||||
|
||||
|
@ -373,8 +373,8 @@ extern "C" {
|
|||
|
||||
void Z3_API Z3_fixedpoint_add_constraint (Z3_context c, Z3_fixedpoint d, Z3_ast e, unsigned lvl);
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -23,10 +23,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Floating-Point Arithmetic */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create the RoundingMode sort.
|
||||
|
||||
|
@ -841,7 +841,7 @@ extern "C" {
|
|||
|
||||
|
||||
/** @name Z3-specific floating-point extensions */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Retrieves the number of bits reserved for the exponent in a FloatingPoint sort.
|
||||
|
||||
|
@ -1080,9 +1080,9 @@ extern "C" {
|
|||
def_API('Z3_mk_fpa_to_fp_int_real', AST, (_in(CONTEXT),_in(AST),_in(AST),_in(AST),_in(SORT)))
|
||||
*/
|
||||
Z3_ast Z3_API Z3_mk_fpa_to_fp_int_real(Z3_context c, Z3_ast rm, Z3_ast exp, Z3_ast sig, Z3_sort s);
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -28,10 +28,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Optimization facilities */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Create a new optimize context.
|
||||
|
||||
|
@ -368,8 +368,8 @@ extern "C" {
|
|||
Z3_model_eh model_eh);
|
||||
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -24,11 +24,11 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
|
||||
/** @name Polynomials */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/**
|
||||
\brief Return the nonzero subresultants of \c p and \c q with respect to the "variable" \c x.
|
||||
|
@ -43,8 +43,8 @@ extern "C" {
|
|||
Z3_ast_vector Z3_API Z3_polynomial_subresultants(Z3_context c, Z3_ast p, Z3_ast q, Z3_ast x);
|
||||
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -26,10 +26,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Real Closed Fields */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Delete a RCF numeral created using the RCF API.
|
||||
|
||||
|
@ -196,8 +196,8 @@ extern "C" {
|
|||
*/
|
||||
void Z3_API Z3_rcf_get_numerator_denominator(Z3_context c, Z3_rcf_num a, Z3_rcf_num * n, Z3_rcf_num * d);
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -23,10 +23,10 @@ extern "C" {
|
|||
#endif // __cplusplus
|
||||
|
||||
/** \defgroup capi C API */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
|
||||
/** @name Spacer facilities */
|
||||
/*@{*/
|
||||
/**@{*/
|
||||
/**
|
||||
\brief Pose a query against the asserted rules at the given level.
|
||||
|
||||
|
@ -132,8 +132,8 @@ extern "C" {
|
|||
Z3_ast_vector vars,
|
||||
Z3_ast body);
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
/**@}*/
|
||||
/**@}*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -1399,6 +1399,7 @@ inline bool has_labels(expr const * n) {
|
|||
class some_value_proc {
|
||||
public:
|
||||
virtual expr * operator()(sort * s) = 0;
|
||||
virtual ~some_value_proc() = default;
|
||||
};
|
||||
|
||||
// -----------------------------------
|
||||
|
|
|
@ -46,6 +46,7 @@ public:
|
|||
public:
|
||||
virtual bool operator()(func_decl* d) const { return false; }
|
||||
virtual bool operator()(sort* s) const { return false; }
|
||||
virtual ~is_declared() = default;
|
||||
};
|
||||
private:
|
||||
ast_manager& m_manager;
|
||||
|
|
|
@ -406,7 +406,7 @@ namespace datatype {
|
|||
VALIDATE_PARAM(arity == 1 && num_parameters == 1 && parameters[0].is_ast() && is_func_decl(parameters[0].get_ast()));
|
||||
VALIDATE_PARAM(u().is_datatype(domain[0]));
|
||||
VALIDATE_PARAM_PP(domain[0] == to_func_decl(parameters[0].get_ast())->get_range(), "invalid sort argument passed to recognizer");
|
||||
// blindly trust that parameter is a constructor
|
||||
VALIDATE_PARAM_PP(u().is_constructor(to_func_decl(parameters[0].get_ast())), "expecting constructor argument to recognizer");
|
||||
sort* range = m_manager->mk_bool_sort();
|
||||
func_decl_info info(m_family_id, OP_DT_IS, num_parameters, parameters);
|
||||
info.m_private_parameters = true;
|
||||
|
|
|
@ -681,6 +681,7 @@ namespace euf {
|
|||
void egraph::begin_explain() {
|
||||
SASSERT(m_todo.empty());
|
||||
m_uses_congruence = false;
|
||||
DEBUG_CODE(for (enode* n : m_nodes) SASSERT(!n->is_marked1()););
|
||||
}
|
||||
|
||||
void egraph::end_explain() {
|
||||
|
|
|
@ -102,7 +102,7 @@ expr_ref bv2fpa_converter::convert_bv2fp(sort * s, expr * sgn, expr * exp, expr
|
|||
rational exp_unbiased_q;
|
||||
exp_unbiased_q = exp_q - m_fpa_util.fm().m_powers2.m1(ebits - 1);
|
||||
|
||||
scoped_mpz sig_z(mpzm);
|
||||
scoped_mpz sig_z(mpzm);
|
||||
mpf_exp_t exp_z;
|
||||
mpzm.set(sig_z, sig_q.to_mpq().numerator());
|
||||
exp_z = mpzm.get_int64(exp_unbiased_q.to_mpq().numerator());
|
||||
|
@ -346,7 +346,7 @@ void bv2fpa_converter::convert_consts(model_core * mc, model_core * target_model
|
|||
app * a0 = to_app(val->get_arg(0));
|
||||
|
||||
expr_ref v0(m), v1(m), v2(m);
|
||||
#ifdef Z3DEBUG
|
||||
#ifdef Z3DEBUG_FPA2BV_NAMES
|
||||
app * a1 = to_app(val->get_arg(1));
|
||||
app * a2 = to_app(val->get_arg(2));
|
||||
v0 = mc->get_const_interp(a0->get_decl());
|
||||
|
@ -378,7 +378,7 @@ void bv2fpa_converter::convert_consts(model_core * mc, model_core * target_model
|
|||
|
||||
SASSERT(val->is_app_of(m_fpa_util.get_family_id(), OP_FPA_FP));
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
#ifdef Z3DEBUG_FPA2BV_NAMES
|
||||
SASSERT(to_app(val->get_arg(0))->get_decl()->get_arity() == 0);
|
||||
SASSERT(to_app(val->get_arg(1))->get_decl()->get_arity() == 0);
|
||||
SASSERT(to_app(val->get_arg(2))->get_decl()->get_arity() == 0);
|
||||
|
@ -386,9 +386,10 @@ void bv2fpa_converter::convert_consts(model_core * mc, model_core * target_model
|
|||
seen.insert(to_app(val->get_arg(1))->get_decl());
|
||||
seen.insert(to_app(val->get_arg(2))->get_decl());
|
||||
#else
|
||||
SASSERT(a->get_arg(0)->get_kind() == OP_EXTRACT);
|
||||
SASSERT(to_app(a->get_arg(0))->get_arg(0)->get_kind() == OP_EXTRACT);
|
||||
SASSERT(is_app(val->get_arg(0)));
|
||||
SASSERT(m_bv_util.is_extract(val->get_arg(0)));
|
||||
seen.insert(to_app(to_app(val->get_arg(0))->get_arg(0))->get_decl());
|
||||
|
||||
#endif
|
||||
|
||||
if (!sgn && !sig && !exp)
|
||||
|
|
|
@ -192,7 +192,7 @@ void fpa2bv_converter::mk_const(func_decl * f, expr_ref & result) {
|
|||
|
||||
app_ref sgn(m), s(m), e(m);
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
#ifdef Z3DEBUG_FPA2BV_NAMES
|
||||
std::string p("fpa2bv");
|
||||
std::string name = f->get_name().str();
|
||||
|
||||
|
@ -326,7 +326,7 @@ void fpa2bv_converter::mk_rm_const(func_decl * f, expr_ref & result) {
|
|||
|
||||
expr_ref bv3(m);
|
||||
bv3 = m.mk_fresh_const(
|
||||
#ifdef Z3DEBUG
|
||||
#ifdef Z3DEBUG_FPA2BV_NAMES
|
||||
"fpa2bv_rm"
|
||||
#else
|
||||
nullptr
|
||||
|
@ -465,7 +465,7 @@ void fpa2bv_converter::add_core(unsigned sbits, unsigned ebits,
|
|||
|
||||
SASSERT(is_well_sorted(m, big_d_sig));
|
||||
if (ebits > sbits)
|
||||
throw default_exception("there is no floating point support for division for representations with non-standard bit representations");
|
||||
throw default_exception("addition/subtract with ebits > sbits not supported");
|
||||
|
||||
|
||||
expr_ref shifted_big(m), shifted_d_sig(m), sticky_raw(m), sticky(m);
|
||||
|
@ -950,7 +950,7 @@ void fpa2bv_converter::mk_div(sort * s, expr_ref & rm, expr_ref & x, expr_ref &
|
|||
unsigned ebits = m_util.get_ebits(s);
|
||||
unsigned sbits = m_util.get_sbits(s);
|
||||
if (ebits > sbits)
|
||||
throw default_exception("there is no floating point support for division for representations with non-standard bit representations");
|
||||
throw default_exception("division with ebits > sbits not supported");
|
||||
SASSERT(ebits <= sbits);
|
||||
|
||||
expr_ref a_sgn(m), a_sig(m), a_exp(m), a_lz(m), b_sgn(m), b_sig(m), b_exp(m), b_lz(m);
|
||||
|
@ -2561,9 +2561,7 @@ void fpa2bv_converter::mk_to_fp_float(sort * to_srt, expr * rm, expr * x, expr_r
|
|||
res_sig = sig;
|
||||
|
||||
res_sig = m_bv_util.mk_zero_extend(1, res_sig); // extra zero in the front for the rounder.
|
||||
unsigned sig_sz = m_bv_util.get_bv_size(res_sig);
|
||||
(void) sig_sz;
|
||||
SASSERT(sig_sz == to_sbits + 4);
|
||||
SASSERT(m_bv_util.get_bv_size(res_sig) == to_sbits + 4);
|
||||
|
||||
expr_ref exponent_overflow(m), exponent_underflow(m);
|
||||
exponent_overflow = m.mk_false();
|
||||
|
@ -2577,7 +2575,7 @@ void fpa2bv_converter::mk_to_fp_float(sort * to_srt, expr * rm, expr * x, expr_r
|
|||
lz_ext = m_bv_util.mk_zero_extend(to_ebits - from_ebits + 2, lz);
|
||||
res_exp = m_bv_util.mk_bv_sub(res_exp, lz_ext);
|
||||
}
|
||||
else if (from_ebits > (to_ebits + 2)) {
|
||||
else if (from_ebits >= (to_ebits + 2)) {
|
||||
unsigned ebits_diff = from_ebits - (to_ebits + 2);
|
||||
|
||||
// subtract lz for subnormal numbers.
|
||||
|
@ -2617,9 +2615,6 @@ void fpa2bv_converter::mk_to_fp_float(sort * to_srt, expr * rm, expr * x, expr_r
|
|||
res_exp = m.mk_ite(ovf_cond, max_exp, res_exp);
|
||||
res_exp = m.mk_ite(udf_cond, min_exp, res_exp);
|
||||
}
|
||||
else { // from_ebits == (to_ebits + 2)
|
||||
res_exp = m_bv_util.mk_bv_sub(exp, lz);
|
||||
}
|
||||
|
||||
SASSERT(m_bv_util.get_bv_size(res_exp) == to_ebits + 2);
|
||||
SASSERT(is_well_sorted(m, res_exp));
|
||||
|
@ -3839,7 +3834,7 @@ void fpa2bv_converter::mk_rounding_mode(decl_kind k, expr_ref & result)
|
|||
}
|
||||
|
||||
void fpa2bv_converter::dbg_decouple(const char * prefix, expr_ref & e) {
|
||||
#ifdef Z3DEBUG
|
||||
#ifdef Z3DEBUG_FPA2BV_NAMES
|
||||
return;
|
||||
// CMW: This works only for quantifier-free formulas.
|
||||
if (m_util.is_fp(e)) {
|
||||
|
|
|
@ -61,7 +61,7 @@ protected:
|
|||
public:
|
||||
|
||||
fpa2bv_converter(ast_manager & m);
|
||||
~fpa2bv_converter();
|
||||
virtual ~fpa2bv_converter();
|
||||
|
||||
fpa_util & fu() { return m_util; }
|
||||
bv_util & bu() { return m_bv_util; }
|
||||
|
|
|
@ -207,7 +207,7 @@ sort * fpa_decl_plugin::mk_float_sort(unsigned ebits, unsigned sbits) {
|
|||
m_manager->raise_exception("minimum number of exponent bits is 2");
|
||||
if (ebits > 63)
|
||||
m_manager->raise_exception("maximum number of exponent bits is 63");
|
||||
|
||||
|
||||
parameter p1(ebits), p2(sbits);
|
||||
parameter ps[2] = { p1, p2 };
|
||||
sort_size sz;
|
||||
|
@ -929,16 +929,22 @@ bool fpa_decl_plugin::is_unique_value(app* e) const {
|
|||
case OP_FPA_RM_TOWARD_NEGATIVE:
|
||||
case OP_FPA_RM_TOWARD_ZERO:
|
||||
return true;
|
||||
case OP_FPA_PLUS_INF: /* No; +oo == fp(#b0 #b11 #b00) */
|
||||
case OP_FPA_MINUS_INF: /* No; -oo == fp #b1 #b11 #b00) */
|
||||
case OP_FPA_PLUS_ZERO: /* No; +zero == fp #b0 #b00 #b000) */
|
||||
case OP_FPA_MINUS_ZERO: /* No; -zero == fp #b1 #b00 #b000) */
|
||||
case OP_FPA_PLUS_INF: /* No; +oo == (fp #b0 #b11 #b00) */
|
||||
case OP_FPA_MINUS_INF: /* No; -oo == (fp #b1 #b11 #b00) */
|
||||
case OP_FPA_PLUS_ZERO: /* No; +zero == (fp #b0 #b00 #b000) */
|
||||
case OP_FPA_MINUS_ZERO: /* No; -zero == (fp #b1 #b00 #b000) */
|
||||
case OP_FPA_NAN: /* No; NaN == (fp #b0 #b111111 #b0000001) */
|
||||
case OP_FPA_NUM: /* see NaN */
|
||||
return false;
|
||||
case OP_FPA_FP:
|
||||
return false; /*No; generally not because of clashes with +oo, -oo, +zero, -zero, NaN */
|
||||
// a refinement would require to return true only if there is no clash with these cases.
|
||||
case OP_FPA_FP: {
|
||||
if (m_manager->is_value(e->get_arg(0)) &&
|
||||
m_manager->is_value(e->get_arg(1)) &&
|
||||
m_manager->is_value(e->get_arg(2))) {
|
||||
bv_util bu(*m_manager);
|
||||
return !bu.is_allone(e->get_arg(1)) && !bu.is_zero(e->get_arg(1));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -23,6 +23,7 @@ Revision History:
|
|||
|
||||
class is_variable_proc {
|
||||
public:
|
||||
virtual ~is_variable_proc() = default;
|
||||
virtual bool operator()(const expr* e) const = 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -23,6 +23,7 @@ Notes:
|
|||
|
||||
class expr_predicate {
|
||||
public:
|
||||
virtual ~expr_predicate() = default;
|
||||
virtual bool operator()(expr * t) = 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -37,6 +37,8 @@ public:
|
|||
m_ignore_quantifiers(ignore_quantifiers) {
|
||||
}
|
||||
|
||||
virtual ~num_occurs() = default;
|
||||
|
||||
void validate();
|
||||
virtual void reset() { m_num_occurs.reset(); }
|
||||
|
||||
|
|
|
@ -93,6 +93,7 @@ namespace recfun {
|
|||
// closure for computing whether a `rhs` expression is immediate
|
||||
struct is_immediate_pred {
|
||||
virtual bool operator()(expr * rhs) = 0;
|
||||
virtual ~is_immediate_pred() = default;
|
||||
};
|
||||
|
||||
class def {
|
||||
|
|
|
@ -703,8 +703,60 @@ br_status array_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result)
|
|||
result = m().update_quantifier(lam, quantifier_kind::forall_k, e);
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
expr_ref lh1(m()), rh1(m());
|
||||
|
||||
expr_ref_vector fmls(m());
|
||||
|
||||
|
||||
auto has_large_domain = [&](sort* s, unsigned num_stores) {
|
||||
unsigned sz = get_array_arity(s);
|
||||
uint64_t dsz = 1;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
sort* d = get_array_domain(s, i);
|
||||
if (d->is_infinite() || d->is_very_big())
|
||||
return true;
|
||||
auto const& n = d->get_num_elements();
|
||||
if (n.size() > num_stores)
|
||||
return true;
|
||||
dsz *= n.size();
|
||||
if (dsz > num_stores)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
|
||||
if (m_expand_store_eq) {
|
||||
expr* lhs1 = lhs;
|
||||
expr* rhs1 = rhs;
|
||||
unsigned num_lhs = 0, num_rhs = 0;
|
||||
while (m_util.is_store(lhs1)) {
|
||||
lhs1 = to_app(lhs1)->get_arg(0);
|
||||
++num_lhs;
|
||||
}
|
||||
while (m_util.is_store(rhs1)) {
|
||||
rhs1 = to_app(rhs1)->get_arg(0);
|
||||
++num_rhs;
|
||||
}
|
||||
if (lhs1 == rhs1) {
|
||||
mk_eq(lhs, lhs, rhs, fmls);
|
||||
mk_eq(rhs, lhs, rhs, fmls);
|
||||
result = m().mk_and(fmls);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
if (m_util.is_const(lhs1, v) && m_util.is_const(rhs1, w) &&
|
||||
has_large_domain(lhs->get_sort(), std::max(num_lhs, num_rhs))) {
|
||||
mk_eq(lhs, lhs, rhs, fmls);
|
||||
mk_eq(rhs, lhs, rhs, fmls);
|
||||
fmls.push_back(m().mk_eq(v, w));
|
||||
result = m().mk_and(fmls);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (m_expand_nested_stores) {
|
||||
expr_ref lh1(m()), rh1(m());
|
||||
if (is_expandable_store(lhs)) {
|
||||
lh1 = expand_store(lhs);
|
||||
}
|
||||
|
@ -719,10 +771,6 @@ br_status array_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result)
|
|||
}
|
||||
}
|
||||
|
||||
if (!m_expand_store_eq) {
|
||||
return BR_FAILED;
|
||||
}
|
||||
expr_ref_vector fmls(m());
|
||||
|
||||
#if 0
|
||||
// lambda friendly version of array equality rewriting.
|
||||
|
@ -744,46 +792,5 @@ br_status array_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result)
|
|||
}
|
||||
#endif
|
||||
|
||||
expr* lhs1 = lhs;
|
||||
unsigned num_lhs = 0, num_rhs = 0;
|
||||
while (m_util.is_store(lhs1)) {
|
||||
lhs1 = to_app(lhs1)->get_arg(0);
|
||||
++num_lhs;
|
||||
}
|
||||
expr* rhs1 = rhs;
|
||||
while (m_util.is_store(rhs1)) {
|
||||
rhs1 = to_app(rhs1)->get_arg(0);
|
||||
++num_rhs;
|
||||
}
|
||||
if (lhs1 == rhs1) {
|
||||
mk_eq(lhs, lhs, rhs, fmls);
|
||||
mk_eq(rhs, lhs, rhs, fmls);
|
||||
result = m().mk_and(fmls);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
auto has_large_domain = [&](sort* s, unsigned num_stores) {
|
||||
unsigned sz = get_array_arity(s);
|
||||
uint64_t dsz = 1;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
sort* d = get_array_domain(s, i);
|
||||
if (d->is_infinite() || d->is_very_big())
|
||||
return true;
|
||||
auto const& n = d->get_num_elements();
|
||||
if (n.size() > num_stores)
|
||||
return true;
|
||||
dsz *= n.size();
|
||||
if (dsz > num_stores)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
if (m_util.is_const(lhs1, v) && m_util.is_const(rhs1, w) &&
|
||||
has_large_domain(lhs->get_sort(), std::max(num_lhs, num_rhs))) {
|
||||
mk_eq(lhs, lhs, rhs, fmls);
|
||||
mk_eq(rhs, lhs, rhs, fmls);
|
||||
fmls.push_back(m().mk_eq(v, w));
|
||||
result = m().mk_and(fmls);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
|
|
@ -33,6 +33,7 @@ struct push_app_ite_cfg : public default_rewriter_cfg {
|
|||
virtual bool is_target(func_decl * decl, unsigned num_args, expr * const * args);
|
||||
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr);
|
||||
push_app_ite_cfg(ast_manager& m): m(m), m_conservative(true) {}
|
||||
virtual ~push_app_ite_cfg() = default;
|
||||
void set_conservative(bool c) { m_conservative = c; }
|
||||
bool rewrite_patterns() const { return false; }
|
||||
};
|
||||
|
|
|
@ -22,10 +22,9 @@ Author:
|
|||
|
||||
br_status recfun_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
if (m_rec.is_defined(f) && num_args > 0) {
|
||||
for (unsigned i = 0; i < num_args; ++i) {
|
||||
for (unsigned i = 0; i < num_args; ++i)
|
||||
if (!m.is_value(args[i]))
|
||||
return BR_FAILED;
|
||||
}
|
||||
if (!m_rec.has_def(f))
|
||||
return BR_FAILED;
|
||||
recfun::def const& d = m_rec.get_def(f);
|
||||
|
@ -35,9 +34,8 @@ br_status recfun_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr *
|
|||
result = sub(d.get_rhs(), num_args, args);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
else {
|
||||
else
|
||||
return BR_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -850,7 +850,7 @@ namespace seq {
|
|||
add_clause(~eq, ge10k);
|
||||
|
||||
for (unsigned i = 0; i < k; ++i) {
|
||||
expr* ch = seq.str.mk_nth_i(ubvs, i);
|
||||
expr* ch = seq.str.mk_nth_c(ubvs, i);
|
||||
is_digit = seq.mk_char_is_digit(ch);
|
||||
add_clause(~ge_len, is_digit);
|
||||
}
|
||||
|
@ -1142,8 +1142,8 @@ namespace seq {
|
|||
|
||||
/**
|
||||
~contains(a, b) => ~prefix(b, a)
|
||||
~contains(a, b) => ~contains(tail(a), b) or a = empty
|
||||
~contains(a, b) & a = empty => b != empty
|
||||
~contains(a, b) => ~contains(tail(a), b)
|
||||
a = empty => tail(a) = empty
|
||||
~(a = empty) => a = head + tail
|
||||
*/
|
||||
void axioms::unroll_not_contains(expr* e) {
|
||||
|
@ -1165,7 +1165,7 @@ namespace seq {
|
|||
expr_ref bound_tracker = m_sk.mk_length_limit(s, k);
|
||||
expr* s0 = nullptr;
|
||||
if (seq.str.is_stoi(s, s0))
|
||||
s = s0;
|
||||
s = s0;
|
||||
add_clause(~bound_tracker, mk_le(mk_len(s), k));
|
||||
return bound_tracker;
|
||||
}
|
||||
|
|
|
@ -15,6 +15,7 @@ Author:
|
|||
|
||||
--*/
|
||||
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/rewriter/seq_eq_solver.h"
|
||||
#include "ast/bv_decl_plugin.h"
|
||||
|
||||
|
@ -675,7 +676,7 @@ namespace seq {
|
|||
if (rs.size() > i) {
|
||||
unsigned diff = rs.size() - (i + 1);
|
||||
for (unsigned j = 0; same && j < i; ++j)
|
||||
same = !m.are_distinct(ls[j], rs[diff + j]);
|
||||
same = !m.are_distinct(ls[j], rs[diff + j]);
|
||||
}
|
||||
// ls = x ++ rs ++ y, diff = |x|
|
||||
else {
|
||||
|
@ -704,8 +705,9 @@ namespace seq {
|
|||
bool same = true;
|
||||
// ls = x ++ rs' && rs = rs' ++ y, diff = |x|
|
||||
if (rs.size() > i) {
|
||||
for (unsigned j = 1; same && j <= i; ++j)
|
||||
same = !m.are_distinct(ls[diff + j], rs[j]);
|
||||
for (unsigned j = 1; same && j <= i; ++j) {
|
||||
same = !m.are_distinct(ls[diff + j], rs[j]);
|
||||
}
|
||||
}
|
||||
// ls = x ++ rs ++ y, diff = |x|
|
||||
else {
|
||||
|
@ -715,6 +717,7 @@ namespace seq {
|
|||
if (same)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -39,6 +39,7 @@ namespace seq {
|
|||
|
||||
class eq_solver_context {
|
||||
public:
|
||||
virtual ~eq_solver_context() = default;
|
||||
virtual void add_consequence(bool uses_dep, expr_ref_vector const& clause) = 0;
|
||||
virtual void add_solution(expr* var, expr* term) = 0;
|
||||
virtual expr* expr2rep(expr* e) = 0;
|
||||
|
|
|
@ -859,13 +859,12 @@ br_status seq_rewriter::mk_seq_length(expr* a, expr_ref& result) {
|
|||
// elif offset >= len(s) then 0
|
||||
// elif offset + length > len(s) then len(s) - offset
|
||||
// else length
|
||||
expr_ref zero(m_autil.mk_int(0), m());
|
||||
result = length;
|
||||
result = m().mk_ite(m_autil.mk_gt(m_autil.mk_add(offset, length), len_s),
|
||||
m_autil.mk_sub(len_s, offset),
|
||||
result);
|
||||
result = m().mk_ite(m().mk_or(m_autil.mk_le(len_s, offset), m_autil.mk_le(length, zero), m_autil.mk_lt(offset, zero)),
|
||||
zero,
|
||||
result = m().mk_ite(m().mk_or(m_autil.mk_le(len_s, offset), m_autil.mk_le(length, zero()), m_autil.mk_lt(offset, zero())),
|
||||
zero(),
|
||||
result);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
@ -883,52 +882,75 @@ expr_ref seq_rewriter::mk_seq_first(expr* t) {
|
|||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_nth_i(s, j);
|
||||
else
|
||||
result = str().mk_nth_i(t, m_autil.mk_int(0));
|
||||
result = str().mk_nth_c(t, 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_sub(expr* a, rational const& n) {
|
||||
expr* a1, *a2;
|
||||
SASSERT(n.is_int());
|
||||
rational k;
|
||||
if (m_autil.is_sub(a, a1, a2) && m_autil.is_numeral(a2, k))
|
||||
return expr_ref(m_autil.mk_sub(a1, m_autil.mk_int(k + n)), m());
|
||||
if (m_autil.is_add(a, a1, a2) && m_autil.is_numeral(a2, k))
|
||||
return expr_ref(m_autil.mk_add(a1, m_autil.mk_int(k - n)), m());
|
||||
if (m_autil.is_add(a, a1, a2) && m_autil.is_numeral(a1, k))
|
||||
return expr_ref(m_autil.mk_add(a2, m_autil.mk_int(k - n)), m());
|
||||
return expr_ref(m_autil.mk_sub(a, m_autil.mk_int(n)), m());
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* In general constructs substring(t,1,|t|-1) but if t = substring(s,j,k) then simplifies to substring(s,j+1,k-1)
|
||||
* This method assumes that |t| > 0.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_seq_rest(expr* t) {
|
||||
expr_ref result(m());
|
||||
expr* s, * j, * k;
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_substr(s, m_autil.mk_add(j, one), m_autil.mk_sub(k, one));
|
||||
else
|
||||
result = str().mk_substr(t, one, m_autil.mk_sub(str().mk_length(t), one));
|
||||
expr* s, * j, * k;
|
||||
rational jv;
|
||||
if (str().is_extract(t, s, j, k) && m_autil.is_numeral(j, jv) && jv >= 0)
|
||||
result = str().mk_substr(s, m_autil.mk_int(jv + 1), mk_sub(k, 1));
|
||||
else
|
||||
result = str().mk_substr(t, one(), mk_sub(str().mk_length(t), 1));
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* In general constructs nth(t,|t|-1) but if t = substring(s,j,k) then simplifies to nth(s,j+k-1)
|
||||
* In general constructs nth(t,|t|-1) but if t = substring(s,j,|s|-j) j >= 0, then simplifies to nth(s,|s|-1)
|
||||
* This method assumes that |t| > 0.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_seq_last(expr* t) {
|
||||
expr_ref result(m());
|
||||
expr* s, * j, * k;
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_nth_i(s, m_autil.mk_sub(m_autil.mk_add(j, k), one));
|
||||
expr* s, * j, * k, * s_, * len_s;
|
||||
rational jv, i;
|
||||
if (str().is_extract(t, s, j, k) &&
|
||||
m_autil.is_numeral(j, jv) && jv >= 0 &&
|
||||
str().is_len_sub(k, len_s, s_, i) &&
|
||||
s == s_ && jv == i) {
|
||||
expr_ref lastpos = mk_sub(len_s, 1);
|
||||
result = str().mk_nth_i(s, lastpos);
|
||||
}
|
||||
else
|
||||
result = str().mk_nth_i(t, m_autil.mk_sub(str().mk_length(t), one));
|
||||
result = str().mk_nth_i(t, m_autil.mk_sub(str().mk_length(t), one()));
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* In general constructs substring(t,0,|t|-1) but if t = substring(s,j,k) then simplifies to substring(s,j,k-1)
|
||||
* This method assumes that |t| > 0 holds.
|
||||
* In general constructs substring(t,0,|t|-1) but if t = substring(s,0,k) then simplifies to substring(s,0,k-1)
|
||||
* This method assumes that |t| > 0, thus, if t = substring(s,0,k) then k > 0 so substring(s,0,k-1) is correct.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_seq_butlast(expr* t) {
|
||||
expr_ref result(m());
|
||||
expr* s, * j, * k;
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_substr(s, j, m_autil.mk_sub(k, one));
|
||||
rational v;
|
||||
if (str().is_extract(t, s, j, k) && m_autil.is_numeral(j, v) && v.is_zero()) {
|
||||
expr_ref_vector k_min_1(m());
|
||||
k_min_1.push_back(k);
|
||||
k_min_1.push_back(minus_one());
|
||||
result = str().mk_substr(s, j, m_autil.mk_add_simplify(k_min_1));
|
||||
}
|
||||
else
|
||||
result = str().mk_substr(t, m_autil.mk_int(0), m_autil.mk_sub(str().mk_length(t), one));
|
||||
result = str().mk_substr(t, zero(), m_autil.mk_sub(str().mk_length(t), one()));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1582,23 +1604,33 @@ br_status seq_rewriter::mk_seq_nth(expr* a, expr* b, expr_ref& result) {
|
|||
result = s;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (str().is_extract(a, s, p, len) && m_autil.is_numeral(p, pos1)) {
|
||||
if (str().is_extract(a, s, p, len) && m_autil.is_numeral(p, pos1) && pos1 > 0) {
|
||||
expr_ref_vector lens(m());
|
||||
rational pos2;
|
||||
/*
|
||||
* nth(s[k, |s| - k], b) =
|
||||
* b < 0 -> nth_u(a, b)
|
||||
* b + k < |s| -> nth(s, b + k)
|
||||
* k >= |s| -> nth_u(empty, b)
|
||||
* k < |s| <= b + k -> nth_u(a, b)
|
||||
*/
|
||||
if (get_lengths(len, lens, pos2) && (pos1 == -pos2) && (lens.size() == 1) && (lens.get(0) == s)) {
|
||||
expr_ref idx(m_autil.mk_int(pos1), m());
|
||||
idx = m_autil.mk_add(b, idx);
|
||||
expr* es[2] = { s, idx };
|
||||
result = m().mk_app(m_util.get_family_id(), OP_SEQ_NTH, 2, es);
|
||||
expr_ref k(m_autil.mk_int(pos1), m());
|
||||
expr_ref case1(str().mk_nth_i(s, m_autil.mk_add(b, k)), m());
|
||||
expr_ref case2(str().mk_nth_u(str().mk_empty(s->get_sort()), b), m());
|
||||
expr_ref case3(str().mk_nth_u(a, b), m());
|
||||
result = case3;
|
||||
result = m().mk_ite(m_autil.mk_lt(m_autil.mk_add(k, b), str().mk_length(s)), case1, result);
|
||||
result = m().mk_ite(m_autil.mk_ge(k, str().mk_length(s)), case2, result);
|
||||
result = m().mk_ite(m_autil.mk_lt(b, zero()), case3, result);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
}
|
||||
|
||||
expr* es[2] = { a, b};
|
||||
expr* la = str().mk_length(a);
|
||||
result = m().mk_ite(m().mk_and(m_autil.mk_ge(b, zero()), m().mk_not(m_autil.mk_le(la, b))),
|
||||
m().mk_app(m_util.get_family_id(), OP_SEQ_NTH_I, 2, es),
|
||||
m().mk_app(m_util.get_family_id(), OP_SEQ_NTH_U, 2, es));
|
||||
str().mk_nth_i(a, b),
|
||||
str().mk_nth_u(a, b));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
|
@ -1678,7 +1710,7 @@ br_status seq_rewriter::mk_seq_index(expr* a, expr* b, expr* c, expr_ref& result
|
|||
return BR_DONE;
|
||||
}
|
||||
if (m_autil.is_numeral(c, r) && r.is_neg()) {
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
|
@ -1688,10 +1720,10 @@ br_status seq_rewriter::mk_seq_index(expr* a, expr* b, expr* c, expr_ref& result
|
|||
}
|
||||
|
||||
if (str().is_empty(b)) {
|
||||
result = m().mk_ite(m().mk_and(m_autil.mk_le(m_autil.mk_int(0), c),
|
||||
result = m().mk_ite(m().mk_and(m_autil.mk_le(zero(), c),
|
||||
m_autil.mk_le(c, str().mk_length(a))),
|
||||
c,
|
||||
m_autil.mk_int(-1));
|
||||
minus_one());
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
|
||||
|
@ -2307,7 +2339,7 @@ br_status seq_rewriter::mk_str_to_code(expr* a, expr_ref& result) {
|
|||
if (s.length() == 1)
|
||||
result = m_autil.mk_int(s[0]);
|
||||
else
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
return BR_DONE;
|
||||
}
|
||||
return BR_FAILED;
|
||||
|
@ -2448,7 +2480,7 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
result = m_autil.mk_int(ch - '0');
|
||||
}
|
||||
else {
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
}
|
||||
return BR_DONE;
|
||||
}
|
||||
|
@ -2456,7 +2488,7 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
expr_ref_vector as(m());
|
||||
str().get_concat_units(a, as);
|
||||
if (as.empty()) {
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
return BR_DONE;
|
||||
}
|
||||
if (str().is_unit(as.back())) {
|
||||
|
@ -2466,11 +2498,11 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
expr_ref tail(str().mk_stoi(as.back()), m());
|
||||
expr_ref head(str().mk_concat(as.size() - 1, as.data(), a->get_sort()), m());
|
||||
expr_ref stoi_head(str().mk_stoi(head), m());
|
||||
result = m().mk_ite(m_autil.mk_ge(stoi_head, m_autil.mk_int(0)),
|
||||
result = m().mk_ite(m_autil.mk_ge(stoi_head, zero()),
|
||||
m_autil.mk_add(m_autil.mk_mul(m_autil.mk_int(10), stoi_head), tail),
|
||||
m_autil.mk_int(-1));
|
||||
minus_one());
|
||||
|
||||
result = m().mk_ite(m_autil.mk_ge(tail, m_autil.mk_int(0)),
|
||||
result = m().mk_ite(m_autil.mk_ge(tail, zero()),
|
||||
result,
|
||||
tail);
|
||||
result = m().mk_ite(str().mk_is_empty(head),
|
||||
|
@ -2481,7 +2513,7 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
if (str().is_unit(as.get(0), u) && m_util.is_const_char(u, ch) && '0' == ch) {
|
||||
result = str().mk_concat(as.size() - 1, as.data() + 1, as[0]->get_sort());
|
||||
result = m().mk_ite(str().mk_is_empty(result),
|
||||
m_autil.mk_int(0),
|
||||
zero(),
|
||||
str().mk_stoi(result));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
@ -2573,7 +2605,7 @@ bool seq_rewriter::is_sequence(expr* e, expr_ref_vector& seq) {
|
|||
}
|
||||
|
||||
/*
|
||||
s = head + tail where |head| = 1
|
||||
s = [head] + tail where head is the first element of s
|
||||
*/
|
||||
bool seq_rewriter::get_head_tail(expr* s, expr_ref& head, expr_ref& tail) {
|
||||
expr* h = nullptr, *t = nullptr;
|
||||
|
@ -2670,10 +2702,10 @@ expr_ref seq_rewriter::re_predicate(expr* cond, sort* seq_sort) {
|
|||
expr_ref seq_rewriter::is_nullable(expr* r) {
|
||||
STRACE("seq_verbose", tout << "is_nullable: "
|
||||
<< mk_pp(r, m()) << std::endl;);
|
||||
expr_ref result(m_op_cache.find(_OP_RE_IS_NULLABLE, r, nullptr), m());
|
||||
expr_ref result(m_op_cache.find(_OP_RE_IS_NULLABLE, r, nullptr, nullptr), m());
|
||||
if (!result) {
|
||||
result = is_nullable_rec(r);
|
||||
m_op_cache.insert(_OP_RE_IS_NULLABLE, r, nullptr, result);
|
||||
m_op_cache.insert(_OP_RE_IS_NULLABLE, r, nullptr, nullptr, result);
|
||||
}
|
||||
STRACE("seq_verbose", tout << "is_nullable result: "
|
||||
<< result << std::endl;);
|
||||
|
@ -2691,7 +2723,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
re().is_intersection(r, r1, r2)) {
|
||||
m_br.mk_and(is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (re().is_union(r, r1, r2)) {
|
||||
else if (re().is_union(r, r1, r2) || re().is_antimorov_union(r, r1, r2)) {
|
||||
m_br.mk_or(is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (re().is_diff(r, r1, r2)) {
|
||||
|
@ -2701,6 +2733,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
else if (re().is_star(r) ||
|
||||
re().is_opt(r) ||
|
||||
re().is_full_seq(r) ||
|
||||
re().is_epsilon(r) ||
|
||||
(re().is_loop(r, r1, lo) && lo == 0) ||
|
||||
(re().is_loop(r, r1, lo, hi) && lo == 0)) {
|
||||
result = m().mk_true();
|
||||
|
@ -2724,7 +2757,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
result = is_nullable(r1);
|
||||
}
|
||||
else if (m().is_ite(r, cond, r1, r2)) {
|
||||
result = m().mk_ite(cond, is_nullable(r1), is_nullable(r2));
|
||||
m_br.mk_ite(cond, is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (m_util.is_re(r, seq_sort)) {
|
||||
result = is_nullable_symbolic_regex(r, seq_sort);
|
||||
|
@ -2881,7 +2914,8 @@ br_status seq_rewriter::mk_re_reverse(expr* r, expr_ref& result) {
|
|||
br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) {
|
||||
result = mk_derivative(ele, r);
|
||||
// TBD: we may even declare BR_DONE here and potentially miss some simplifications
|
||||
return re().is_derivative(result) ? BR_DONE : BR_REWRITE_FULL;
|
||||
// return re().is_derivative(result) ? BR_DONE : BR_REWRITE_FULL;
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2976,29 +3010,406 @@ bool seq_rewriter::check_deriv_normal_form(expr* r, int level) {
|
|||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
Memoized, recursive implementation of the symbolic derivative such that
|
||||
the result is in normal form.
|
||||
expr_ref seq_rewriter::mk_derivative(expr* r) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(r, seq_sort));
|
||||
VERIFY(m_util.is_seq(seq_sort, ele_sort));
|
||||
expr_ref v(m().mk_var(0, ele_sort), m());
|
||||
return mk_antimirov_deriv(v, r, m().mk_true());
|
||||
}
|
||||
|
||||
Functions without _rec are memoized wrappers, which call the _rec
|
||||
version if lookup fails.
|
||||
|
||||
The main logic is in mk_der_op_rec for combining normal forms.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_derivative(expr* ele, expr* r) {
|
||||
STRACE("seq_verbose", tout << "derivative: " << mk_pp(ele, m())
|
||||
<< "," << mk_pp(r, m()) << std::endl;);
|
||||
expr_ref result(m_op_cache.find(OP_RE_DERIVATIVE, ele, r), m());
|
||||
return mk_antimirov_deriv(ele, r, m().mk_true());
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv(expr* e, expr* r, expr* path) {
|
||||
// Ensure references are owned
|
||||
expr_ref _e(e, m()), _path(path, m()), _r(r, m());
|
||||
expr_ref result(m_op_cache.find(OP_RE_DERIVATIVE, e, r, path), m());
|
||||
if (!result) {
|
||||
result = mk_derivative_rec(ele, r);
|
||||
m_op_cache.insert(OP_RE_DERIVATIVE, ele, r, result);
|
||||
mk_antimirov_deriv_rec(e, r, path, result);
|
||||
m_op_cache.insert(OP_RE_DERIVATIVE, e, r, path, result);
|
||||
STRACE("seq_regex", tout << "D(" << mk_pp(e, m()) << "," << mk_pp(r, m()) << "," << mk_pp(path, m()) << ")" << std::endl;);
|
||||
STRACE("seq_regex", tout << "= " << mk_pp(result, m()) << std::endl;);
|
||||
}
|
||||
STRACE("seq_verbose", tout << "derivative result: "
|
||||
<< mk_pp(result, m()) << std::endl;);
|
||||
CASSERT("seq_regex", check_deriv_normal_form(r));
|
||||
return result;
|
||||
}
|
||||
|
||||
void seq_rewriter::mk_antimirov_deriv_rec(expr* e, expr* r, expr* path, expr_ref& result) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(r, seq_sort));
|
||||
VERIFY(m_util.is_seq(seq_sort, ele_sort));
|
||||
SASSERT(ele_sort == e->get_sort());
|
||||
expr* r1 = nullptr, * r2 = nullptr, * c = nullptr;
|
||||
expr_ref c1(m());
|
||||
expr_ref c2(m());
|
||||
auto nothing = [&]() { return expr_ref(re().mk_empty(r->get_sort()), m()); };
|
||||
auto epsilon = [&]() { return expr_ref(re().mk_epsilon(seq_sort), m()); };
|
||||
auto dotstar = [&]() { return expr_ref(re().mk_full_seq(r->get_sort()), m()); };
|
||||
unsigned lo = 0, hi = 0;
|
||||
if (re().is_empty(r) || re().is_epsilon(r))
|
||||
// D(e,[]) = D(e,()) = []
|
||||
result = nothing();
|
||||
else if (re().is_full_seq(r) || re().is_dot_plus(r))
|
||||
// D(e,.*) = D(e,.+) = .*
|
||||
result = dotstar();
|
||||
else if (re().is_full_char(r))
|
||||
// D(e,.) = ()
|
||||
result = epsilon();
|
||||
else if (re().is_to_re(r, r1)) {
|
||||
expr_ref h(m());
|
||||
expr_ref t(m());
|
||||
// here r1 is a sequence
|
||||
if (get_head_tail(r1, h, t)) {
|
||||
if (eq_char(e, h))
|
||||
result = re().mk_to_re(t);
|
||||
else if (neq_char(e, h))
|
||||
result = nothing();
|
||||
else
|
||||
result = re().mk_ite_simplify(m().mk_eq(e, h), re().mk_to_re(t), nothing());
|
||||
}
|
||||
else {
|
||||
// observe that the precondition |r1|>0 is is implied by c1 for use of mk_seq_first
|
||||
m_br.mk_and(m().mk_not(m().mk_eq(r1, str().mk_empty(seq_sort))), m().mk_eq(mk_seq_first(r1), e), c1);
|
||||
m_br.mk_and(path, c1, c2);
|
||||
if (m().is_false(c2))
|
||||
result = nothing();
|
||||
else
|
||||
// observe that the precondition |r1|>0 is implied by c1 for use of mk_seq_rest
|
||||
result = m().mk_ite(c1, re().mk_to_re(mk_seq_rest(r1)), nothing());
|
||||
}
|
||||
}
|
||||
else if (re().is_reverse(r, r2))
|
||||
if (re().is_to_re(r2, r1)) {
|
||||
// here r1 is a sequence
|
||||
// observe that the precondition |r1|>0 of mk_seq_last is implied by c1
|
||||
m_br.mk_and(m().mk_not(m().mk_eq(r1, str().mk_empty(seq_sort))), m().mk_eq(mk_seq_last(r1), e), c1);
|
||||
m_br.mk_and(path, c1, c2);
|
||||
if (m().is_false(c2))
|
||||
result = nothing();
|
||||
else
|
||||
// observe that the precondition |r1|>0 of mk_seq_rest is implied by c1
|
||||
result = re().mk_ite_simplify(c1, re().mk_reverse(re().mk_to_re(mk_seq_butlast(r1))), nothing());
|
||||
}
|
||||
else {
|
||||
result = mk_regex_reverse(r2);
|
||||
if (result.get() == r)
|
||||
//r2 is an uninterpreted regex that is stuck
|
||||
//for example if r = (re.reverse R) where R is a regex variable then
|
||||
//here result.get() == r
|
||||
result = re().mk_derivative(e, result);
|
||||
else
|
||||
result = mk_antimirov_deriv(e, result, path);
|
||||
}
|
||||
else if (re().is_concat(r, r1, r2)) {
|
||||
expr_ref r1nullable(is_nullable(r1), m());
|
||||
c1 = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), r2);
|
||||
expr_ref r1nullable_and_path(m());
|
||||
m_br.mk_and(r1nullable, path, r1nullable_and_path);
|
||||
if (m().is_false(r1nullable_and_path))
|
||||
// D(e,r1)r2
|
||||
result = c1;
|
||||
else
|
||||
// D(e,r1)r2|(ite (r1nullable) (D(e,r2)) [])
|
||||
// observe that (mk_ite_simplify(true, D(e,r2), []) = D(e,r2)
|
||||
result = mk_antimirov_deriv_union(c1, re().mk_ite_simplify(r1nullable, mk_antimirov_deriv(e, r2, path), nothing()));
|
||||
}
|
||||
else if (m().is_ite(r, c, r1, r2)) {
|
||||
c1 = simplify_path(m().mk_and(c, path));
|
||||
c2 = simplify_path(m().mk_and(m().mk_not(c), path));
|
||||
if (m().is_false(c1))
|
||||
result = mk_antimirov_deriv(e, r2, c2);
|
||||
else if (m().is_false(c2))
|
||||
result = mk_antimirov_deriv(e, r1, c1);
|
||||
else
|
||||
result = re().mk_ite_simplify(c, mk_antimirov_deriv(e, r1, c1), mk_antimirov_deriv(e, r2, c2));
|
||||
}
|
||||
else if (re().is_range(r, r1, r2)) {
|
||||
expr_ref range(m());
|
||||
expr_ref psi(m().mk_false(), m());
|
||||
if (str().is_unit_string(r1, c1) && str().is_unit_string(r2, c2)) {
|
||||
SASSERT(u().is_char(c1));
|
||||
SASSERT(u().is_char(c2));
|
||||
// case: c1 <= e <= c2
|
||||
range = simplify_path(m().mk_and(u().mk_le(c1, e), u().mk_le(e, c2)));
|
||||
psi = simplify_path(m().mk_and(path, range));
|
||||
}
|
||||
else if (!str().is_string(r1) && str().is_unit_string(r2, c2)) {
|
||||
SASSERT(u().is_char(c2));
|
||||
// r1 nonground: |r1|=1 & r1[0] <= e <= c2
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
expr_ref zero(m_autil.mk_int(0), m());
|
||||
expr_ref r1_length_eq_one(m().mk_eq(str().mk_length(r1), one), m());
|
||||
expr_ref r1_0(str().mk_nth_i(r1, zero), m());
|
||||
range = simplify_path(m().mk_and(r1_length_eq_one, m().mk_and(u().mk_le(r1_0, e), u().mk_le(e, c2))));
|
||||
psi = simplify_path(m().mk_and(path, range));
|
||||
}
|
||||
else if (!str().is_string(r2) && str().is_unit_string(r1, c1)) {
|
||||
SASSERT(u().is_char(c1));
|
||||
// r2 nonground: |r2|=1 & c1 <= e <= r2_0
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
expr_ref zero(m_autil.mk_int(0), m());
|
||||
expr_ref r2_length_eq_one(m().mk_eq(str().mk_length(r2), one), m());
|
||||
expr_ref r2_0(str().mk_nth_i(r2, zero), m());
|
||||
range = simplify_path(m().mk_and(r2_length_eq_one, m().mk_and(u().mk_le(c1, e), u().mk_le(e, r2_0))));
|
||||
psi = simplify_path(m().mk_and(path, range));
|
||||
}
|
||||
else if (!str().is_string(r1) && !str().is_string(r2)) {
|
||||
// both r1 and r2 nonground: |r1|=1 & |r2|=1 & r1[0] <= e <= r2[0]
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
expr_ref zero(m_autil.mk_int(0), m());
|
||||
expr_ref r1_length_eq_one(m().mk_eq(str().mk_length(r1), one), m());
|
||||
expr_ref r1_0(str().mk_nth_i(r1, zero), m());
|
||||
expr_ref r2_length_eq_one(m().mk_eq(str().mk_length(r2), one), m());
|
||||
expr_ref r2_0(str().mk_nth_i(r2, zero), m());
|
||||
range = simplify_path(m().mk_and(r1_length_eq_one, m().mk_and(r2_length_eq_one, m().mk_and(u().mk_le(r1_0, e), u().mk_le(e, r2_0)))));
|
||||
psi = simplify_path(m().mk_and(path, range));
|
||||
}
|
||||
if (m().is_false(psi))
|
||||
result = nothing();
|
||||
else
|
||||
result = re().mk_ite_simplify(range, epsilon(), nothing());
|
||||
}
|
||||
else if (re().is_union(r, r1, r2))
|
||||
result = mk_antimirov_deriv_union(mk_antimirov_deriv(e, r1, path), mk_antimirov_deriv(e, r2, path));
|
||||
else if (re().is_intersection(r, r1, r2))
|
||||
result = mk_antimirov_deriv_intersection(
|
||||
mk_antimirov_deriv(e, r1, path),
|
||||
mk_antimirov_deriv(e, r2, path), m().mk_true());
|
||||
else if (re().is_star(r, r1) || re().is_plus(r, r1) || (re().is_loop(r, r1, lo) && 0 <= lo && lo <= 1))
|
||||
result = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), re().mk_star(r1));
|
||||
else if (re().is_loop(r, r1, lo))
|
||||
result = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), re().mk_loop(r1, lo - 1));
|
||||
else if (re().is_loop(r, r1, lo, hi)) {
|
||||
if ((lo == 0 && hi == 0) || hi < lo)
|
||||
result = nothing();
|
||||
else
|
||||
result = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), re().mk_loop(r1, (lo == 0 ? 0 : lo - 1), hi - 1));
|
||||
}
|
||||
else if (re().is_opt(r, r1))
|
||||
result = mk_antimirov_deriv(e, r1, path);
|
||||
else if (re().is_complement(r, r1))
|
||||
// D(e,~r1) = ~D(e,r1)
|
||||
result = mk_antimirov_deriv_negate(mk_antimirov_deriv(e, r1, path));
|
||||
else if (re().is_diff(r, r1, r2))
|
||||
result = mk_antimirov_deriv_intersection(
|
||||
mk_antimirov_deriv(e, r1, path),
|
||||
mk_antimirov_deriv_negate(mk_antimirov_deriv(e, r2, path)), m().mk_true());
|
||||
else if (re().is_of_pred(r, r1)) {
|
||||
array_util array(m());
|
||||
expr* args[2] = { r1, e };
|
||||
result = array.mk_select(2, args);
|
||||
// Use mk_der_cond to normalize
|
||||
result = mk_der_cond(result, e, seq_sort);
|
||||
}
|
||||
else
|
||||
// stuck cases
|
||||
result = re().mk_derivative(e, r);
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_intersection(expr* d1, expr* d2, expr* path) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(d1, seq_sort));
|
||||
VERIFY(m_util.is_seq(seq_sort, ele_sort));
|
||||
expr_ref result(m());
|
||||
expr* c, * a, * b;
|
||||
if (d1 == d2 || re().is_full_seq(d2) || re().is_empty(d1))
|
||||
result = d1;
|
||||
else if (re().is_full_seq(d1) || re().is_empty(d2))
|
||||
result = d2;
|
||||
else if (m().is_ite(d1, c, a, b)) {
|
||||
expr_ref path_and_c(simplify_path(m().mk_and(path, c)), m());
|
||||
expr_ref path_and_notc(simplify_path(m().mk_and(path, m().mk_not(c))), m());
|
||||
if (m().is_false(path_and_c))
|
||||
result = mk_antimirov_deriv_intersection(b, d2, path);
|
||||
else if (m().is_false(path_and_notc))
|
||||
result = mk_antimirov_deriv_intersection(a, d2, path);
|
||||
else
|
||||
result = m().mk_ite(c, mk_antimirov_deriv_intersection(a, d2, path_and_c),
|
||||
mk_antimirov_deriv_intersection(b, d2, path_and_notc));
|
||||
}
|
||||
else if (m().is_ite(d2))
|
||||
// swap d1 and d2
|
||||
result = mk_antimirov_deriv_intersection(d2, d1, path);
|
||||
else if (re().is_union(d1, a, b))
|
||||
// distribute intersection over the union in d1
|
||||
result = mk_antimirov_deriv_union(mk_antimirov_deriv_intersection(a, d2, path), mk_antimirov_deriv_intersection(b, d2, path));
|
||||
else if (re().is_union(d2, a, b))
|
||||
// distribute intersection over the union in d2
|
||||
result = mk_antimirov_deriv_union(mk_antimirov_deriv_intersection(d1, a, path), mk_antimirov_deriv_intersection(d1, b, path));
|
||||
else
|
||||
// in all other cases create the intersection regex
|
||||
// TODO: flatten, order and merge d1 and d2 to maintain equality under similarity
|
||||
result = (d1->get_id() <= d2->get_id() ? re().mk_inter(d1, d2) : re().mk_inter(d2, d1));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_concat(expr* d, expr* r) {
|
||||
expr_ref result(m());
|
||||
// Take reference count of r and d
|
||||
expr_ref _r(r, m()), _d(d, m());
|
||||
expr* c, * t, * e;
|
||||
if (m().is_ite(d, c, t, e))
|
||||
result = m().mk_ite(c, mk_antimirov_deriv_concat(t, r), mk_antimirov_deriv_concat(e, r));
|
||||
else if (re().is_union(d, t, e))
|
||||
result = re().mk_union(mk_antimirov_deriv_concat(t, r), mk_antimirov_deriv_concat(e, r));
|
||||
else
|
||||
result = mk_re_append(d, r);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_negate(expr* d) {
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(m_util.is_re(d, seq_sort));
|
||||
auto nothing = [&]() { return expr_ref(re().mk_empty(d->get_sort()), m()); };
|
||||
auto epsilon = [&]() { return expr_ref(re().mk_epsilon(seq_sort), m()); };
|
||||
auto dotstar = [&]() { return expr_ref(re().mk_full_seq(d->get_sort()), m()); };
|
||||
auto dotplus = [&]() { return expr_ref(re().mk_plus(re().mk_full_char(d->get_sort())), m()); };
|
||||
expr_ref result(m());
|
||||
expr* c, * t, * e;
|
||||
if (re().is_empty(d))
|
||||
result = dotstar();
|
||||
else if (re().is_epsilon(d))
|
||||
result = dotplus();
|
||||
else if (re().is_full_seq(d))
|
||||
result = nothing();
|
||||
else if (re().is_dot_plus(d))
|
||||
result = epsilon();
|
||||
else if (m().is_ite(d, c, t, e))
|
||||
result = m().mk_ite(c, mk_antimirov_deriv_negate(t), mk_antimirov_deriv_negate(e));
|
||||
else if (re().is_union(d, t, e))
|
||||
result = re().mk_inter(mk_antimirov_deriv_negate(t), mk_antimirov_deriv_negate(e));
|
||||
else if (re().is_intersection(d, t, e))
|
||||
result = re().mk_union(mk_antimirov_deriv_negate(t), mk_antimirov_deriv_negate(e));
|
||||
else if (re().is_complement(d, t))
|
||||
result = t;
|
||||
else
|
||||
result = re().mk_complement(d);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_union(expr* d1, expr* d2) {
|
||||
expr_ref result(m());
|
||||
if (re().is_empty(d1) || re().is_full_seq(d2))
|
||||
result = d2;
|
||||
else if (re().is_empty(d2) || re().is_full_seq(d1))
|
||||
result = d1;
|
||||
else if (re().is_dot_plus(d1) && re().get_info(d2).min_length > 0)
|
||||
result = d1;
|
||||
else if (re().is_dot_plus(d2) && re().get_info(d1).min_length > 0)
|
||||
result = d2;
|
||||
else
|
||||
// TODO: flatten, order and merge d1 and d2 to maintain equality under similarity
|
||||
result = (d1->get_id() <= d2->get_id() ? re().mk_union(d1, d2) : re().mk_union(d2, d1));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_regex_reverse(expr* r) {
|
||||
expr* r1 = nullptr, * r2 = nullptr, * c = nullptr;
|
||||
unsigned lo = 0, hi = 0;
|
||||
expr_ref result(m());
|
||||
if (re().is_empty(r) || re().is_range(r) || re().is_epsilon(r) || re().is_full_seq(r) ||
|
||||
re().is_full_char(r) || re().is_dot_plus(r) || re().is_of_pred(r))
|
||||
result = r;
|
||||
else if (re().is_to_re(r))
|
||||
result = re().mk_reverse(r);
|
||||
else if (re().is_reverse(r, r1))
|
||||
result = r1;
|
||||
else if (re().is_concat(r, r1, r2))
|
||||
result = mk_regex_concat(mk_regex_reverse(r2), mk_regex_reverse(r1));
|
||||
else if (m().is_ite(r, c, r1, r2))
|
||||
result = m().mk_ite(c, mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_union(r, r1, r2))
|
||||
result = re().mk_union(mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_intersection(r, r1, r2))
|
||||
result = re().mk_inter(mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_diff(r, r1, r2))
|
||||
result = re().mk_diff(mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_star(r, r1))
|
||||
result = re().mk_star(mk_regex_reverse(r1));
|
||||
else if (re().is_plus(r, r1))
|
||||
result = re().mk_plus(mk_regex_reverse(r1));
|
||||
else if (re().is_loop(r, r1, lo))
|
||||
result = re().mk_loop(mk_regex_reverse(r1), lo);
|
||||
else if (re().is_loop(r, r1, lo, hi))
|
||||
result = re().mk_loop(mk_regex_reverse(r1), lo, hi);
|
||||
else if (re().is_opt(r, r1))
|
||||
result = re().mk_opt(mk_regex_reverse(r1));
|
||||
else if (re().is_complement(r, r1))
|
||||
result = re().mk_complement(mk_regex_reverse(r1));
|
||||
else
|
||||
//stuck cases: such as r being a regex variable
|
||||
//observe that re().mk_reverse(to_re(s)) is not a stuck case
|
||||
result = re().mk_reverse(r);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_regex_concat(expr* r, expr* s) {
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(m_util.is_re(r, seq_sort));
|
||||
SASSERT(r->get_sort() == s->get_sort());
|
||||
expr_ref result(m());
|
||||
expr* r1, * r2;
|
||||
if (re().is_epsilon(r) || re().is_empty(s))
|
||||
result = s;
|
||||
else if (re().is_epsilon(s) || re().is_empty(r))
|
||||
result = r;
|
||||
else if (re().is_full_seq(r) && re().is_full_seq(s))
|
||||
result = r;
|
||||
else if (re().is_concat(r, r1, r2))
|
||||
//create the resulting concatenation in right-associative form
|
||||
result = mk_regex_concat(r1, mk_regex_concat(r2, s));
|
||||
else {
|
||||
//TODO: perhaps simplifiy some further cases such as .*. = ..* = .*.+ = .+.* = .+
|
||||
result = re().mk_concat(r, s);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_in_antimirov(expr* s, expr* d){
|
||||
expr_ref result(mk_in_antimirov_rec(s, d), m());
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_in_antimirov_rec(expr* s, expr* d) {
|
||||
expr* c, * d1, * d2;
|
||||
expr_ref result(m());
|
||||
if (re().is_full_seq(d) || (str().min_length(s) > 0 && re().is_dot_plus(d)))
|
||||
// s in .* <==> true, also: s in .+ <==> true when |s|>0
|
||||
result = m().mk_true();
|
||||
else if (re().is_empty(d) || (str().min_length(s) > 0 && re().is_epsilon(d)))
|
||||
// s in [] <==> false, also: s in () <==> false when |s|>0
|
||||
result = m().mk_false();
|
||||
else if (m().is_ite(d, c, d1, d2))
|
||||
result = re().mk_ite_simplify(c, mk_in_antimirov_rec(s, d1), mk_in_antimirov_rec(s, d2));
|
||||
else if (re().is_union(d, d1, d2))
|
||||
m_br.mk_or(mk_in_antimirov_rec(s, d1), mk_in_antimirov_rec(s, d2), result);
|
||||
else
|
||||
result = re().mk_in_re(s, d);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
path is typically a conjunction of (negated) character equations or constraints that can potentially be simplified
|
||||
the first element of each equation is assumed to be the element parameter, for example x = (:var 0),
|
||||
for example a constraint x='a' & x='b' is simplified to false
|
||||
*/
|
||||
expr_ref seq_rewriter::simplify_path(expr* path) {
|
||||
//TODO: more systematic simplifications
|
||||
expr_ref result(path, m());
|
||||
expr* h = nullptr, * t = nullptr, * lhs = nullptr, * rhs = nullptr, * h1 = nullptr;
|
||||
if (m().is_and(path, h, t)) {
|
||||
if (m().is_true(h))
|
||||
result = simplify_path(t);
|
||||
else if (m().is_true(t))
|
||||
result = simplify_path(h);
|
||||
else if (m().is_eq(h, lhs, rhs) || (m().is_not(h, h1) && m().is_eq(h1, lhs, rhs)))
|
||||
elim_condition(lhs, result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
expr_ref seq_rewriter::mk_der_antimorov_union(expr* r1, expr* r2) {
|
||||
return mk_der_op(_OP_RE_ANTIMOROV_UNION, r1, r2);
|
||||
}
|
||||
|
@ -3016,7 +3427,7 @@ expr_ref seq_rewriter::mk_der_concat(expr* r1, expr* r2) {
|
|||
}
|
||||
|
||||
/*
|
||||
Utility functions to decide char <, ==, and <=.
|
||||
Utility functions to decide char <, ==, !=, and <=.
|
||||
Return true if deduced, false if unknown.
|
||||
*/
|
||||
bool seq_rewriter::lt_char(expr* ch1, expr* ch2) {
|
||||
|
@ -3027,6 +3438,11 @@ bool seq_rewriter::lt_char(expr* ch1, expr* ch2) {
|
|||
bool seq_rewriter::eq_char(expr* ch1, expr* ch2) {
|
||||
return ch1 == ch2;
|
||||
}
|
||||
bool seq_rewriter::neq_char(expr* ch1, expr* ch2) {
|
||||
unsigned u1, u2;
|
||||
return u().is_const_char(ch1, u1) &&
|
||||
u().is_const_char(ch2, u2) && (u1 != u2);
|
||||
}
|
||||
bool seq_rewriter::le_char(expr* ch1, expr* ch2) {
|
||||
return eq_char(ch1, ch2) || lt_char(ch1, ch2);
|
||||
}
|
||||
|
@ -3257,10 +3673,10 @@ expr_ref seq_rewriter::mk_der_op(decl_kind k, expr* a, expr* b) {
|
|||
default:
|
||||
break;
|
||||
}
|
||||
result = m_op_cache.find(k, a, b);
|
||||
result = m_op_cache.find(k, a, b, nullptr);
|
||||
if (!result) {
|
||||
result = mk_der_op_rec(k, a, b);
|
||||
m_op_cache.insert(k, a, b, result);
|
||||
m_op_cache.insert(k, a, b, nullptr, result);
|
||||
}
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
|
@ -3269,7 +3685,7 @@ expr_ref seq_rewriter::mk_der_op(decl_kind k, expr* a, expr* b) {
|
|||
expr_ref seq_rewriter::mk_der_compl(expr* r) {
|
||||
STRACE("seq_verbose", tout << "mk_der_compl: " << mk_pp(r, m())
|
||||
<< std::endl;);
|
||||
expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr), m());
|
||||
expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr, nullptr), m());
|
||||
if (!result) {
|
||||
expr* c = nullptr, * r1 = nullptr, * r2 = nullptr;
|
||||
if (re().is_antimorov_union(r, r1, r2)) {
|
||||
|
@ -3285,7 +3701,7 @@ expr_ref seq_rewriter::mk_der_compl(expr* r) {
|
|||
}
|
||||
else if (BR_FAILED == mk_re_complement(r, result))
|
||||
result = re().mk_complement(r);
|
||||
m_op_cache.insert(OP_RE_COMPLEMENT, r, nullptr, result);
|
||||
m_op_cache.insert(OP_RE_COMPLEMENT, r, nullptr, nullptr, result);
|
||||
}
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
|
@ -3509,7 +3925,7 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
// construct the term (if (r2 != () and (ele = (last r2)) then reverse(to_re (butlast r2)) else []))
|
||||
// hd = first of reverse(r2) i.e. last of r2
|
||||
// tl = rest of reverse(r2) i.e. butlast of r2
|
||||
//hd = str().mk_nth_i(r2, m_autil.mk_sub(str().mk_length(r2), m_autil.mk_int(1)));
|
||||
//hd = str().mk_nth_i(r2, m_autil.mk_sub(str().mk_length(r2), one()));
|
||||
hd = mk_seq_last(r2);
|
||||
m_br.mk_and(m().mk_not(m().mk_eq(r2, str().mk_empty(seq_sort))), m().mk_eq(hd, ele), result);
|
||||
tl = re().mk_to_re(mk_seq_butlast(r2));
|
||||
|
@ -3537,9 +3953,9 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
return mk_empty();
|
||||
}
|
||||
}
|
||||
expr* e1 = nullptr, *e2 = nullptr;
|
||||
expr* e1 = nullptr, * e2 = nullptr;
|
||||
if (str().is_unit(r1, e1) && str().is_unit(r2, e2)) {
|
||||
SASSERT(u().is_char(e1));
|
||||
SASSERT(u().is_char(e1));
|
||||
// Use mk_der_cond to normalize
|
||||
STRACE("seq_verbose", tout << "deriv range str" << std::endl;);
|
||||
expr_ref p1(u().mk_le(e1, ele), m());
|
||||
|
@ -3760,7 +4176,7 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
(re().is_union(b, b1, eps) && re().is_epsilon(eps)) ||
|
||||
(re().is_union(b, eps, b1) && re().is_epsilon(eps)))
|
||||
{
|
||||
result = m().mk_ite(m().mk_eq(str().mk_length(a), m_autil.mk_int(0)),
|
||||
result = m().mk_ite(m().mk_eq(str().mk_length(a), zero()),
|
||||
m().mk_true(),
|
||||
re().mk_in_re(a, b1));
|
||||
return BR_REWRITE_FULL;
|
||||
|
@ -3775,8 +4191,10 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
|
||||
expr_ref hd(m()), tl(m());
|
||||
if (get_head_tail(a, hd, tl)) {
|
||||
result = re().mk_in_re(tl, re().mk_derivative(hd, b));
|
||||
return BR_REWRITE2;
|
||||
//result = re().mk_in_re(tl, re().mk_derivative(hd, b));
|
||||
//result = re().mk_in_re(tl, mk_derivative(hd, b));
|
||||
result = mk_in_antimirov(tl, mk_antimirov_deriv(hd, b, m().mk_true()));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
if (get_head_tail_reversed(a, hd, tl)) {
|
||||
|
@ -3791,7 +4209,7 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
expr_ref len_a(str().mk_length(a), m());
|
||||
expr_ref len_tl(m_autil.mk_sub(len_a, len_hd), m());
|
||||
result = m().mk_and(m_autil.mk_ge(len_a, len_hd),
|
||||
re().mk_in_re(str().mk_substr(a, m_autil.mk_int(0), len_hd), hd),
|
||||
re().mk_in_re(str().mk_substr(a, zero(), len_hd), hd),
|
||||
re().mk_in_re(str().mk_substr(a, len_hd, len_tl), tl));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
@ -3802,7 +4220,7 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
expr_ref len_hd(m_autil.mk_sub(len_a, len_tl), m());
|
||||
expr* s = nullptr;
|
||||
result = m().mk_and(m_autil.mk_ge(len_a, len_tl),
|
||||
re().mk_in_re(str().mk_substr(a, m_autil.mk_int(0), len_hd), hd),
|
||||
re().mk_in_re(str().mk_substr(a, zero(), len_hd), hd),
|
||||
(re().is_to_re(tl, s) ? m().mk_eq(s, str().mk_substr(a, len_hd, len_tl)) :
|
||||
re().mk_in_re(str().mk_substr(a, len_hd, len_tl), tl)));
|
||||
return BR_REWRITE_FULL;
|
||||
|
@ -3912,6 +4330,10 @@ br_status seq_rewriter::mk_re_concat(expr* a, expr* b, expr_ref& result) {
|
|||
return BR_REWRITE2;
|
||||
}
|
||||
expr* a1 = nullptr, *b1 = nullptr;
|
||||
if (re().is_to_re(a, a1) && re().is_to_re(b, b1)) {
|
||||
result = re().mk_to_re(str().mk_concat(a1, b1));
|
||||
return BR_DONE;
|
||||
}
|
||||
if (re().is_star(a, a1) && re().is_star(b, b1) && a1 == b1) {
|
||||
result = a;
|
||||
return BR_DONE;
|
||||
|
@ -5151,15 +5573,15 @@ bool seq_rewriter::reduce_eq_empty(expr* l, expr* r, expr_ref& result) {
|
|||
if (str().is_extract(r, s, offset, len)) {
|
||||
expr_ref len_s(str().mk_length(s), m());
|
||||
expr_ref_vector fmls(m());
|
||||
fmls.push_back(m_autil.mk_lt(offset, m_autil.mk_int(0)));
|
||||
fmls.push_back(m_autil.mk_lt(offset, zero()));
|
||||
fmls.push_back(m().mk_eq(s, l));
|
||||
fmls.push_back(m_autil.mk_le(len, m_autil.mk_int(0)));
|
||||
fmls.push_back(m_autil.mk_le(len, zero()));
|
||||
fmls.push_back(m_autil.mk_le(len_s, offset));
|
||||
result = m().mk_or(fmls);
|
||||
return true;
|
||||
}
|
||||
if (str().is_itos(r, s)) {
|
||||
result = m_autil.mk_lt(s, m_autil.mk_int(0));
|
||||
result = m_autil.mk_lt(s, zero());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
@ -5275,19 +5697,20 @@ seq_rewriter::op_cache::op_cache(ast_manager& m):
|
|||
m_trail(m)
|
||||
{}
|
||||
|
||||
expr* seq_rewriter::op_cache::find(decl_kind op, expr* a, expr* b) {
|
||||
op_entry e(op, a, b, nullptr);
|
||||
expr* seq_rewriter::op_cache::find(decl_kind op, expr* a, expr* b, expr* c) {
|
||||
op_entry e(op, a, b, c, nullptr);
|
||||
m_table.find(e, e);
|
||||
|
||||
return e.r;
|
||||
}
|
||||
|
||||
void seq_rewriter::op_cache::insert(decl_kind op, expr* a, expr* b, expr* r) {
|
||||
void seq_rewriter::op_cache::insert(decl_kind op, expr* a, expr* b, expr* c, expr* r) {
|
||||
cleanup();
|
||||
if (a) m_trail.push_back(a);
|
||||
if (b) m_trail.push_back(b);
|
||||
if (c) m_trail.push_back(c);
|
||||
if (r) m_trail.push_back(r);
|
||||
m_table.insert(op_entry(op, a, b, r));
|
||||
m_table.insert(op_entry(op, a, b, c, r));
|
||||
}
|
||||
|
||||
void seq_rewriter::op_cache::cleanup() {
|
||||
|
|
|
@ -117,20 +117,20 @@ class seq_rewriter {
|
|||
class op_cache {
|
||||
struct op_entry {
|
||||
decl_kind k;
|
||||
expr* a, *b, *r;
|
||||
op_entry(decl_kind k, expr* a, expr* b, expr* r): k(k), a(a), b(b), r(r) {}
|
||||
op_entry():k(0), a(nullptr), b(nullptr), r(nullptr) {}
|
||||
expr* a, *b, *c, *r;
|
||||
op_entry(decl_kind k, expr* a, expr* b, expr* c, expr* r): k(k), a(a), b(b), c(c), r(r) {}
|
||||
op_entry():k(0), a(nullptr), b(nullptr), c(nullptr), r(nullptr) {}
|
||||
};
|
||||
|
||||
struct hash_entry {
|
||||
unsigned operator()(op_entry const& e) const {
|
||||
return mk_mix(e.k, e.a ? e.a->get_id() : 0, e.b ? e.b->get_id() : 0);
|
||||
return combine_hash(mk_mix(e.k, e.a ? e.a->get_id() : 0, e.b ? e.b->get_id() : 0), e.c ? e.c->get_id() : 0);
|
||||
}
|
||||
};
|
||||
|
||||
struct eq_entry {
|
||||
bool operator()(op_entry const& a, op_entry const& b) const {
|
||||
return a.k == b.k && a.a == b.a && a.b == b.b;
|
||||
bool operator()(op_entry const& a, op_entry const& b) const {
|
||||
return a.k == b.k && a.a == b.a && a.b == b.b && a.c == b.c;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -143,8 +143,8 @@ class seq_rewriter {
|
|||
|
||||
public:
|
||||
op_cache(ast_manager& m);
|
||||
expr* find(decl_kind op, expr* a, expr* b);
|
||||
void insert(decl_kind op, expr* a, expr* b, expr* r);
|
||||
expr* find(decl_kind op, expr* a, expr* b, expr* c);
|
||||
void insert(decl_kind op, expr* a, expr* b, expr* c, expr* r);
|
||||
};
|
||||
|
||||
seq_util m_util;
|
||||
|
@ -208,8 +208,24 @@ class seq_rewriter {
|
|||
bool check_deriv_normal_form(expr* r, int level = 3);
|
||||
#endif
|
||||
|
||||
void mk_antimirov_deriv_rec(expr* e, expr* r, expr* path, expr_ref& result);
|
||||
|
||||
expr_ref mk_antimirov_deriv(expr* e, expr* r, expr* path);
|
||||
expr_ref mk_in_antimirov_rec(expr* s, expr* d);
|
||||
expr_ref mk_in_antimirov(expr* s, expr* d);
|
||||
|
||||
expr_ref mk_antimirov_deriv_intersection(expr* d1, expr* d2, expr* path);
|
||||
expr_ref mk_antimirov_deriv_concat(expr* d, expr* r);
|
||||
expr_ref mk_antimirov_deriv_negate(expr* d);
|
||||
expr_ref mk_antimirov_deriv_union(expr* d1, expr* d2);
|
||||
expr_ref mk_regex_reverse(expr* r);
|
||||
expr_ref mk_regex_concat(expr* r1, expr* r2);
|
||||
|
||||
expr_ref simplify_path(expr* path);
|
||||
|
||||
bool lt_char(expr* ch1, expr* ch2);
|
||||
bool eq_char(expr* ch1, expr* ch2);
|
||||
bool neq_char(expr* ch1, expr* ch2);
|
||||
bool le_char(expr* ch1, expr* ch2);
|
||||
bool pred_implies(expr* a, expr* b);
|
||||
bool are_complements(expr* r1, expr* r2) const;
|
||||
|
@ -286,6 +302,8 @@ class seq_rewriter {
|
|||
expr_ref zero() { return expr_ref(m_autil.mk_int(0), m()); }
|
||||
expr_ref one() { return expr_ref(m_autil.mk_int(1), m()); }
|
||||
expr_ref minus_one() { return expr_ref(m_autil.mk_int(-1), m()); }
|
||||
expr_ref mk_sub(expr* a, rational const& n);
|
||||
expr_ref mk_sub(expr* a, unsigned n) { return mk_sub(a, rational(n)); }
|
||||
|
||||
bool is_suffix(expr* s, expr* offset, expr* len);
|
||||
bool is_prefix(expr* s, expr* offset, expr* len);
|
||||
|
@ -379,9 +397,19 @@ public:
|
|||
|
||||
void add_seqs(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref_pair_vector& new_eqs);
|
||||
|
||||
// Expose derivative and nullability check
|
||||
/*
|
||||
create the nullability check for r
|
||||
*/
|
||||
expr_ref is_nullable(expr* r);
|
||||
/*
|
||||
make the derivative of r wrt the given element ele
|
||||
*/
|
||||
expr_ref mk_derivative(expr* ele, expr* r);
|
||||
/*
|
||||
make the derivative of r wrt the canonical variable v0 = (:var 0),
|
||||
for example mk_derivative(a+) = (if (v0 = 'a') then a* else [])
|
||||
*/
|
||||
expr_ref mk_derivative(expr* r);
|
||||
|
||||
// heuristic elimination of element from condition that comes form a derivative.
|
||||
// special case optimization for conjunctions of equalities, disequalities and ranges.
|
||||
|
|
|
@ -28,8 +28,8 @@ skolem::skolem(ast_manager& m, th_rewriter& rw):
|
|||
m_tail = "seq.tail";
|
||||
m_seq_first = "seq.first";
|
||||
m_seq_last = "seq.last";
|
||||
m_indexof_left = "seq.idx.left";
|
||||
m_indexof_right = "seq.idx.right";
|
||||
m_indexof_left = "seq.idx.l";
|
||||
m_indexof_right = "seq.idx.r";
|
||||
m_aut_step = "aut.step";
|
||||
m_pre = "seq.pre"; // (seq.pre s l): prefix of string s of length l
|
||||
m_post = "seq.post"; // (seq.post s l): suffix of string s of length k, based on extract starting at index i of length l
|
||||
|
|
|
@ -77,8 +77,10 @@ namespace seq {
|
|||
|
||||
expr_ref mk_indexof_left(expr* t, expr* s, expr* offset = nullptr) { return mk(m_indexof_left, t, s, offset); }
|
||||
expr_ref mk_indexof_right(expr* t, expr* s, expr* offset = nullptr) { return mk(m_indexof_right, t, s, offset); }
|
||||
expr_ref mk_last_indexof_left(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.last_indexof_left", t, s, offset); }
|
||||
expr_ref mk_last_indexof_right(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.last_indexof_right", t, s, offset); }
|
||||
expr_ref mk_contains_left(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.cnt.l", t, s, offset); }
|
||||
expr_ref mk_contains_right(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.cnt.r", t, s, offset); }
|
||||
expr_ref mk_last_indexof_left(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.lidx.l", t, s, offset); }
|
||||
expr_ref mk_last_indexof_right(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.lidx.r", t, s, offset); }
|
||||
|
||||
expr_ref mk_tail(expr* s, expr* i) { return mk(m_tail, s, i); }
|
||||
expr_ref mk_post(expr* s, expr* i) { return mk(m_post, s, i); }
|
||||
|
|
|
@ -839,7 +839,7 @@ bool seq_util::str::is_nth_i(expr const* n, expr*& s, unsigned& idx) const {
|
|||
return arith_util(m).is_unsigned(i, idx);
|
||||
}
|
||||
|
||||
app* seq_util::str::mk_nth_i(expr* s, unsigned i) const {
|
||||
app* seq_util::str::mk_nth_c(expr* s, unsigned i) const {
|
||||
return mk_nth_i(s, arith_util(m).mk_int(i));
|
||||
}
|
||||
|
||||
|
@ -854,6 +854,48 @@ void seq_util::str::get_concat(expr* e, expr_ref_vector& es) const {
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Returns true if s is an expression of the form (l = |u|) |u|-k or (-k)+|u| or |u|+(-k).
|
||||
Also returns true and assigns k=0 and l=s if s is |u|.
|
||||
*/
|
||||
bool seq_util::str::is_len_sub(expr const* s, expr*& l, expr*& u, rational& k) const {
|
||||
expr* x;
|
||||
rational v;
|
||||
arith_util a(m);
|
||||
if (is_length(s, l)) {
|
||||
k = 0;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_sub(s, l, x) && is_length(l, u) && a.is_numeral(x, v) && v.is_nonneg()) {
|
||||
k = v;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_add(s, l, x) && is_length(l, u) && a.is_numeral(x, v) && v.is_nonpos()) {
|
||||
k = - v;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_add(s, x, l) && is_length(l, u) && a.is_numeral(x, v) && v.is_nonpos()) {
|
||||
k = - v;
|
||||
return true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool seq_util::str::is_unit_string(expr const* s, expr_ref& c) const {
|
||||
zstring z;
|
||||
expr* ch = nullptr;
|
||||
if (is_string(s, z) && z.length() == 1) {
|
||||
c = mk_char(z[0]);
|
||||
return true;
|
||||
}
|
||||
else if (is_unit(s, ch)) {
|
||||
c = ch;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void seq_util::str::get_concat_units(expr* e, expr_ref_vector& es) const {
|
||||
expr* e1, *e2;
|
||||
while (is_concat(e, e1, e2)) {
|
||||
|
@ -876,8 +918,6 @@ app* seq_util::str::mk_is_empty(expr* s) const {
|
|||
return m.mk_eq(s, mk_empty(s->get_sort()));
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned seq_util::str::min_length(expr* s) const {
|
||||
SASSERT(u.is_seq(s));
|
||||
unsigned result = 0;
|
||||
|
@ -892,7 +932,10 @@ unsigned seq_util::str::min_length(expr* s) const {
|
|||
return 0u;
|
||||
};
|
||||
while (is_concat(s, s1, s2)) {
|
||||
result += get_length(s1);
|
||||
if (is_concat(s1))
|
||||
result += min_length(s1);
|
||||
else
|
||||
result += get_length(s1);
|
||||
s = s2;
|
||||
}
|
||||
result += get_length(s);
|
||||
|
@ -920,7 +963,10 @@ unsigned seq_util::str::max_length(expr* s) const {
|
|||
return UINT_MAX;
|
||||
};
|
||||
while (is_concat(s, s1, s2)) {
|
||||
result = u.max_plus(get_length(s1), result);
|
||||
if (is_concat(s1))
|
||||
result = u.max_plus(max_length(s1), result);
|
||||
else
|
||||
result = u.max_plus(get_length(s1), result);
|
||||
s = s2;
|
||||
}
|
||||
result = u.max_plus(get_length(s), result);
|
||||
|
@ -1065,38 +1111,70 @@ app* seq_util::rex::mk_epsilon(sort* seq_sort) {
|
|||
/*
|
||||
Produces compact view of concrete concatenations such as (abcd).
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::compact_helper_seq(std::ostream& out, expr* s) const {
|
||||
SASSERT(re.u.is_seq(s));
|
||||
bool seq_util::rex::pp::print_seq(std::ostream& out, expr* s) const {
|
||||
zstring z;
|
||||
expr* x, * j, * k, * l, * i, * x_;
|
||||
if (re.u.str.is_empty(s))
|
||||
out << "()";
|
||||
else if (re.u.str.is_unit(s))
|
||||
seq_unit(out, s);
|
||||
else if (re.u.str.is_concat(s)) {
|
||||
expr_ref_vector es(re.m);
|
||||
re.u.str.get_concat(s, es);
|
||||
for (expr* e : es)
|
||||
compact_helper_seq(out, e);
|
||||
print(out, e);
|
||||
}
|
||||
else if (re.u.str.is_string(s, z)) {
|
||||
for (unsigned i = 0; i < z.length(); i++)
|
||||
out << (char)z[i];
|
||||
}
|
||||
//using braces to indicate 'full' output
|
||||
//for example an uninterpreted constant X will be printed as {X}
|
||||
//while a unit sequence "X" will be printed as X
|
||||
//thus for example (concat "X" "Y" Z "W") where Z is uninterpreted is printed as XY{Z}W
|
||||
else out << "{" << mk_pp(s, re.m) << "}";
|
||||
return out;
|
||||
else if (re.u.str.is_at(s, x, i))
|
||||
print(out, x) << "@", print(out, i);
|
||||
else if (re.u.str.is_extract(s, x, j, k)) {
|
||||
rational jv, iv;
|
||||
print(out, x);
|
||||
if (arith_util(re.m).is_numeral(j, jv)) {
|
||||
if (arith_util(re.m).is_numeral(k, iv)) {
|
||||
// output X[j,k]
|
||||
out << "[" << jv.get_int32() << "," << jv.get_int32() << "]";
|
||||
}
|
||||
else if (arith_util(re.m).is_sub(k, l, i) && re.u.str.is_length(l, x_) && x == x_ &&
|
||||
arith_util(re.m).is_numeral(i, iv) && iv == jv) {
|
||||
// case X[j,|X|-j] is denoted by X[j..]
|
||||
out << "[" << jv.get_int32() << "..]";
|
||||
}
|
||||
else if (((arith_util(re.m).is_add(k, l, i) && re.u.str.is_length(l, x_)) ||
|
||||
(arith_util(re.m).is_add(k, i, l) && re.u.str.is_length(l, x_))) && x == x_ &&
|
||||
arith_util(re.m).is_numeral(i, iv) && iv.get_int32() + jv.get_int32() == 0) {
|
||||
// case X[j,|X|-j] is denoted by X[j..]
|
||||
out << "[" << jv.get_int32() << "..]";
|
||||
}
|
||||
else {
|
||||
out << "[" << jv.get_int32() << ",";
|
||||
print(out, k);
|
||||
out << "]";
|
||||
}
|
||||
}
|
||||
else {
|
||||
out << "[";
|
||||
print(out, j);
|
||||
out << ",";
|
||||
print(out, k);
|
||||
out << "]";
|
||||
}
|
||||
}
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
Produces output such as [a-z] for a range.
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::compact_helper_range(std::ostream& out, expr* s1, expr* s2) const {
|
||||
std::ostream& seq_util::rex::pp::print_range(std::ostream& out, expr* s1, expr* s2) const {
|
||||
out << "[";
|
||||
seq_unit(out, s1) << "-";
|
||||
seq_unit(out, s2) << "]";
|
||||
print(out, s1);
|
||||
out << "-";
|
||||
print(out, s2);
|
||||
out << "]";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
@ -1111,9 +1189,10 @@ bool seq_util::rex::pp::can_skip_parenth(expr* r) const {
|
|||
/*
|
||||
Specialize output for a unit sequence converting to visible ASCII characters if possible.
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
||||
expr* e;
|
||||
bool seq_util::rex::pp::print_unit(std::ostream& out, expr* s) const {
|
||||
expr* e, * i;
|
||||
unsigned n = 0;
|
||||
|
||||
if ((re.u.str.is_unit(s, e) && re.u.is_const_char(e, n)) || re.u.is_const_char(s, n)) {
|
||||
char c = (char)n;
|
||||
if (c == '\n')
|
||||
|
@ -1122,22 +1201,21 @@ std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
|||
out << "\\r";
|
||||
else if (c == '\f')
|
||||
out << "\\f";
|
||||
else if (c == ' ')
|
||||
out << "\\s";
|
||||
else if (c == '(' || c == ')' || c == '{' || c == '}' || c == '[' || c == ']' || c == '.' || c == '\\')
|
||||
out << "\\" << c;
|
||||
else if (32 < n && n < 127) {
|
||||
else if (32 <= n && n < 127 && n != '\"' && n != ' '
|
||||
&& n != '\\' && n != '\'' && n != '?' && n != '.' && n != '(' && n != ')' && n != '[' && n != ']'
|
||||
&& n != '{' && n != '}' && n != '&') {
|
||||
if (html_encode) {
|
||||
if (c == '<')
|
||||
out << "<";
|
||||
else if (c == '>')
|
||||
out << ">";
|
||||
else if (c == '&')
|
||||
out << "&";
|
||||
else if (c == '\"')
|
||||
out << """;
|
||||
//else if (c == '&')
|
||||
// out << "&";
|
||||
//else if (c == '\"')
|
||||
// out << """;
|
||||
else
|
||||
out << "\\x" << std::hex << n;
|
||||
//out << "\\x" << std::hex << n;
|
||||
out << c;
|
||||
}
|
||||
else
|
||||
out << c;
|
||||
|
@ -1148,95 +1226,193 @@ std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
|||
out << "\\x" << std::hex << n;
|
||||
else if (n <= 0xFFF)
|
||||
out << "\\u0" << std::hex << n;
|
||||
else
|
||||
else
|
||||
out << "\\u" << std::hex << n;
|
||||
}
|
||||
else if (re.u.str.is_nth_i(s, e, i)) {
|
||||
print(out, e) << "[";
|
||||
print(out, i) << "]";
|
||||
}
|
||||
else if (re.u.str.is_length(s, e))
|
||||
print(out << "|", e) << "|";
|
||||
else
|
||||
out << "{" << mk_pp(s, re.m) << "}";
|
||||
return out;
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
Pretty prints the regex r into the out stream
|
||||
Pretty prints the regex r into the ostream out
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
||||
std::ostream& seq_util::rex::pp::print(std::ostream& out, expr* e) const {
|
||||
expr* r1 = nullptr, * r2 = nullptr, * s = nullptr, * s2 = nullptr;
|
||||
unsigned lo = 0, hi = 0;
|
||||
if (re.u.is_char(e))
|
||||
return seq_unit(out, e);
|
||||
else if (re.u.is_seq(e))
|
||||
return compact_helper_seq(out, e);
|
||||
arith_util a(re.m);
|
||||
rational v;
|
||||
if (!e)
|
||||
out << "null";
|
||||
else if (print_unit(out, e))
|
||||
;
|
||||
else if (print_seq(out, e))
|
||||
;
|
||||
else if (re.is_full_char(e))
|
||||
return out << ".";
|
||||
out << ".";
|
||||
else if (re.is_full_seq(e))
|
||||
return out << ".*";
|
||||
out << ".*";
|
||||
else if (re.is_to_re(e, s))
|
||||
return compact_helper_seq(out, s);
|
||||
else if (re.is_range(e, s, s2))
|
||||
return compact_helper_range(out, s, s2);
|
||||
print(out, s);
|
||||
else if (re.is_range(e, s, s2))
|
||||
print_range(out, s, s2);
|
||||
else if (re.is_epsilon(e))
|
||||
return out << "()";
|
||||
// ε = epsilon
|
||||
out << (html_encode ? "ε" : "()");
|
||||
else if (re.is_empty(e))
|
||||
return out << "[]";
|
||||
else if (re.is_concat(e, r1, r2))
|
||||
return out << pp(re, r1) << pp(re, r2);
|
||||
else if (re.is_union(e, r1, r2))
|
||||
return out << "(" << pp(re, r1) << "|" << pp(re, r2) << ")";
|
||||
else if (re.is_intersection(e, r1, r2))
|
||||
return out << "(" << pp(re, r1) << "&" /*(html_encode ? ")&(" : ")&(")*/ << pp(re, r2) << ")";
|
||||
// ∅ = emptyset
|
||||
out << (html_encode ? "∅" : "[]");
|
||||
else if (re.is_concat(e, r1, r2)) {
|
||||
print(out, r1);
|
||||
print(out, r2);
|
||||
}
|
||||
else if (re.is_antimorov_union(e, r1, r2) || re.is_union(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << (html_encode ? "⋃" : "|");
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_intersection(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << (html_encode ? "⋂" : "&");
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_complement(e, r1)) {
|
||||
out << "~";
|
||||
if (can_skip_parenth(r1))
|
||||
return out << "~" << pp(re, r1);
|
||||
else
|
||||
return out << "~(" << pp(re, r1) << ")";
|
||||
print(out, r1);
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")";
|
||||
}
|
||||
}
|
||||
else if (re.is_plus(e, r1)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "+";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << ")+";
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
out << "+";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")+";
|
||||
}
|
||||
}
|
||||
else if (re.is_star(e, r1)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "*";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << ")*";
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
out << "*";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")*";
|
||||
}
|
||||
}
|
||||
else if (re.is_loop(e, r1, lo)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "{" << lo << ",}";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << "){" << lo << ",}";
|
||||
if (can_skip_parenth(r1))
|
||||
print(out, r1) << "{" << lo << ",}";
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << "){" << lo << ",}";
|
||||
}
|
||||
}
|
||||
else if (re.is_loop(e, r1, lo, hi)) {
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
if (lo == hi)
|
||||
return out << pp(re, r1) << "{" << lo << "}";
|
||||
else
|
||||
return out << pp(re, r1) << "{" << lo << "," << hi << "}";
|
||||
out << "{" << lo << "}";
|
||||
else
|
||||
out << "{" << lo << "," << hi << "}";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
if (lo == hi)
|
||||
return out << "(" << pp(re, r1) << "){" << lo << "}";
|
||||
out << "){" << lo << "}";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << "){" << lo << "," << hi << "}";
|
||||
out << "){" << lo << "," << hi << "}";
|
||||
}
|
||||
}
|
||||
else if (re.is_diff(e, r1, r2))
|
||||
return out << "(" << pp(re, r1) << ")\\(" << pp(re, r2) << ")";
|
||||
else if (re.m.is_ite(e, s, r1, r2))
|
||||
return out << "if(" << mk_pp(s, re.m) << "," << pp(re, r1) << "," << pp(re, r2) << ")";
|
||||
else if (re.is_diff(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")\\(";
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.m.is_ite(e, s, r1, r2)) {
|
||||
out << (html_encode ? "(𝐢𝐟 " : "(if ");
|
||||
print(out, s);
|
||||
out << (html_encode ? " 𝐭𝗵𝐞𝐧 " : " then ");
|
||||
print(out, r1);
|
||||
out << (html_encode ? " 𝐞𝐥𝘀𝐞 " : " else ");
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_opt(e, r1)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "?";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << ")?";
|
||||
print(out, r1) << "?";
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")?";
|
||||
}
|
||||
}
|
||||
else if (re.is_reverse(e, r1)) {
|
||||
out << "(reverse ";
|
||||
print(out, r1);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.m.is_eq(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << " = ";
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.m.is_not(e, r1)) {
|
||||
out << "!";
|
||||
print(out, r1);
|
||||
}
|
||||
else if (a.is_add(e, s, s2) && a.is_numeral(s, v) && v < 0)
|
||||
print(out, s2) << " - " << -v;
|
||||
else if (a.is_add(e, s, s2) && a.is_numeral(s2, v) && v < 0)
|
||||
print(out, s) << " - " << -v;
|
||||
else if (a.is_add(e, s, s2))
|
||||
print(out, s) << " + ", print(out, s2);
|
||||
else if (a.is_sub(e, s, s2) && a.is_numeral(s2, v) && v > 0)
|
||||
print(out, s) << " - " << v;
|
||||
else if (a.is_le(e, s, s2))
|
||||
print(out << "(", s) << " <= ", print(out, s2) << ")";
|
||||
else if (re.m.is_value(e))
|
||||
out << mk_pp(e, re.m);
|
||||
else if (is_app(e) && to_app(e)->get_num_args() == 0)
|
||||
out << mk_pp(e, re.m);
|
||||
else if (is_app(e)) {
|
||||
out << "(" << to_app(e)->get_decl()->get_name();
|
||||
for (expr* arg : *to_app(e))
|
||||
print(out << " ", arg);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_reverse(e, r1))
|
||||
return out << "reverse(" << pp(re, r1) << ")";
|
||||
else
|
||||
// Else: derivative or is_of_pred
|
||||
return out << "{" << mk_pp(e, re.m) << "}";
|
||||
// for all remaining cases use the default pretty printer
|
||||
out << mk_pp(e, re.m);
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
||||
return print(out, ex);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1244,7 +1420,16 @@ std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
|||
*/
|
||||
std::string seq_util::rex::to_str(expr* r) const {
|
||||
std::ostringstream out;
|
||||
out << pp(u.re, r);
|
||||
pp(u.re, r, false).display(out);
|
||||
return out.str();
|
||||
}
|
||||
|
||||
/*
|
||||
Pretty prints the regex r into the output string that is htmlencoded
|
||||
*/
|
||||
std::string seq_util::rex::to_strh(expr* r) const {
|
||||
std::ostringstream out;
|
||||
pp(u.re, r, true).display(out);
|
||||
return out.str();
|
||||
}
|
||||
|
||||
|
@ -1290,7 +1475,7 @@ seq_util::rex::info seq_util::rex::get_info_rec(expr* e) const {
|
|||
else
|
||||
result = mk_info_rec(to_app(e));
|
||||
m_infos.setx(e->get_id(), result, invalid_info);
|
||||
STRACE("re_info", tout << "compute_info(" << pp(u.re, e) << ")=" << result << std::endl;);
|
||||
STRACE("re_info", tout << "compute_info(" << pp(u.re, e, false) << ")=" << result << std::endl;);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1518,7 +1703,13 @@ seq_util::rex::info seq_util::rex::info::orelse(seq_util::rex::info const& i) co
|
|||
// unsigned ite_min_length = std::min(min_length, i.min_length);
|
||||
// lbool ite_nullable = (nullable == i.nullable ? nullable : l_undef);
|
||||
// TBD: whether ite is interpreted or not depends on whether the condition is interpreted and both branches are interpreted
|
||||
return info(false, false, false, false, normalized && i.normalized, monadic && i.monadic, singleton && i.singleton, nullable, std::min(min_length, i.min_length), std::max(star_height, i.star_height));
|
||||
return info(false, false, false, false,
|
||||
normalized && i.normalized,
|
||||
monadic && i.monadic,
|
||||
singleton && i.singleton,
|
||||
((nullable == l_true && i.nullable == l_true) ? l_true : ((nullable == l_false && i.nullable == l_false) ? l_false : l_undef)),
|
||||
std::min(min_length, i.min_length),
|
||||
std::max(star_height, i.star_height));
|
||||
}
|
||||
else
|
||||
return i;
|
||||
|
|
|
@ -286,7 +286,8 @@ public:
|
|||
app* mk_at(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_AT, 2, es); }
|
||||
app* mk_nth(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_NTH, 2, es); }
|
||||
app* mk_nth_i(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_NTH_I, 2, es); }
|
||||
app* mk_nth_i(expr* s, unsigned i) const;
|
||||
app* mk_nth_u(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_NTH_U, 2, es); }
|
||||
app* mk_nth_c(expr* s, unsigned i) const;
|
||||
|
||||
app* mk_substr(expr* a, expr* b, expr* c) const { expr* es[3] = { a, b, c }; return m.mk_app(m_fid, OP_SEQ_EXTRACT, 3, es); }
|
||||
app* mk_contains(expr* a, expr* b) const { expr* es[2] = { a, b }; return m.mk_app(m_fid, OP_SEQ_CONTAINS, 2, es); }
|
||||
|
@ -350,6 +351,13 @@ public:
|
|||
bool is_from_code(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_FROM_CODE); }
|
||||
bool is_to_code(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_TO_CODE); }
|
||||
|
||||
bool is_len_sub(expr const* n, expr*& l, expr*& u, rational& k) const;
|
||||
|
||||
/*
|
||||
tests if s is a single character string(c) or a unit (c)
|
||||
*/
|
||||
bool is_unit_string(expr const* s, expr_ref& c) const;
|
||||
|
||||
bool is_string_term(expr const * n) const {
|
||||
return u.is_string(n->get_sort());
|
||||
}
|
||||
|
@ -530,7 +538,20 @@ public:
|
|||
bool is_loop(expr const* n) const { return is_app_of(n, m_fid, OP_RE_LOOP); }
|
||||
bool is_empty(expr const* n) const { return is_app_of(n, m_fid, OP_RE_EMPTY_SET); }
|
||||
bool is_full_char(expr const* n) const { return is_app_of(n, m_fid, OP_RE_FULL_CHAR_SET); }
|
||||
bool is_full_seq(expr const* n) const { return is_app_of(n, m_fid, OP_RE_FULL_SEQ_SET); }
|
||||
bool is_full_seq(expr const* n) const {
|
||||
expr* s;
|
||||
return is_app_of(n, m_fid, OP_RE_FULL_SEQ_SET) || (is_star(n, s) && is_full_char(s));
|
||||
}
|
||||
bool is_dot_plus(expr const* n) const {
|
||||
expr* s, * t;
|
||||
if (is_plus(n, s) && is_full_char(s))
|
||||
return true;
|
||||
if (is_concat(n, s, t)) {
|
||||
if ((is_full_char(s) && is_full_seq(t)) || (is_full_char(t) && is_full_seq(s)))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
bool is_of_pred(expr const* n) const { return is_app_of(n, m_fid, OP_RE_OF_PRED); }
|
||||
bool is_reverse(expr const* n) const { return is_app_of(n, m_fid, OP_RE_REVERSE); }
|
||||
bool is_derivative(expr const* n) const { return is_app_of(n, m_fid, OP_RE_DERIVATIVE); }
|
||||
|
@ -559,18 +580,32 @@ public:
|
|||
app* mk_epsilon(sort* seq_sort);
|
||||
info get_info(expr* r) const;
|
||||
std::string to_str(expr* r) const;
|
||||
std::string to_strh(expr* r) const;
|
||||
|
||||
expr_ref mk_ite_simplify(expr* c, expr* t, expr* e)
|
||||
{
|
||||
expr_ref result(m);
|
||||
if (m.is_true(c) || t == e)
|
||||
result = t;
|
||||
else if (m.is_false(c))
|
||||
result = e;
|
||||
else
|
||||
result = m.mk_ite(c, t, e);
|
||||
return result;
|
||||
}
|
||||
|
||||
class pp {
|
||||
seq_util::rex& re;
|
||||
expr* e;
|
||||
expr* ex;
|
||||
bool html_encode;
|
||||
bool can_skip_parenth(expr* r) const;
|
||||
std::ostream& seq_unit(std::ostream& out, expr* s) const;
|
||||
std::ostream& compact_helper_seq(std::ostream& out, expr* s) const;
|
||||
std::ostream& compact_helper_range(std::ostream& out, expr* s1, expr* s2) const;
|
||||
bool print_unit(std::ostream& out, expr* s) const;
|
||||
bool print_seq(std::ostream& out, expr* s) const;
|
||||
std::ostream& print_range(std::ostream& out, expr* s1, expr* s2) const;
|
||||
std::ostream& print(std::ostream& out, expr* e) const;
|
||||
|
||||
public:
|
||||
pp(seq_util::rex& r, expr* e, bool html = false) : re(r), e(e), html_encode(html) {}
|
||||
pp(seq_util::rex& re, expr* ex, bool html) : re(re), ex(ex), html_encode(html) {}
|
||||
std::ostream& display(std::ostream&) const;
|
||||
};
|
||||
};
|
||||
|
|
|
@ -87,6 +87,7 @@ public:
|
|||
bool is_special_relation(app* e) const { return is_special_relation(e->get_decl()); }
|
||||
sr_property get_property(func_decl* f) const;
|
||||
sr_property get_property(app* e) const { return get_property(e->get_decl()); }
|
||||
func_decl* get_relation(func_decl* f) const { SASSERT(is_special_relation(f)); return to_func_decl(f->get_parameter(0).get_ast()); }
|
||||
|
||||
func_decl* mk_to_decl(func_decl* f) { return mk_rel_decl(f, OP_SPECIAL_RELATION_TO); }
|
||||
func_decl* mk_po_decl(func_decl* f) { return mk_rel_decl(f, OP_SPECIAL_RELATION_PO); }
|
||||
|
|
|
@ -1828,9 +1828,8 @@ void cmd_context::add_declared_functions(model& mdl) {
|
|||
mdl.register_decl(f, fi);
|
||||
}
|
||||
}
|
||||
mdl.add_rec_funs();
|
||||
}
|
||||
|
||||
mdl.add_rec_funs();
|
||||
}
|
||||
|
||||
void cmd_context::display_sat_result(lbool r) {
|
||||
|
|
|
@ -270,6 +270,7 @@ public:
|
|||
class check_value {
|
||||
public:
|
||||
virtual bool operator()(Value const& v) = 0;
|
||||
virtual ~check_value() = default;
|
||||
};
|
||||
|
||||
bool find_le(Key const* keys, check_value& check) {
|
||||
|
|
|
@ -23,6 +23,7 @@ Revision History:
|
|||
namespace lp {
|
||||
class column_namer {
|
||||
public:
|
||||
virtual ~column_namer() = default;
|
||||
virtual std::string get_variable_name(unsigned j) const = 0;
|
||||
template <typename T>
|
||||
std::ostream & print_row(const row_strip<T> & row, std::ostream & out) const {
|
||||
|
|
|
@ -120,6 +120,8 @@ struct factorization_factory {
|
|||
m_vars(vars), m_monic(m) {
|
||||
}
|
||||
|
||||
virtual ~factorization_factory() = default;
|
||||
|
||||
bool_vector get_mask() const {
|
||||
// we keep the last element always in the first factor to avoid
|
||||
// repeating a pair twice, that is why m_mask is shorter by one then m_vars
|
||||
|
|
|
@ -16,6 +16,9 @@ namespace lp {
|
|||
|
||||
lp_settings const& lar_solver::settings() const { return m_settings; }
|
||||
|
||||
statistics& lar_solver::stats() { return m_settings.stats(); }
|
||||
|
||||
|
||||
void lar_solver::updt_params(params_ref const& _p) {
|
||||
smt_params_helper p(_p);
|
||||
set_track_pivoted_rows(p.arith_bprop_on_pivoted_rows());
|
||||
|
@ -23,17 +26,9 @@ namespace lp {
|
|||
m_settings.updt_params(_p);
|
||||
}
|
||||
|
||||
|
||||
void clear() {
|
||||
lp_assert(false); // not implemented
|
||||
}
|
||||
|
||||
lar_solver::lar_solver() :
|
||||
m_status(lp_status::UNKNOWN),
|
||||
m_crossed_bounds_column(-1),
|
||||
m_mpq_lar_core_solver(m_settings, *this),
|
||||
m_int_solver(nullptr),
|
||||
m_need_register_terms(false),
|
||||
m_var_register(false),
|
||||
m_term_register(true),
|
||||
m_constraints(*this) {}
|
||||
|
@ -197,11 +192,11 @@ namespace lp {
|
|||
void lar_solver::set_status(lp_status s) { m_status = s; }
|
||||
|
||||
lp_status lar_solver::find_feasible_solution() {
|
||||
m_settings.stats().m_make_feasible++;
|
||||
if (A_r().column_count() > m_settings.stats().m_max_cols)
|
||||
m_settings.stats().m_max_cols = A_r().column_count();
|
||||
if (A_r().row_count() > m_settings.stats().m_max_rows)
|
||||
m_settings.stats().m_max_rows = A_r().row_count();
|
||||
stats().m_make_feasible++;
|
||||
if (A_r().column_count() > stats().m_max_cols)
|
||||
stats().m_max_cols = A_r().column_count();
|
||||
if (A_r().row_count() > stats().m_max_rows)
|
||||
stats().m_max_rows = A_r().row_count();
|
||||
if (strategy_is_undecided())
|
||||
decide_on_strategy_and_adjust_initial_state();
|
||||
|
||||
|
@ -248,7 +243,7 @@ namespace lp {
|
|||
m_constraints.push();
|
||||
m_usage_in_terms.push();
|
||||
}
|
||||
|
||||
|
||||
void lar_solver::clean_popped_elements(unsigned n, u_set& set) {
|
||||
vector<int> to_remove;
|
||||
for (unsigned j : set)
|
||||
|
@ -269,9 +264,8 @@ namespace lp {
|
|||
m_crossed_bounds_column.pop(k);
|
||||
unsigned n = m_columns_to_ul_pairs.peek_size(k);
|
||||
m_var_register.shrink(n);
|
||||
if (m_settings.use_tableau()) {
|
||||
if (m_settings.use_tableau())
|
||||
pop_tableau();
|
||||
}
|
||||
lp_assert(A_r().column_count() == n);
|
||||
TRACE("lar_solver_details",
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
|
@ -285,6 +279,10 @@ namespace lp {
|
|||
clean_popped_elements(n, m_columns_with_changed_bounds);
|
||||
clean_popped_elements(n, m_incorrect_columns);
|
||||
|
||||
for (auto rid : m_row_bounds_to_replay)
|
||||
insert_row_with_changed_bounds(rid);
|
||||
m_row_bounds_to_replay.reset();
|
||||
|
||||
unsigned m = A_r().row_count();
|
||||
clean_popped_elements(m, m_rows_with_changed_bounds);
|
||||
clean_inf_set_of_r_solver_after_pop();
|
||||
|
@ -633,6 +631,9 @@ namespace lp {
|
|||
left_side.push_back(std::make_pair(p.second, p.first));
|
||||
}
|
||||
|
||||
void lar_solver::insert_row_with_changed_bounds(unsigned rid) {
|
||||
m_rows_with_changed_bounds.insert(rid);
|
||||
}
|
||||
|
||||
void lar_solver::detect_rows_of_bound_change_column_for_nbasic_column(unsigned j) {
|
||||
if (A_r().row_count() != m_column_buffer.data_size())
|
||||
|
@ -643,14 +644,14 @@ namespace lp {
|
|||
|
||||
m_mpq_lar_core_solver.m_r_solver.solve_Bd(j, m_column_buffer);
|
||||
for (unsigned i : m_column_buffer.m_index)
|
||||
m_rows_with_changed_bounds.insert(i);
|
||||
insert_row_with_changed_bounds(i);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void lar_solver::detect_rows_of_bound_change_column_for_nbasic_column_tableau(unsigned j) {
|
||||
for (auto& rc : m_mpq_lar_core_solver.m_r_A.m_columns[j])
|
||||
m_rows_with_changed_bounds.insert(rc.var());
|
||||
insert_row_with_changed_bounds(rc.var());
|
||||
}
|
||||
|
||||
bool lar_solver::use_tableau() const { return m_settings.use_tableau(); }
|
||||
|
@ -743,7 +744,7 @@ namespace lp {
|
|||
|
||||
void lar_solver::detect_rows_with_changed_bounds_for_column(unsigned j) {
|
||||
if (m_mpq_lar_core_solver.m_r_heading[j] >= 0) {
|
||||
m_rows_with_changed_bounds.insert(m_mpq_lar_core_solver.m_r_heading[j]);
|
||||
insert_row_with_changed_bounds(m_mpq_lar_core_solver.m_r_heading[j]);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -793,7 +794,7 @@ namespace lp {
|
|||
update_x_and_inf_costs_for_columns_with_changed_bounds();
|
||||
m_mpq_lar_core_solver.solve();
|
||||
set_status(m_mpq_lar_core_solver.m_r_solver.get_status());
|
||||
lp_assert(((m_settings.stats().m_make_feasible% 100) != 0) || m_status != lp_status::OPTIMAL || all_constraints_hold());
|
||||
lp_assert(((stats().m_make_feasible% 100) != 0) || m_status != lp_status::OPTIMAL || all_constraints_hold());
|
||||
}
|
||||
|
||||
|
||||
|
@ -974,9 +975,7 @@ namespace lp {
|
|||
|
||||
bool lar_solver::the_left_sides_sum_to_zero(const vector<std::pair<mpq, unsigned>>& evidence) const {
|
||||
std::unordered_map<var_index, mpq> coeff_map;
|
||||
for (auto& it : evidence) {
|
||||
mpq coeff = it.first;
|
||||
constraint_index con_ind = it.second;
|
||||
for (auto const & [coeff, con_ind] : evidence) {
|
||||
lp_assert(m_constraints.valid_index(con_ind));
|
||||
register_in_map(coeff_map, m_constraints[con_ind], coeff);
|
||||
}
|
||||
|
@ -1337,7 +1336,7 @@ namespace lp {
|
|||
void lar_solver::mark_rows_for_bound_prop(lpvar j) {
|
||||
auto& column = A_r().m_columns[j];
|
||||
for (auto const& r : column)
|
||||
m_rows_with_changed_bounds.insert(r.var());
|
||||
insert_row_with_changed_bounds(r.var());
|
||||
}
|
||||
|
||||
|
||||
|
@ -1659,7 +1658,7 @@ namespace lp {
|
|||
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
|
||||
m_mpq_lar_core_solver.m_r_basis.push_back(j);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
insert_row_with_changed_bounds(A_r().row_count() - 1);
|
||||
}
|
||||
else {
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(-static_cast<int>(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1);
|
||||
|
@ -1755,7 +1754,7 @@ namespace lp {
|
|||
if (use_tableau() && !coeffs.empty()) {
|
||||
add_row_from_term_no_constraint(m_terms.back(), ret);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
insert_row_with_changed_bounds(A_r().row_count() - 1);
|
||||
}
|
||||
lp_assert(m_var_register.size() == A_r().column_count());
|
||||
if (m_need_register_terms) {
|
||||
|
|
|
@ -76,13 +76,13 @@ class lar_solver : public column_namer {
|
|||
|
||||
//////////////////// fields //////////////////////////
|
||||
lp_settings m_settings;
|
||||
lp_status m_status;
|
||||
lp_status m_status = lp_status::UNKNOWN;
|
||||
stacked_value<simplex_strategy_enum> m_simplex_strategy;
|
||||
// such can be found at the initialization step: u < l
|
||||
stacked_value<int> m_crossed_bounds_column;
|
||||
lar_core_solver m_mpq_lar_core_solver;
|
||||
int_solver * m_int_solver;
|
||||
bool m_need_register_terms;
|
||||
int_solver * m_int_solver = nullptr;
|
||||
bool m_need_register_terms = false;
|
||||
var_register m_var_register;
|
||||
var_register m_term_register;
|
||||
stacked_vector<ul_pair> m_columns_to_ul_pairs;
|
||||
|
@ -90,6 +90,8 @@ class lar_solver : public column_namer {
|
|||
// the set of column indices j such that bounds have changed for j
|
||||
u_set m_columns_with_changed_bounds;
|
||||
u_set m_rows_with_changed_bounds;
|
||||
unsigned_vector m_row_bounds_to_replay;
|
||||
|
||||
u_set m_basic_columns_with_changed_cost;
|
||||
// these are basic columns with the value changed, so the the corresponding row in the tableau
|
||||
// does not sum to zero anymore
|
||||
|
@ -164,7 +166,6 @@ class lar_solver : public column_namer {
|
|||
void adjust_initial_state_for_lu();
|
||||
void adjust_initial_state_for_tableau_rows();
|
||||
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls);
|
||||
void clear();
|
||||
bool use_lu() const;
|
||||
bool sizes_are_correct() const;
|
||||
bool implied_bound_is_correctly_explained(implied_bound const & be, const vector<std::pair<mpq, unsigned>> & explanation) const;
|
||||
|
@ -219,6 +220,7 @@ class lar_solver : public column_namer {
|
|||
void change_basic_columns_dependend_on_a_given_nb_column(unsigned j, const numeric_pair<mpq> & delta);
|
||||
void update_x_and_inf_costs_for_column_with_changed_bounds(unsigned j);
|
||||
unsigned num_changed_bounds() const { return m_rows_with_changed_bounds.size(); }
|
||||
void insert_row_with_changed_bounds(unsigned rid);
|
||||
void detect_rows_with_changed_bounds_for_column(unsigned j);
|
||||
void detect_rows_with_changed_bounds();
|
||||
void set_value_for_nbasic_column(unsigned j, const impq & new_val);
|
||||
|
@ -368,20 +370,19 @@ public:
|
|||
// these two loops should be run sequentially
|
||||
// since the first loop might change column bounds
|
||||
// and add fixed columns this way
|
||||
if (settings().cheap_eqs()) {
|
||||
if (settings().propagate_eqs()) {
|
||||
bp.clear_for_eq();
|
||||
for (unsigned i : m_rows_with_changed_bounds) {
|
||||
calculate_cheap_eqs_for_row(i, bp);
|
||||
unsigned offset_eqs = stats().m_offset_eqs;
|
||||
bp.cheap_eq_tree(i);
|
||||
if (settings().get_cancel_flag())
|
||||
return;
|
||||
if (stats().m_offset_eqs > offset_eqs)
|
||||
m_row_bounds_to_replay.push_back(i);
|
||||
}
|
||||
}
|
||||
m_rows_with_changed_bounds.clear();
|
||||
}
|
||||
template <typename T>
|
||||
void calculate_cheap_eqs_for_row(unsigned i, lp_bound_propagator<T> & bp) {
|
||||
bp.cheap_eq_tree(i);
|
||||
}
|
||||
|
||||
bool is_fixed(column_index const& j) const { return column_is_fixed(j); }
|
||||
inline column_index to_column_index(unsigned v) const { return column_index(external_to_column_index(v)); }
|
||||
|
@ -515,6 +516,8 @@ public:
|
|||
unsigned column_to_reported_index(unsigned j) const;
|
||||
lp_settings & settings();
|
||||
lp_settings const & settings() const;
|
||||
statistics& stats();
|
||||
|
||||
void updt_params(params_ref const& p);
|
||||
column_type get_column_type(unsigned j) const { return m_mpq_lar_core_solver.m_column_types()[j]; }
|
||||
const impq & get_lower_bound(unsigned j) const { return m_mpq_lar_core_solver.m_r_lower_bounds()[j]; }
|
||||
|
|
|
@ -155,7 +155,7 @@ public:
|
|||
};
|
||||
|
||||
class const_iterator {
|
||||
u_map< mpq>::iterator m_it;
|
||||
u_map<mpq>::iterator m_it;
|
||||
public:
|
||||
ival operator*() const { return ival(m_it->m_key, m_it->m_value); }
|
||||
const_iterator operator++() { const_iterator i = *this; m_it++; return i; }
|
||||
|
|
|
@ -72,14 +72,15 @@ class lp_bound_propagator {
|
|||
static int other(int x, int y, int z) { SASSERT(x == z || y == z); return x == z ? y : x; }
|
||||
std::ostream& print_vert(std::ostream & out, const vertex* v) const {
|
||||
out << "(c = " << v->column() << ", parent = {";
|
||||
if (v->parent()) { out << "(" << v->parent()->column() << ")";}
|
||||
else { out << "null"; }
|
||||
if (v->parent())
|
||||
out << "(" << v->parent()->column() << ")";
|
||||
else
|
||||
out << "null";
|
||||
out << "} , lvl = " << v->level();
|
||||
if (m_pol.contains(v->column())) {
|
||||
if (m_pol.contains(v->column()))
|
||||
out << (pol(v) == -1? " -":" +");
|
||||
} else {
|
||||
else
|
||||
out << " not in m_pol";
|
||||
}
|
||||
out << ')';
|
||||
return out;
|
||||
}
|
||||
|
@ -87,13 +88,13 @@ class lp_bound_propagator {
|
|||
hashtable<unsigned, u_hash, u_eq> m_visited_rows;
|
||||
hashtable<unsigned, u_hash, u_eq> m_visited_columns;
|
||||
u_map<vertex*> m_vertices;
|
||||
vertex* m_root;
|
||||
vertex* m_root = nullptr;
|
||||
// At some point we can find a row with a single vertex non fixed vertex
|
||||
// then we can fix the whole tree,
|
||||
// by adjusting the vertices offsets, so they become absolute.
|
||||
// If the tree is fixed then in addition to checking with the m_vals_to_verts
|
||||
// we are going to check with the m_fixed_var_tables.
|
||||
const vertex* m_fixed_vertex;
|
||||
const vertex* m_fixed_vertex = nullptr;
|
||||
explanation m_fixed_vertex_explanation;
|
||||
// a pair (o, j) belongs to m_vals_to_verts iff x[j] = x[m_root->column()] + o
|
||||
map<mpq, const vertex*, obj_hash<mpq>, default_eq<mpq>> m_vals_to_verts;
|
||||
|
@ -111,19 +112,199 @@ class lp_bound_propagator {
|
|||
|
||||
T& m_imp;
|
||||
vector<implied_bound> m_ibounds;
|
||||
|
||||
|
||||
|
||||
map<mpq, unsigned, obj_hash<mpq>, default_eq<mpq>> m_val2fixed_row;
|
||||
|
||||
void try_add_equation_with_internal_fixed_tables(unsigned r1, vertex const* v) {
|
||||
SASSERT(m_fixed_vertex);
|
||||
if (v != m_root)
|
||||
return;
|
||||
unsigned v1 = v->column();
|
||||
unsigned r2 = UINT_MAX;
|
||||
if (!m_val2fixed_row.find(val(v1), r2) || r2 >= lp().row_count()) {
|
||||
m_val2fixed_row.insert(val(v1), r1);
|
||||
return;
|
||||
}
|
||||
unsigned v2, v3;
|
||||
int polarity;
|
||||
if (!is_tree_offset_row(r2, v2, v3, polarity) || !not_set(v3) ||
|
||||
is_int(v1) != is_int(v2) || val(v1) != val(v2)) {
|
||||
m_val2fixed_row.insert(val(v1), r1);
|
||||
return;
|
||||
}
|
||||
|
||||
explanation ex;
|
||||
explain_fixed_in_row(r1, ex);
|
||||
explain_fixed_in_row(r2, ex);
|
||||
add_eq_on_columns(ex, v1, v2, true);
|
||||
}
|
||||
|
||||
void try_add_equation_with_lp_fixed_tables(unsigned row_index, const vertex *v) {
|
||||
SASSERT(m_fixed_vertex);
|
||||
unsigned v_j = v->column();
|
||||
unsigned j = null_lpvar;
|
||||
if (!lp().find_in_fixed_tables(val(v_j), is_int(v_j), j)) {
|
||||
// try_add_equation_with_internal_fixed_tables(row_index, v);
|
||||
return;
|
||||
}
|
||||
|
||||
TRACE("cheap_eq",
|
||||
tout << "v_j = "; lp().print_column_info(v_j, tout) << std::endl;
|
||||
tout << "v = "; print_vert(tout, v) << std::endl;
|
||||
tout << "found j " << j << std::endl; lp().print_column_info(j, tout)<< std::endl;
|
||||
tout << "found j = " << j << std::endl;);
|
||||
vector<edge> path = connect_in_tree(v, m_fixed_vertex);
|
||||
explanation ex = get_explanation_from_path(path);
|
||||
ex.add_expl(m_fixed_vertex_explanation);
|
||||
explain_fixed_column(j, ex);
|
||||
add_eq_on_columns(ex, j, v_j, true);
|
||||
}
|
||||
|
||||
void try_add_equation_with_val_table(const vertex *v) {
|
||||
SASSERT(m_fixed_vertex);
|
||||
unsigned v_j = v->column();
|
||||
const vertex *u = nullptr;
|
||||
if (!m_vals_to_verts.find(val(v_j), u)) {
|
||||
m_vals_to_verts.insert(val(v_j), v);
|
||||
return;
|
||||
}
|
||||
unsigned j = u->column();
|
||||
if (j == v_j || is_int(j) != is_int(v_j))
|
||||
return;
|
||||
|
||||
TRACE("cheap_eq", tout << "found j=" << j << " for v=";
|
||||
print_vert(tout, v) << "\n in m_vals_to_verts\n";);
|
||||
vector<edge> path = connect_in_tree(u, v);
|
||||
explanation ex = get_explanation_from_path(path);
|
||||
ex.add_expl(m_fixed_vertex_explanation);
|
||||
add_eq_on_columns(ex, j, v_j, true);
|
||||
}
|
||||
|
||||
static bool not_set(unsigned j) { return j == UINT_MAX; }
|
||||
static bool is_set(unsigned j) { return j != UINT_MAX; }
|
||||
|
||||
void create_root(unsigned row_index) {
|
||||
SASSERT(!m_root && !m_fixed_vertex);
|
||||
unsigned x, y;
|
||||
int polarity;
|
||||
TRACE("cheap_eq_det", print_row(tout, row_index););
|
||||
if (!is_tree_offset_row(row_index, x, y, polarity)) {
|
||||
TRACE("cheap_eq_det", tout << "not an offset row\n";);
|
||||
return;
|
||||
}
|
||||
TRACE("cheap_eq", print_row(tout, row_index););
|
||||
m_root = alloc_v(x);
|
||||
set_polarity(m_root, 1); // keep m_root in the positive table
|
||||
if (not_set(y)) {
|
||||
set_fixed_vertex(m_root);
|
||||
explain_fixed_in_row(row_index, m_fixed_vertex_explanation);
|
||||
}
|
||||
else {
|
||||
vertex *v = add_child_with_check(row_index, y, m_root, polarity);
|
||||
if (v)
|
||||
explore_under(v);
|
||||
}
|
||||
explore_under(m_root);
|
||||
}
|
||||
|
||||
void explore_under(vertex * v) {
|
||||
check_for_eq_and_add_to_val_tables(v);
|
||||
go_over_vertex_column(v);
|
||||
}
|
||||
|
||||
// In case of only one non fixed column, and the function returns true,
|
||||
// this column would be represened by x.
|
||||
bool is_tree_offset_row(unsigned row_index, unsigned & x, unsigned & y, int & polarity) const {
|
||||
x = y = UINT_MAX;
|
||||
const row_cell<mpq>* x_cell = nullptr;
|
||||
const row_cell<mpq>* y_cell = nullptr;
|
||||
const auto & row = lp().get_row(row_index);
|
||||
for (unsigned k = 0; k < row.size(); k++) {
|
||||
const auto& c = row[k];
|
||||
if (column_is_fixed(c.var()))
|
||||
continue;
|
||||
if (not_set(x)) {
|
||||
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
|
||||
x = c.var();
|
||||
x_cell = & c;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
else if (not_set(y)) {
|
||||
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
|
||||
y = c.var();
|
||||
y_cell = & c;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
if (is_set(x)) {
|
||||
if (is_set(y))
|
||||
polarity = x_cell->coeff().is_pos() == y_cell->coeff().is_pos()? -1 : 1;
|
||||
else
|
||||
polarity = 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void go_over_vertex_column(vertex * v) {
|
||||
lpvar j = v->column();
|
||||
if (!check_insert(m_visited_columns, j))
|
||||
return;
|
||||
|
||||
for (const auto & c : lp().get_column(j)) {
|
||||
unsigned row_index = c.var();
|
||||
if (!check_insert(m_visited_rows, row_index))
|
||||
continue;
|
||||
vertex* u = get_child_from_row(row_index, v);
|
||||
if (u)
|
||||
explore_under(u);
|
||||
}
|
||||
}
|
||||
|
||||
void reset_cheap_eq_eh() {
|
||||
if (!m_root)
|
||||
return;
|
||||
delete_tree(m_root);
|
||||
m_root = nullptr;
|
||||
set_fixed_vertex(nullptr);
|
||||
m_fixed_vertex_explanation.clear();
|
||||
m_vals_to_verts.reset();
|
||||
m_vals_to_verts_neg.reset();
|
||||
m_pol.reset();
|
||||
m_vertices.reset();
|
||||
}
|
||||
|
||||
struct reset_cheap_eq {
|
||||
lp_bound_propagator& p;
|
||||
reset_cheap_eq(lp_bound_propagator& p):p(p) {}
|
||||
~reset_cheap_eq() { p.reset_cheap_eq_eh(); }
|
||||
};
|
||||
|
||||
|
||||
public:
|
||||
|
||||
lp_bound_propagator(T& imp):
|
||||
m_imp(imp) {}
|
||||
|
||||
const vector<implied_bound>& ibounds() const { return m_ibounds; }
|
||||
|
||||
void init() {
|
||||
m_improved_upper_bounds.clear();
|
||||
m_improved_lower_bounds.clear();
|
||||
m_ibounds.reset();
|
||||
}
|
||||
lp_bound_propagator(T& imp): m_root(nullptr),
|
||||
m_fixed_vertex(nullptr),
|
||||
m_imp(imp) {}
|
||||
|
||||
|
||||
const lar_solver& lp() const { return m_imp.lp(); }
|
||||
lar_solver& lp() { return m_imp.lp(); }
|
||||
|
||||
column_type get_column_type(unsigned j) const {
|
||||
return m_imp.lp().get_column_type(j);
|
||||
}
|
||||
|
@ -133,9 +314,8 @@ public:
|
|||
}
|
||||
|
||||
const mpq & get_lower_bound_rational(unsigned j) const {
|
||||
return m_imp.lp().get_lower_bound(j).x;
|
||||
return m_imp.lp().get_lower_bound(j).x;
|
||||
}
|
||||
|
||||
|
||||
const impq & get_upper_bound(unsigned j) const {
|
||||
return m_imp.lp().get_upper_bound(j);
|
||||
|
@ -167,19 +347,22 @@ public:
|
|||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
TRACE("try_add_bound", m_imp.lp().print_implied_bound(found_bound, tout););
|
||||
}
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
m_improved_lower_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
TRACE("try_add_bound", m_imp.lp().print_implied_bound(m_ibounds.back(), tout););
|
||||
}
|
||||
} else { // the upper bound case
|
||||
}
|
||||
else { // the upper bound case
|
||||
if (try_get_value(m_improved_upper_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v < found_bound.m_bound || (v == found_bound.m_bound && !found_bound.m_strict && strict)) {
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
TRACE("try_add_bound", m_imp.lp().print_implied_bound(found_bound, tout););
|
||||
}
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
m_improved_upper_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
TRACE("try_add_bound", m_imp.lp().print_implied_bound(m_ibounds.back(), tout););
|
||||
|
@ -199,54 +382,12 @@ public:
|
|||
return val(v->column());
|
||||
}
|
||||
|
||||
void try_add_equation_with_lp_fixed_tables(const vertex *v) {
|
||||
SASSERT(m_fixed_vertex);
|
||||
unsigned v_j = v->column();
|
||||
unsigned j = null_lpvar;
|
||||
if (!lp().find_in_fixed_tables(val(v_j), is_int(v_j), j))
|
||||
return;
|
||||
|
||||
TRACE("cheap_eq", tout << "v_j = "; lp().print_column_info(v_j, tout) << std::endl;);
|
||||
TRACE("cheap_eq", tout << "v = "; print_vert(tout, v) << std::endl;);
|
||||
TRACE("cheap_eq", tout << "found j " << j << std::endl;
|
||||
lp().print_column_info(j, tout)<< std::endl;);
|
||||
TRACE("cheap_eq", tout << "found j = " << j << std::endl;);
|
||||
vector<edge> path = connect_in_tree(v, m_fixed_vertex);
|
||||
explanation ex = get_explanation_from_path(path);
|
||||
ex.add_expl(m_fixed_vertex_explanation);
|
||||
explain_fixed_column(j, ex);
|
||||
add_eq_on_columns(ex, j, v->column());
|
||||
|
||||
}
|
||||
|
||||
void try_add_equation_with_val_table(const vertex *v) {
|
||||
SASSERT(m_fixed_vertex);
|
||||
unsigned v_j = v->column();
|
||||
const vertex *u = nullptr;
|
||||
if (!m_vals_to_verts.find(val(v_j), u)) {
|
||||
m_vals_to_verts.insert(val(v_j), v);
|
||||
return;
|
||||
}
|
||||
unsigned j = u->column();
|
||||
if (j == v_j || is_int(j) != is_int(v_j))
|
||||
return;
|
||||
|
||||
TRACE("cheap_eq", tout << "found j=" << j << " for v=";
|
||||
print_vert(tout, v) << "\n in m_vals_to_verts\n";);
|
||||
vector<edge> path = connect_in_tree(u, v);
|
||||
explanation ex = get_explanation_from_path(path);
|
||||
ex.add_expl(m_fixed_vertex_explanation);
|
||||
add_eq_on_columns(ex, j, v_j);
|
||||
}
|
||||
|
||||
|
||||
bool tree_contains_r(vertex* root, vertex *v) const {
|
||||
if (*root == *v)
|
||||
return true;
|
||||
for (auto e : root->edges()) {
|
||||
for (auto e : root->edges())
|
||||
if (tree_contains_r(e.target(), v))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -294,38 +435,12 @@ public:
|
|||
return v;
|
||||
}
|
||||
|
||||
static bool not_set(unsigned j) { return j == UINT_MAX; }
|
||||
static bool is_set(unsigned j) { return j != UINT_MAX; }
|
||||
|
||||
void create_root(unsigned row_index) {
|
||||
SASSERT(!m_root && !m_fixed_vertex);
|
||||
unsigned x, y;
|
||||
int polarity;
|
||||
TRACE("cheap_eq_det", print_row(tout, row_index););
|
||||
if (!is_tree_offset_row(row_index, x, y, polarity)) {
|
||||
TRACE("cheap_eq_det", tout << "not an offset row\n";);
|
||||
return;
|
||||
}
|
||||
TRACE("cheap_eq", print_row(tout, row_index););
|
||||
m_root = alloc_v(x);
|
||||
set_polarity(m_root, 1); // keep m_root in the positive table
|
||||
if (not_set(y)) {
|
||||
set_fixed_vertex(m_root);
|
||||
explain_fixed_in_row(row_index, m_fixed_vertex_explanation);
|
||||
} else {
|
||||
vertex *v = add_child_with_check(row_index, y, m_root, polarity);
|
||||
if (v)
|
||||
explore_under(v);
|
||||
}
|
||||
explore_under(m_root);
|
||||
}
|
||||
|
||||
unsigned column(unsigned row, unsigned index) {
|
||||
return lp().get_row(row)[index].var();
|
||||
}
|
||||
|
||||
bool fixed_phase() const { return m_fixed_vertex; }
|
||||
|
||||
|
||||
|
||||
// Returns the vertex to start exploration from, or nullptr.
|
||||
|
@ -379,10 +494,12 @@ public:
|
|||
is_int(k->column()) == is_int(v->column()) &&
|
||||
!is_equal(k->column(), v->column())) {
|
||||
report_eq(k, v);
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
TRACE("cheap_eq", tout << "no report\n";);
|
||||
}
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
TRACE("cheap_eq", tout << "registered: " << val(v) << " -> { "; print_vert(tout, v) << "} \n";);
|
||||
table.insert(val(v), v);
|
||||
}
|
||||
|
@ -411,37 +528,31 @@ public:
|
|||
|
||||
std::ostream& print_path(const vector<edge>& path, std::ostream& out) const {
|
||||
out << "path = \n";
|
||||
for (const edge& k : path) {
|
||||
for (const edge& k : path)
|
||||
print_edge(k, out) << "\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// we have v_i and v_j, indices of vertices at the same offsets
|
||||
void report_eq(const vertex* v_i, const vertex* v_j) {
|
||||
SASSERT(v_i != v_j);
|
||||
SASSERT(lp().get_column_value(v_i->column()) == lp().get_column_value(v_j->column()));
|
||||
TRACE("cheap_eq", tout << v_i->column() << " = " << v_j->column() << "\nu = ";
|
||||
print_vert(tout, v_i) << "\nv = "; print_vert(tout, v_j) <<"\n";
|
||||
);
|
||||
print_vert(tout, v_i) << "\nv = "; print_vert(tout, v_j) <<"\n");
|
||||
|
||||
vector<edge> path = connect_in_tree(v_i, v_j);
|
||||
lp::explanation exp = get_explanation_from_path(path);
|
||||
add_eq_on_columns(exp, v_i->column(), v_j->column());
|
||||
add_eq_on_columns(exp, v_i->column(), v_j->column(), false);
|
||||
|
||||
}
|
||||
|
||||
std::ostream& print_expl(std::ostream & out, const explanation& exp) const {
|
||||
for (auto p : exp) {
|
||||
for (auto p : exp)
|
||||
lp().constraints().display(out, [this](lpvar j) { return lp().get_variable_name(j);}, p.ci());
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void add_eq_on_columns(const explanation& exp, lpvar j, lpvar k) {
|
||||
bool add_eq_on_columns(const explanation& exp, lpvar j, lpvar k, bool is_fixed) {
|
||||
SASSERT(j != k);
|
||||
unsigned je = lp().column_to_reported_index(j);
|
||||
unsigned ke = lp().column_to_reported_index(k);
|
||||
|
@ -452,8 +563,10 @@ public:
|
|||
tout << "theory_vars v" << lp().local_to_external(je) << " == v" << lp().local_to_external(ke) << "\n";
|
||||
);
|
||||
|
||||
m_imp.add_eq(je, ke, exp);
|
||||
lp().settings().stats().m_cheap_eqs++;
|
||||
bool added = m_imp.add_eq(je, ke, exp, is_fixed);
|
||||
if (added)
|
||||
lp().stats().m_offset_eqs++;
|
||||
return added;
|
||||
}
|
||||
|
||||
// column to theory_var
|
||||
|
@ -478,14 +591,10 @@ public:
|
|||
}
|
||||
|
||||
void explain_fixed_in_row(unsigned row, explanation& ex) const {
|
||||
TRACE("cheap_eq",
|
||||
tout << lp().get_row(row) << std::endl;
|
||||
);
|
||||
for (const auto & c : lp().get_row(row)) {
|
||||
if (lp().is_fixed(c.var())) {
|
||||
TRACE("cheap_eq", tout << lp().get_row(row) << std::endl);
|
||||
for (const auto & c : lp().get_row(row))
|
||||
if (lp().is_fixed(c.var()))
|
||||
explain_fixed_column(c.var(), ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void explain_fixed_column(unsigned j, explanation & ex) const {
|
||||
|
@ -536,10 +645,9 @@ public:
|
|||
if (visited_verts.find(v->column()) != visited_verts.end())
|
||||
return false;
|
||||
visited_verts.insert(v->column());
|
||||
for (auto e : v->edges()) {
|
||||
for (auto e : v->edges())
|
||||
if (!tree_is_correct(e.target(), visited_verts))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
std::ostream& print_tree(std::ostream & out, vertex* v) const {
|
||||
|
@ -553,43 +661,37 @@ public:
|
|||
return out;
|
||||
}
|
||||
|
||||
void try_add_equation_with_fixed_tables(const vertex* v) {
|
||||
try_add_equation_with_lp_fixed_tables(v);
|
||||
void try_add_equation_with_fixed_tables(unsigned row_index, const vertex* v) {
|
||||
try_add_equation_with_lp_fixed_tables(row_index, v);
|
||||
try_add_equation_with_val_table(v);
|
||||
}
|
||||
|
||||
void create_fixed_eqs(const vertex* v) {
|
||||
try_add_equation_with_fixed_tables(v);
|
||||
void handle_fixed_phase(unsigned row_index) {
|
||||
if (!fixed_phase())
|
||||
return;
|
||||
const vertex* v = m_root;
|
||||
try_add_equation_with_fixed_tables(row_index, v);
|
||||
for (auto e: v->edges())
|
||||
try_add_equation_with_fixed_tables(e.target());
|
||||
try_add_equation_with_fixed_tables(row_index, e.target());
|
||||
}
|
||||
|
||||
void handle_fixed_phase() {
|
||||
create_fixed_eqs(m_root);
|
||||
}
|
||||
|
||||
void cheap_eq_tree(unsigned row_index) {
|
||||
TRACE("cheap_eq_det", tout << "row_index = " << row_index << "\n";);
|
||||
if (!check_insert(m_visited_rows, row_index))
|
||||
return; // already explored
|
||||
create_root(row_index);
|
||||
if (m_root == nullptr) {
|
||||
reset_cheap_eq _reset(*this);
|
||||
TRACE("cheap_eq_det", tout << "row_index = " << row_index << "\n";);
|
||||
if (!check_insert(m_visited_rows, row_index))
|
||||
return;
|
||||
}
|
||||
TRACE("cheap_eq", tout << "tree = "; print_tree(tout, m_root) << "\n";);
|
||||
create_root(row_index);
|
||||
if (!m_root)
|
||||
return;
|
||||
|
||||
TRACE("cheap_eq", tout << "tree = "; print_tree(tout, m_root) << "\n";);
|
||||
SASSERT(tree_is_correct());
|
||||
if (fixed_phase())
|
||||
handle_fixed_phase();
|
||||
TRACE("cheap_eq", tout << "done for row_index " << row_index << "\n";);
|
||||
TRACE("cheap_eq", tout << "tree size = " << verts_size(););
|
||||
delete_tree(m_root);
|
||||
m_root = nullptr;
|
||||
set_fixed_vertex(nullptr);
|
||||
m_fixed_vertex_explanation.clear();
|
||||
m_vals_to_verts.reset();
|
||||
m_vals_to_verts_neg.reset();
|
||||
m_pol.reset();
|
||||
m_vertices.reset();
|
||||
handle_fixed_phase(row_index);
|
||||
|
||||
TRACE("cheap_eq",
|
||||
tout << "done for row_index " << row_index << "\n";
|
||||
tout << "tree size = " << verts_size(););
|
||||
}
|
||||
|
||||
std::ostream& print_row(std::ostream & out, unsigned row_index) const {
|
||||
|
@ -643,71 +745,7 @@ public:
|
|||
return false;
|
||||
table.insert(j);
|
||||
return true;
|
||||
}
|
||||
|
||||
void go_over_vertex_column(vertex * v) {
|
||||
lpvar j = v->column();
|
||||
if (!check_insert(m_visited_columns, j))
|
||||
return;
|
||||
|
||||
for (const auto & c : lp().get_column(j)) {
|
||||
unsigned row_index = c.var();
|
||||
if (!check_insert(m_visited_rows, row_index))
|
||||
continue;
|
||||
vertex *u = get_child_from_row(row_index, v);
|
||||
if (u) {
|
||||
// debug
|
||||
// if (verts_size() > 3) {
|
||||
// std::cout << "big tree\n";
|
||||
// TRACE("cheap_eq", print_tree(tout, m_root););
|
||||
// exit(1);
|
||||
// } // end debug
|
||||
explore_under(u);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void explore_under(vertex * v) {
|
||||
check_for_eq_and_add_to_val_tables(v);
|
||||
go_over_vertex_column(v);
|
||||
}
|
||||
}
|
||||
|
||||
// In case of only one non fixed column, and the function returns true,
|
||||
// this column would be represened by x.
|
||||
bool is_tree_offset_row( unsigned row_index,
|
||||
unsigned & x, unsigned & y, int & polarity ) const {
|
||||
x = y = UINT_MAX;
|
||||
const row_cell<mpq>* x_cell = nullptr;
|
||||
const row_cell<mpq>* y_cell = nullptr;
|
||||
const auto & row = lp().get_row(row_index);
|
||||
for (unsigned k = 0; k < row.size(); k++) {
|
||||
const auto& c = row[k];
|
||||
if (column_is_fixed(c.var()))
|
||||
continue;
|
||||
if (not_set(x)) {
|
||||
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
|
||||
x = c.var();
|
||||
x_cell = & c;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
} else if (not_set(y)) {
|
||||
if (c.coeff().is_one() || c.coeff().is_minus_one()) {
|
||||
y = c.var();
|
||||
y_cell = & c;
|
||||
} else
|
||||
return false;
|
||||
} else
|
||||
return false;
|
||||
}
|
||||
if (is_set(x)) {
|
||||
if (is_set(y))
|
||||
polarity = x_cell->coeff().is_pos() == y_cell->coeff().is_pos()? -1 : 1;
|
||||
else
|
||||
polarity = 1;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -27,7 +27,7 @@ template bool lp::vectors_are_equal<lp::mpq>(vector<lp::mpq > const&, vector<lp:
|
|||
void lp::lp_settings::updt_params(params_ref const& _p) {
|
||||
smt_params_helper p(_p);
|
||||
m_enable_hnf = p.arith_enable_hnf();
|
||||
m_cheap_eqs = p.arith_propagate_eqs();
|
||||
m_propagate_eqs = p.arith_propagate_eqs();
|
||||
print_statistics = p.arith_print_stats();
|
||||
m_print_external_var_name = p.arith_print_ext_var_names();
|
||||
report_frequency = p.arith_rep_freq();
|
||||
|
|
|
@ -99,6 +99,7 @@ template <typename X> bool is_epsilon_small(const X & v, const double& eps);
|
|||
|
||||
class lp_resource_limit {
|
||||
public:
|
||||
virtual ~lp_resource_limit() = default;
|
||||
virtual bool get_cancel_flag() = 0;
|
||||
};
|
||||
|
||||
|
@ -125,7 +126,7 @@ struct statistics {
|
|||
unsigned m_cross_nested_forms;
|
||||
unsigned m_grobner_calls;
|
||||
unsigned m_grobner_conflicts;
|
||||
unsigned m_cheap_eqs;
|
||||
unsigned m_offset_eqs;
|
||||
statistics() { reset(); }
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
void collect_statistics(::statistics& st) const {
|
||||
|
@ -146,7 +147,7 @@ struct statistics {
|
|||
st.update("arith-horner-cross-nested-forms", m_cross_nested_forms);
|
||||
st.update("arith-grobner-calls", m_grobner_calls);
|
||||
st.update("arith-grobner-conflicts", m_grobner_conflicts);
|
||||
st.update("arith-cheap-eqs", m_cheap_eqs);
|
||||
st.update("arith-offset-eqs", m_offset_eqs);
|
||||
|
||||
}
|
||||
};
|
||||
|
@ -241,10 +242,10 @@ private:
|
|||
unsigned m_nlsat_delay;
|
||||
bool m_enable_hnf { true };
|
||||
bool m_print_external_var_name { false };
|
||||
bool m_cheap_eqs { false };
|
||||
bool m_propagate_eqs { false };
|
||||
public:
|
||||
bool print_external_var_name() const { return m_print_external_var_name; }
|
||||
bool cheap_eqs() const { return m_cheap_eqs;}
|
||||
bool propagate_eqs() const { return m_propagate_eqs;}
|
||||
unsigned hnf_cut_period() const { return m_hnf_cut_period; }
|
||||
void set_hnf_cut_period(unsigned period) { m_hnf_cut_period = period; }
|
||||
unsigned random_next() { return m_rand(); }
|
||||
|
|
|
@ -71,6 +71,7 @@ namespace polynomial {
|
|||
template<typename ValManager, typename Value = typename ValManager::numeral>
|
||||
class var2value {
|
||||
public:
|
||||
virtual ~var2value() = default;
|
||||
virtual ValManager & m() const = 0;
|
||||
virtual bool contains(var x) const = 0;
|
||||
virtual Value const & operator()(var x) const = 0;
|
||||
|
@ -100,6 +101,7 @@ namespace polynomial {
|
|||
|
||||
struct display_var_proc {
|
||||
virtual std::ostream& operator()(std::ostream & out, var x) const { return out << "x" << x; }
|
||||
virtual ~display_var_proc() = default;
|
||||
};
|
||||
|
||||
class polynomial;
|
||||
|
@ -228,6 +230,7 @@ namespace polynomial {
|
|||
del_eh * m_next;
|
||||
public:
|
||||
del_eh():m_next(nullptr) {}
|
||||
virtual ~del_eh() = default;
|
||||
virtual void operator()(polynomial * p) = 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -175,6 +175,8 @@ namespace upolynomial {
|
|||
m_current_size = 0;
|
||||
}
|
||||
|
||||
virtual ~factorization_combination_iterator_base() = default;
|
||||
|
||||
/**
|
||||
\brief Returns the factors we are enumerating through.
|
||||
*/
|
||||
|
|
|
@ -37,6 +37,7 @@ namespace realclosure {
|
|||
|
||||
class mk_interval {
|
||||
public:
|
||||
virtual ~mk_interval() = default;
|
||||
virtual void operator()(unsigned k, mpqi_manager & im, mpqi_manager::interval & r) = 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@ Notes:
|
|||
|
||||
#include "math/simplex/bit_matrix.h"
|
||||
#include "util/stopwatch.h"
|
||||
#include "util/trace.h"
|
||||
#include <cstring>
|
||||
|
||||
|
||||
|
|
|
@ -42,6 +42,7 @@ public:
|
|||
};
|
||||
|
||||
struct display_var_proc {
|
||||
virtual ~display_var_proc() = default;
|
||||
virtual void operator()(std::ostream & out, var x) const { out << "x" << x; }
|
||||
};
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ array_factory::array_factory(ast_manager & m, model_core & md):
|
|||
}
|
||||
|
||||
/**
|
||||
\brieft Return as-array[f] where f is a fresh function symbol with the right domain and range for the array sort s.
|
||||
\brief Return as-array[f] where f is a fresh function symbol with the right domain and range for the array sort s.
|
||||
Store in fi the function interpretation for f.
|
||||
*/
|
||||
expr * array_factory::mk_array_interp(sort * s, func_interp * & fi) {
|
||||
|
|
|
@ -280,6 +280,9 @@ void func_interp::compress() {
|
|||
}
|
||||
// other compression, if else is a default branch.
|
||||
// or function encode identity.
|
||||
#if 0
|
||||
// breaks array interpretations
|
||||
// #5604
|
||||
if (m().is_false(m_else)) {
|
||||
expr_ref new_else(get_interp(), m());
|
||||
for (func_entry * curr : m_entries) {
|
||||
|
@ -291,7 +294,9 @@ void func_interp::compress() {
|
|||
m().dec_ref(m_else);
|
||||
m_else = new_else;
|
||||
}
|
||||
else if (!m_entries.empty() && is_identity()) {
|
||||
else
|
||||
#endif
|
||||
if (!m_entries.empty() && is_identity()) {
|
||||
for (func_entry * curr : m_entries) {
|
||||
curr->deallocate(m(), m_arity);
|
||||
}
|
||||
|
@ -335,14 +340,11 @@ expr * func_interp::get_interp_core() const {
|
|||
expr * r = m_else;
|
||||
ptr_buffer<expr> vars;
|
||||
for (func_entry * curr : m_entries) {
|
||||
if (m_else == curr->get_result()) {
|
||||
if (m_else == curr->get_result())
|
||||
continue;
|
||||
}
|
||||
if (vars.empty()) {
|
||||
for (unsigned i = 0; i < m_arity; i++) {
|
||||
if (vars.empty())
|
||||
for (unsigned i = 0; i < m_arity; i++)
|
||||
vars.push_back(m().mk_var(i, curr->get_arg(i)->get_sort()));
|
||||
}
|
||||
}
|
||||
ptr_buffer<expr> eqs;
|
||||
for (unsigned i = 0; i < m_arity; i++) {
|
||||
eqs.push_back(m().mk_eq(vars[i], curr->get_arg(i)));
|
||||
|
|
|
@ -238,15 +238,13 @@ void model::compress(bool force_inline) {
|
|||
top_sort ts(m);
|
||||
collect_deps(ts);
|
||||
ts.topological_sort();
|
||||
for (func_decl * f : ts.top_sorted()) {
|
||||
for (func_decl * f : ts.top_sorted())
|
||||
cleanup_interp(ts, f, force_inline);
|
||||
}
|
||||
|
||||
func_decl_set removed;
|
||||
ts.m_occur_count.reset();
|
||||
for (func_decl * f : ts.top_sorted()) {
|
||||
for (func_decl * f : ts.top_sorted())
|
||||
collect_occs(ts, f);
|
||||
}
|
||||
|
||||
// remove auxiliary declarations that are not used.
|
||||
for (func_decl * f : ts.top_sorted()) {
|
||||
|
@ -256,7 +254,8 @@ void model::compress(bool force_inline) {
|
|||
removed.insert(f);
|
||||
}
|
||||
}
|
||||
if (removed.empty()) break;
|
||||
if (removed.empty())
|
||||
break;
|
||||
TRACE("model", tout << "remove\n"; for (func_decl* f : removed) tout << f->get_name() << "\n";);
|
||||
remove_decls(m_decls, removed);
|
||||
remove_decls(m_func_decls, removed);
|
||||
|
@ -268,12 +267,14 @@ void model::compress(bool force_inline) {
|
|||
|
||||
|
||||
void model::collect_deps(top_sort& ts) {
|
||||
for (auto const& kv : m_finterp) {
|
||||
ts.insert(kv.m_key, collect_deps(ts, kv.m_value));
|
||||
}
|
||||
for (auto const& kv : m_interp) {
|
||||
ts.insert(kv.m_key, collect_deps(ts, kv.m_value.second));
|
||||
}
|
||||
recfun::util u(m);
|
||||
for (auto const& [f, v] : m_finterp)
|
||||
if (!u.has_def(f))
|
||||
ts.insert(f, collect_deps(ts, v));
|
||||
|
||||
for (auto const& [f,v] : m_interp)
|
||||
if (!u.has_def(f))
|
||||
ts.insert(f, collect_deps(ts, v.second));
|
||||
}
|
||||
|
||||
struct model::deps_collector {
|
||||
|
@ -334,6 +335,7 @@ model::func_decl_set* model::collect_deps(top_sort& ts, func_interp * fi) {
|
|||
*/
|
||||
|
||||
void model::cleanup_interp(top_sort& ts, func_decl* f, bool force_inline) {
|
||||
|
||||
unsigned pid = ts.partition_id(f);
|
||||
expr * e1 = get_const_interp(f);
|
||||
if (e1) {
|
||||
|
|
|
@ -162,7 +162,6 @@ struct evaluator_cfg : public default_rewriter_cfg {
|
|||
result_pr = nullptr;
|
||||
family_id fid = f->get_family_id();
|
||||
bool _is_uninterp = fid != null_family_id && m.get_plugin(fid)->is_considered_uninterpreted(f);
|
||||
func_decl* g = nullptr;
|
||||
br_status st = BR_FAILED;
|
||||
#if 0
|
||||
struct pp {
|
||||
|
|
|
@ -122,6 +122,7 @@ namespace datalog {
|
|||
|
||||
class register_engine_base {
|
||||
public:
|
||||
virtual ~register_engine_base() = default;
|
||||
virtual engine_base* mk_engine(DL_ENGINE engine_type) = 0;
|
||||
virtual void set_context(context* ctx) = 0;
|
||||
};
|
||||
|
|
|
@ -42,7 +42,7 @@ namespace datalog {
|
|||
/**
|
||||
\brief Number of rules longer than two that contain this pair.
|
||||
|
||||
This number is being updated by \c add_rule and \remove rule. Even though between
|
||||
This number is being updated by \c add_rule and \c remove_rule. Even though between
|
||||
adding a rule and removing it, the length of a rule can decrease without this pair
|
||||
being notified about it, it will surely see the decrease from length 3 to 2 which
|
||||
the threshold for rule being counted in this counter.
|
||||
|
|
|
@ -34,7 +34,7 @@ public:
|
|||
typedef obj_map<func_decl, unsigned> partition_map;
|
||||
|
||||
/**
|
||||
\Brief Model Based Cartesian projection of lits
|
||||
\brief Model Based Cartesian projection of lits
|
||||
*/
|
||||
void operator()(const partition_map &pmap, expr_ref_vector &lits, model &mdl,
|
||||
vector<expr_ref_vector> &res);
|
||||
|
|
|
@ -32,6 +32,7 @@ namespace nlsat {
|
|||
|
||||
class display_assumption_proc {
|
||||
public:
|
||||
virtual ~display_assumption_proc() = default;
|
||||
virtual std::ostream& operator()(std::ostream& out, assumption a) const = 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -131,16 +131,18 @@ namespace opt {
|
|||
soft.set_value(l_undef);
|
||||
}
|
||||
model_ref mdl;
|
||||
s().get_model(mdl);
|
||||
s().get_model(mdl);
|
||||
if (mdl) {
|
||||
TRACE("opt", tout << *mdl << "\n";);
|
||||
for (auto & soft : m_soft) {
|
||||
if (!mdl->is_true(soft.s)) {
|
||||
break;
|
||||
update_bounds();
|
||||
return;
|
||||
}
|
||||
soft.set_value(l_true);
|
||||
assert_value(soft);
|
||||
}
|
||||
update_bounds();
|
||||
update_assignment();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -151,9 +153,8 @@ namespace opt {
|
|||
unsigned sz = m_soft.size();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
auto& soft = m_soft[i];
|
||||
if (soft.value != l_undef) {
|
||||
if (soft.value != l_undef)
|
||||
continue;
|
||||
}
|
||||
expr_ref_vector asms(m);
|
||||
asms.push_back(soft.s);
|
||||
lbool is_sat = s().check_sat(asms);
|
||||
|
|
|
@ -24,6 +24,7 @@ Notes:
|
|||
#include "ast/pb_decl_plugin.h"
|
||||
#include "ast/ast_smt_pp.h"
|
||||
#include "ast/ast_pp_util.h"
|
||||
#include "ast/ast_ll_pp.h"
|
||||
#include "ast/display_dimacs.h"
|
||||
#include "model/model_smt2_pp.h"
|
||||
#include "tactic/goal.h"
|
||||
|
@ -966,12 +967,12 @@ namespace opt {
|
|||
tout << "Convert minimization " << orig_term << "\n";
|
||||
tout << "to maxsat: " << term << "\n";
|
||||
for (unsigned i = 0; i < weights.size(); ++i) {
|
||||
tout << mk_pp(terms[i].get(), m) << ": " << weights[i] << "\n";
|
||||
tout << mk_pp(terms.get(i), m) << ": " << weights[i] << "\n";
|
||||
}
|
||||
tout << "offset: " << offset << "\n";
|
||||
);
|
||||
std::ostringstream out;
|
||||
out << orig_term << ':' << index;
|
||||
out << mk_bounded_pp(orig_term, m, 2) << ':' << index;
|
||||
id = symbol(out.str());
|
||||
return true;
|
||||
}
|
||||
|
@ -994,7 +995,7 @@ namespace opt {
|
|||
}
|
||||
neg = true;
|
||||
std::ostringstream out;
|
||||
out << orig_term << ':' << index;
|
||||
out << mk_bounded_pp(orig_term, m) << ':' << index;
|
||||
id = symbol(out.str());
|
||||
return true;
|
||||
}
|
||||
|
@ -1013,7 +1014,7 @@ namespace opt {
|
|||
}
|
||||
neg = is_max;
|
||||
std::ostringstream out;
|
||||
out << orig_term << ':' << index;
|
||||
out << mk_bounded_pp(orig_term, m, 2) << ':' << index;
|
||||
id = symbol(out.str());
|
||||
return true;
|
||||
}
|
||||
|
@ -1200,7 +1201,7 @@ namespace opt {
|
|||
|
||||
app* context::purify(generic_model_converter_ref& fm, expr* term) {
|
||||
std::ostringstream out;
|
||||
out << mk_pp(term, m);
|
||||
out << mk_bounded_pp(term, m, 3);
|
||||
app* q = m.mk_fresh_const(out.str(), term->get_sort());
|
||||
if (!fm) fm = alloc(generic_model_converter, m, "opt");
|
||||
if (m_arith.is_int_real(term)) {
|
||||
|
|
|
@ -45,6 +45,7 @@ namespace opt {
|
|||
|
||||
class maxsat_context {
|
||||
public:
|
||||
virtual ~maxsat_context() = default;
|
||||
virtual generic_model_converter& fm() = 0; // converter that removes fresh names introduced by simplification.
|
||||
virtual bool sat_enabled() const = 0; // is using th SAT solver core enabled?
|
||||
virtual solver& get_solver() = 0; // retrieve solver object (SAT or SMT solver)
|
||||
|
|
|
@ -26,6 +26,7 @@ namespace opt {
|
|||
|
||||
class pareto_callback {
|
||||
public:
|
||||
virtual ~pareto_callback() = default;
|
||||
virtual unsigned num_objectives() = 0;
|
||||
virtual expr_ref mk_gt(unsigned i, model_ref& model) = 0;
|
||||
virtual expr_ref mk_ge(unsigned i, model_ref& model) = 0;
|
||||
|
|
|
@ -989,6 +989,7 @@ namespace nlarith {
|
|||
imp& m_imp;
|
||||
public:
|
||||
isubst(imp& i) : m_imp(i) {}
|
||||
virtual ~isubst() = default;
|
||||
virtual void mk_lt(poly const& p, app_ref& r) = 0;
|
||||
virtual void mk_eq(poly const& p, app_ref& r) = 0;
|
||||
virtual void mk_le(poly const& p, app_ref& r) {
|
||||
|
|
|
@ -96,8 +96,6 @@ namespace nlarith {
|
|||
bool create_branches(app* x, unsigned nl, expr* const* lits, branch_conditions& bc);
|
||||
/**
|
||||
\brief Extract non-linear variables from ground formula.
|
||||
|
||||
\requires a ground formula.
|
||||
*/
|
||||
void extract_non_linear(expr* e, ptr_vector<app>& nl_vars);
|
||||
|
||||
|
|
|
@ -34,6 +34,7 @@ namespace qe {
|
|||
|
||||
class i_nnf_atom {
|
||||
public:
|
||||
virtual ~i_nnf_atom() = default;
|
||||
virtual void operator()(expr* e, bool pol, expr_ref& result) = 0;
|
||||
};
|
||||
|
||||
|
|
|
@ -40,6 +40,7 @@ namespace sat {
|
|||
class literal_occs_fun {
|
||||
public:
|
||||
virtual double operator()(literal l) = 0;
|
||||
virtual ~literal_occs_fun() = default;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -1893,7 +1893,6 @@ namespace sat {
|
|||
void solver::init_ext_assumptions() {
|
||||
if (m_ext && m_ext->tracking_assumptions()) {
|
||||
m_ext_assumption_set.reset();
|
||||
unsigned trail_size = m_trail.size();
|
||||
if (!inconsistent())
|
||||
m_ext->add_assumptions(m_ext_assumption_set);
|
||||
}
|
||||
|
|
|
@ -301,26 +301,27 @@ namespace arith {
|
|||
m_explanation.add_pair(j, v);
|
||||
}
|
||||
|
||||
void solver::add_eq(lpvar u, lpvar v, lp::explanation const& e) {
|
||||
bool solver::add_eq(lpvar u, lpvar v, lp::explanation const& e, bool is_fixed) {
|
||||
if (s().inconsistent())
|
||||
return;
|
||||
return false;
|
||||
theory_var uv = lp().local_to_external(u); // variables that are returned should have external representations
|
||||
theory_var vv = lp().local_to_external(v); // so maybe better to have them already transformed to external form
|
||||
if (is_equal(uv, vv))
|
||||
return;
|
||||
return false;
|
||||
enode* n1 = var2enode(uv);
|
||||
enode* n2 = var2enode(vv);
|
||||
expr* e1 = n1->get_expr();
|
||||
expr* e2 = n2->get_expr();
|
||||
if (m.is_ite(e1) || m.is_ite(e2))
|
||||
return;
|
||||
if (!is_fixed && !a.is_numeral(e1) && !a.is_numeral(e2) && (m.is_ite(e1) || m.is_ite(e2)))
|
||||
return false;
|
||||
if (e1->get_sort() != e2->get_sort())
|
||||
return;
|
||||
return false;
|
||||
reset_evidence();
|
||||
for (auto ev : e)
|
||||
set_evidence(ev.ci(), m_core, m_eqs);
|
||||
auto* jst = euf::th_explain::propagate(*this, m_core, m_eqs, n1, n2);
|
||||
ctx.propagate(n1, n2, jst->to_index());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool solver::bound_is_interesting(unsigned vi, lp::lconstraint_kind kind, const rational& bval) const {
|
||||
|
@ -627,7 +628,7 @@ namespace arith {
|
|||
anum const& an = nl_value(v, *m_a1);
|
||||
if (a.is_int(o) && !m_nla->am().is_int(an))
|
||||
value = a.mk_numeral(rational::zero(), a.is_int(o));
|
||||
value = a.mk_numeral(m_nla->am(), nl_value(v, *m_a1), a.is_int(o));
|
||||
//value = a.mk_numeral(m_nla->am(), nl_value(v, *m_a1), a.is_int(o));
|
||||
}
|
||||
else if (v != euf::null_theory_var) {
|
||||
rational r = get_value(v);
|
||||
|
|
|
@ -450,7 +450,7 @@ namespace arith {
|
|||
lp::lar_solver& lp() { return *m_solver; }
|
||||
lp::lar_solver const& lp() const { return *m_solver; }
|
||||
bool is_equal(theory_var x, theory_var y) const;
|
||||
void add_eq(lpvar u, lpvar v, lp::explanation const& e);
|
||||
bool add_eq(lpvar u, lpvar v, lp::explanation const& e, bool is_fixed);
|
||||
void consume(rational const& v, lp::constraint_index j);
|
||||
bool bound_is_interesting(unsigned vi, lp::lconstraint_kind kind, const rational& bval) const;
|
||||
};
|
||||
|
|
|
@ -621,8 +621,7 @@ namespace array {
|
|||
continue;
|
||||
// arrays used as indices in other arrays have to be treated as shared issue #3532, #3529
|
||||
if (ctx.is_shared(r) || is_shared_arg(r))
|
||||
roots.push_back(r->get_th_var(get_id()));
|
||||
|
||||
roots.push_back(r->get_th_var(get_id()));
|
||||
r->mark1();
|
||||
to_unmark.push_back(r);
|
||||
}
|
||||
|
|
|
@ -120,8 +120,8 @@ namespace array {
|
|||
SASSERT(!n || !n->is_attached_to(get_id()));
|
||||
if (!n)
|
||||
n = mk_enode(e, false);
|
||||
SASSERT(!n->is_attached_to(get_id()));
|
||||
mk_var(n);
|
||||
if (!n->is_attached_to(get_id()))
|
||||
mk_var(n);
|
||||
for (auto* arg : euf::enode_args(n))
|
||||
ensure_var(arg);
|
||||
switch (a->get_decl_kind()) {
|
||||
|
|
|
@ -119,7 +119,7 @@ namespace array {
|
|||
|
||||
bool solver::must_have_different_model_values(theory_var v1, theory_var v2) {
|
||||
euf::enode* else1 = nullptr, * else2 = nullptr;
|
||||
euf::enode* n1 = var2enode(v1), *n2 = var2enode(v2);
|
||||
euf::enode* n1 = var2enode(v1);
|
||||
expr* e1 = n1->get_expr();
|
||||
if (!a.is_array(e1))
|
||||
return true;
|
||||
|
|
|
@ -46,6 +46,7 @@ namespace euf {
|
|||
value = r->get_expr();
|
||||
else
|
||||
value = factory.get_fresh_value(srt);
|
||||
(void)s;
|
||||
TRACE("model", tout << s.bpp(r) << " := " << value << "\n";);
|
||||
values.set(id, value);
|
||||
expr_ref_vector* vals = nullptr;
|
||||
|
|
|
@ -22,6 +22,32 @@ Author:
|
|||
|
||||
namespace euf {
|
||||
|
||||
void solver::add_auto_relevant(expr* e) {
|
||||
if (!relevancy_enabled())
|
||||
return;
|
||||
for (; m_auto_relevant_scopes > 0; --m_auto_relevant_scopes)
|
||||
m_auto_relevant_lim.push_back(m_auto_relevant.size());
|
||||
// std::cout << "add-auto " << e->get_id() << " " << mk_bounded_pp(e, m) << "\n";
|
||||
m_auto_relevant.push_back(e);
|
||||
}
|
||||
|
||||
void solver::pop_relevant(unsigned n) {
|
||||
if (m_auto_relevant_scopes >= n) {
|
||||
m_auto_relevant_scopes -= n;
|
||||
return;
|
||||
}
|
||||
n -= m_auto_relevant_scopes;
|
||||
m_auto_relevant_scopes = 0;
|
||||
unsigned top = m_auto_relevant_lim.size() - n;
|
||||
unsigned lim = m_auto_relevant_lim[top];
|
||||
m_auto_relevant_lim.shrink(top);
|
||||
m_auto_relevant.shrink(lim);
|
||||
}
|
||||
|
||||
void solver::push_relevant() {
|
||||
++m_auto_relevant_scopes;
|
||||
}
|
||||
|
||||
bool solver::is_relevant(expr* e) const {
|
||||
return m_relevant_expr_ids.get(e->get_id(), true);
|
||||
}
|
||||
|
@ -31,11 +57,11 @@ namespace euf {
|
|||
}
|
||||
|
||||
void solver::ensure_dual_solver() {
|
||||
if (!m_dual_solver) {
|
||||
m_dual_solver = alloc(sat::dual_solver, s().rlimit());
|
||||
for (unsigned i = s().num_user_scopes(); i-- > 0; )
|
||||
m_dual_solver->push();
|
||||
}
|
||||
if (m_dual_solver)
|
||||
return;
|
||||
m_dual_solver = alloc(sat::dual_solver, s().rlimit());
|
||||
for (unsigned i = s().num_user_scopes(); i-- > 0; )
|
||||
m_dual_solver->push();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -65,8 +91,6 @@ namespace euf {
|
|||
|
||||
bool solver::init_relevancy() {
|
||||
m_relevant_expr_ids.reset();
|
||||
bool_vector visited;
|
||||
ptr_vector<expr> todo;
|
||||
if (!relevancy_enabled())
|
||||
return true;
|
||||
if (!m_dual_solver)
|
||||
|
@ -77,12 +101,21 @@ namespace euf {
|
|||
for (enode* n : m_egraph.nodes())
|
||||
max_id = std::max(max_id, n->get_expr_id());
|
||||
m_relevant_expr_ids.resize(max_id + 1, false);
|
||||
ptr_vector<expr>& todo = m_relevant_todo;
|
||||
bool_vector& visited = m_relevant_visited;
|
||||
auto const& core = m_dual_solver->core();
|
||||
todo.reset();
|
||||
for (auto lit : core) {
|
||||
expr* e = m_bool_var2expr.get(lit.var(), nullptr);
|
||||
if (e)
|
||||
todo.push_back(e);
|
||||
}
|
||||
#if 0
|
||||
std::cout << "init-relevant\n";
|
||||
for (expr* e : m_auto_relevant)
|
||||
std::cout << "auto-relevant " << e->get_id() << " " << mk_bounded_pp(e, m) << "\n";
|
||||
#endif
|
||||
todo.append(m_auto_relevant);
|
||||
for (unsigned i = 0; i < todo.size(); ++i) {
|
||||
expr* e = todo[i];
|
||||
if (visited.get(e->get_id(), false))
|
||||
|
@ -114,6 +147,9 @@ namespace euf {
|
|||
todo.push_back(arg);
|
||||
}
|
||||
|
||||
for (auto * e : todo)
|
||||
visited[e->get_id()] = false;
|
||||
|
||||
TRACE("euf",
|
||||
for (enode* n : m_egraph.nodes())
|
||||
if (is_relevant(n))
|
||||
|
|
|
@ -183,6 +183,7 @@ namespace euf {
|
|||
}
|
||||
|
||||
void solver::propagate(literal lit, ext_justification_idx idx) {
|
||||
add_auto_relevant(bool_var2expr(lit.var()));
|
||||
s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), idx));
|
||||
}
|
||||
|
||||
|
@ -527,6 +528,7 @@ namespace euf {
|
|||
m_egraph.push();
|
||||
if (m_dual_solver)
|
||||
m_dual_solver->push();
|
||||
push_relevant();
|
||||
}
|
||||
|
||||
void solver::pop(unsigned n) {
|
||||
|
@ -536,6 +538,7 @@ namespace euf {
|
|||
e->pop(n);
|
||||
si.pop(n);
|
||||
m_egraph.pop(n);
|
||||
pop_relevant(n);
|
||||
scope const & sc = m_scopes[m_scopes.size() - n];
|
||||
for (unsigned i = m_var_trail.size(); i-- > sc.m_var_lim; ) {
|
||||
bool_var v = m_var_trail[i];
|
||||
|
@ -994,7 +997,7 @@ namespace euf {
|
|||
::solver::push_eh_t& push_eh,
|
||||
::solver::pop_eh_t& pop_eh,
|
||||
::solver::fresh_eh_t& fresh_eh) {
|
||||
m_user_propagator = alloc(user::solver, *this);
|
||||
m_user_propagator = alloc(user_solver::solver, *this);
|
||||
m_user_propagator->add(ctx, push_eh, pop_eh, fresh_eh);
|
||||
for (unsigned i = m_scopes.size(); i-- > 0; )
|
||||
m_user_propagator->push();
|
||||
|
|
|
@ -99,9 +99,8 @@ namespace euf {
|
|||
sat::lookahead* m_lookahead = nullptr;
|
||||
ast_manager* m_to_m;
|
||||
sat::sat_internalizer* m_to_si;
|
||||
scoped_ptr<euf::ackerman> m_ackerman;
|
||||
scoped_ptr<sat::dual_solver> m_dual_solver;
|
||||
user::solver* m_user_propagator = nullptr;
|
||||
scoped_ptr<euf::ackerman> m_ackerman;
|
||||
user_solver::solver* m_user_propagator = nullptr;
|
||||
th_solver* m_qsolver = nullptr;
|
||||
unsigned m_generation = 0;
|
||||
mutable ptr_vector<expr> m_todo;
|
||||
|
@ -182,6 +181,8 @@ namespace euf {
|
|||
|
||||
// relevancy
|
||||
bool_vector m_relevant_expr_ids;
|
||||
bool_vector m_relevant_visited;
|
||||
ptr_vector<expr> m_relevant_todo;
|
||||
void ensure_dual_solver();
|
||||
bool init_relevancy();
|
||||
|
||||
|
@ -363,6 +364,11 @@ namespace euf {
|
|||
|
||||
// relevancy
|
||||
bool m_relevancy = true;
|
||||
scoped_ptr<sat::dual_solver> m_dual_solver;
|
||||
ptr_vector<expr> m_auto_relevant;
|
||||
unsigned_vector m_auto_relevant_lim;
|
||||
unsigned m_auto_relevant_scopes = 0;
|
||||
|
||||
bool relevancy_enabled() const { return m_relevancy && get_config().m_relevancy_lvl > 0; }
|
||||
void disable_relevancy(expr* e) { IF_VERBOSE(0, verbose_stream() << "disabling relevancy " << mk_pp(e, m) << "\n"); m_relevancy = false; }
|
||||
void add_root(unsigned n, sat::literal const* lits);
|
||||
|
@ -377,6 +383,9 @@ namespace euf {
|
|||
void track_relevancy(sat::bool_var v);
|
||||
bool is_relevant(expr* e) const;
|
||||
bool is_relevant(enode* n) const;
|
||||
void add_auto_relevant(expr* e);
|
||||
void pop_relevant(unsigned n);
|
||||
void push_relevant();
|
||||
|
||||
|
||||
// model construction
|
||||
|
|
|
@ -52,6 +52,9 @@ namespace pb {
|
|||
constraint(tag_t t, unsigned id, literal l, unsigned sz, size_t osz, unsigned k):
|
||||
m_tag(t), m_lit(l), m_size(sz), m_obj_size(osz), m_id(id), m_k(k) {
|
||||
}
|
||||
|
||||
virtual ~constraint() = default;
|
||||
|
||||
sat::ext_constraint_idx cindex() const { return sat::constraint_base::mem2base(this); }
|
||||
void deallocate(small_object_allocator& a) { a.deallocate(obj_size(), sat::constraint_base::mem2base_ptr(this)); }
|
||||
unsigned id() const { return m_id; }
|
||||
|
|
|
@ -35,6 +35,7 @@ namespace pb {
|
|||
|
||||
class solver_interface {
|
||||
public:
|
||||
virtual ~solver_interface() = default;
|
||||
virtual lbool value(bool_var v) const = 0;
|
||||
virtual lbool value(literal lit) const = 0;
|
||||
virtual bool is_false(literal lit) const = 0;
|
||||
|
|
|
@ -32,8 +32,8 @@ namespace q {
|
|||
<< mk_bounded_pp(rhs, m, 2);
|
||||
}
|
||||
|
||||
std::ostream& binding::display(euf::solver& ctx, unsigned num_nodes, std::ostream& out) const {
|
||||
for (unsigned i = 0; i < num_nodes; ++i)
|
||||
std::ostream& binding::display(euf::solver& ctx, std::ostream& out) const {
|
||||
for (unsigned i = 0; i < size(); ++i)
|
||||
out << ctx.bpp((*this)[i]) << " ";
|
||||
return out;
|
||||
}
|
||||
|
@ -46,7 +46,7 @@ namespace q {
|
|||
if (!b)
|
||||
return out;
|
||||
do {
|
||||
b->display(ctx, num_decls(), out) << "\n";
|
||||
b->display(ctx, out) << "\n";
|
||||
b = b->next();
|
||||
}
|
||||
while (b != m_bindings);
|
||||
|
|
|
@ -22,6 +22,7 @@ Author:
|
|||
#include "ast/euf/euf_enode.h"
|
||||
#include "sat/smt/euf_solver.h"
|
||||
|
||||
|
||||
namespace q {
|
||||
|
||||
struct lit {
|
||||
|
@ -35,25 +36,7 @@ namespace q {
|
|||
std::ostream& display(std::ostream& out) const;
|
||||
};
|
||||
|
||||
struct binding : public dll_base<binding> {
|
||||
app* m_pattern;
|
||||
unsigned m_max_generation;
|
||||
unsigned m_min_top_generation;
|
||||
unsigned m_max_top_generation;
|
||||
euf::enode* m_nodes[0];
|
||||
|
||||
binding(app* pat, unsigned max_generation, unsigned min_top, unsigned max_top):
|
||||
m_pattern(pat),
|
||||
m_max_generation(max_generation),
|
||||
m_min_top_generation(min_top),
|
||||
m_max_top_generation(max_top) {}
|
||||
|
||||
euf::enode* const* nodes() { return m_nodes; }
|
||||
|
||||
euf::enode* operator[](unsigned i) const { return m_nodes[i]; }
|
||||
|
||||
std::ostream& display(euf::solver& ctx, unsigned num_nodes, std::ostream& out) const;
|
||||
};
|
||||
struct binding;
|
||||
|
||||
struct clause {
|
||||
unsigned m_index;
|
||||
|
@ -62,10 +45,10 @@ namespace q {
|
|||
unsigned m_watch = 0;
|
||||
sat::literal m_literal = sat::null_literal;
|
||||
q::quantifier_stat* m_stat = nullptr;
|
||||
binding* m_bindings = nullptr;
|
||||
binding* m_bindings = nullptr;
|
||||
|
||||
|
||||
clause(ast_manager& m, unsigned idx): m_index(idx), m_q(m) {}
|
||||
clause(ast_manager& m, unsigned idx) : m_index(idx), m_q(m) {}
|
||||
|
||||
std::ostream& display(euf::solver& ctx, std::ostream& out) const;
|
||||
lit const& operator[](unsigned i) const { return m_lits[i]; }
|
||||
|
@ -76,6 +59,70 @@ namespace q {
|
|||
quantifier* q() const { return m_q; }
|
||||
};
|
||||
|
||||
|
||||
struct binding : public dll_base<binding> {
|
||||
clause* c;
|
||||
app* m_pattern;
|
||||
unsigned m_max_generation;
|
||||
unsigned m_min_top_generation;
|
||||
unsigned m_max_top_generation;
|
||||
euf::enode* m_nodes[0];
|
||||
|
||||
binding(clause& c, app* pat, unsigned max_generation, unsigned min_top, unsigned max_top):
|
||||
c(&c),
|
||||
m_pattern(pat),
|
||||
m_max_generation(max_generation),
|
||||
m_min_top_generation(min_top),
|
||||
m_max_top_generation(max_top) {}
|
||||
|
||||
euf::enode* const* nodes() { return m_nodes; }
|
||||
|
||||
euf::enode* operator[](unsigned i) const { return m_nodes[i]; }
|
||||
|
||||
std::ostream& display(euf::solver& ctx, std::ostream& out) const;
|
||||
|
||||
unsigned size() const { return c->num_decls(); }
|
||||
|
||||
quantifier* q() const { return c->m_q; }
|
||||
|
||||
bool eq(binding const& other) const {
|
||||
if (q() != other.q())
|
||||
return false;
|
||||
for (unsigned i = size(); i-- > 0; )
|
||||
if ((*this)[i] != other[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct binding_khasher {
|
||||
unsigned operator()(binding const* f) const { return f->q()->get_id(); }
|
||||
};
|
||||
|
||||
struct binding_chasher {
|
||||
unsigned operator()(binding const* f, unsigned idx) const { return f->m_nodes[idx]->hash(); }
|
||||
};
|
||||
|
||||
struct binding_hash_proc {
|
||||
unsigned operator()(binding const* f) const {
|
||||
return get_composite_hash<binding*, binding_khasher, binding_chasher>(const_cast<binding*>(f), f->size());
|
||||
}
|
||||
};
|
||||
|
||||
struct binding_eq_proc {
|
||||
bool operator()(binding const* a, binding const* b) const { return a->eq(*b); }
|
||||
};
|
||||
|
||||
typedef ptr_hashtable<binding, binding_hash_proc, binding_eq_proc> bindings;
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, binding const& f) {
|
||||
out << "[fp " << f.q()->get_id() << ":";
|
||||
for (unsigned i = 0; i < f.size(); ++i)
|
||||
out << " " << f[i]->get_expr_id();
|
||||
return out << "]";
|
||||
}
|
||||
|
||||
|
||||
struct justification {
|
||||
expr* m_lhs, *m_rhs;
|
||||
bool m_sign;
|
||||
|
|
|
@ -54,7 +54,11 @@ namespace q {
|
|||
m_eval(ctx),
|
||||
m_qstat_gen(m, ctx.get_region()),
|
||||
m_inst_queue(*this, ctx),
|
||||
m_infer_patterns(m, ctx.get_config())
|
||||
m_infer_patterns(m, ctx.get_config()),
|
||||
m_new_defs(m),
|
||||
m_new_proofs(m),
|
||||
m_dn(m),
|
||||
m_nnf(m, m_dn)
|
||||
{
|
||||
std::function<void(euf::enode*, euf::enode*)> _on_merge =
|
||||
[&](euf::enode* root, euf::enode* other) {
|
||||
|
@ -80,7 +84,7 @@ namespace q {
|
|||
unsigned num_patterns = q->get_num_patterns();
|
||||
for (unsigned i = 0; i < num_patterns; i++)
|
||||
ensure_ground_enodes(q->get_pattern(i));
|
||||
for (auto lit : c.m_lits) {
|
||||
for (auto const& lit : c.m_lits) {
|
||||
ensure_ground_enodes(lit.lhs);
|
||||
ensure_ground_enodes(lit.rhs);
|
||||
}
|
||||
|
@ -105,6 +109,20 @@ namespace q {
|
|||
m_eval.explain(l, justification::from_index(idx), r, probing);
|
||||
}
|
||||
|
||||
quantifier_ref ematch::nnf_skolem(quantifier* q) {
|
||||
expr_ref r(m);
|
||||
proof_ref p(m);
|
||||
m_new_defs.reset();
|
||||
m_new_proofs.reset();
|
||||
m_nnf(q, m_new_defs, m_new_proofs, r, p);
|
||||
SASSERT(is_quantifier(r));
|
||||
for (expr* d : m_new_defs)
|
||||
m_qs.add_unit(m_qs.mk_literal(d));
|
||||
CTRACE("q", r != q, tout << mk_pp(q, m) << " -->\n" << r << "\n" << m_new_defs << "\n";);
|
||||
return quantifier_ref(to_quantifier(r), m);
|
||||
}
|
||||
|
||||
|
||||
std::ostream& ematch::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
|
||||
auto& j = justification::from_index(idx);
|
||||
auto& c = j.m_clause;
|
||||
|
@ -186,7 +204,7 @@ namespace q {
|
|||
|
||||
void ematch::init_watch(clause& c) {
|
||||
unsigned idx = c.index();
|
||||
for (auto lit : c.m_lits) {
|
||||
for (auto const& lit : c.m_lits) {
|
||||
if (!is_ground(lit.lhs))
|
||||
init_watch(lit.lhs, idx);
|
||||
if (!is_ground(lit.rhs))
|
||||
|
@ -218,38 +236,71 @@ namespace q {
|
|||
}
|
||||
};
|
||||
|
||||
binding* ematch::alloc_binding(unsigned n, app* pat, unsigned max_generation, unsigned min_top, unsigned max_top) {
|
||||
unsigned sz = sizeof(binding) + sizeof(euf::enode* const*)*n;
|
||||
void* mem = ctx.get_region().allocate(sz);
|
||||
return new (mem) binding(pat, max_generation, min_top, max_top);
|
||||
}
|
||||
binding* ematch::tmp_binding(clause& c, app* pat, euf::enode* const* b) {
|
||||
if (c.num_decls() > m_tmp_binding_capacity) {
|
||||
void* mem = memory::allocate(sizeof(binding) + c.num_decls() * sizeof(euf::enode*));
|
||||
m_tmp_binding = new (mem) binding(c, pat, 0, 0, 0);
|
||||
m_tmp_binding_capacity = c.num_decls();
|
||||
}
|
||||
|
||||
euf::enode* const* ematch::alloc_binding(clause& c, euf::enode* const* _binding) {
|
||||
unsigned sz = sizeof(euf::enode* const*) * c.num_decls();
|
||||
euf::enode** binding = (euf::enode**)ctx.get_region().allocate(sz);
|
||||
for (unsigned i = 0; i < c.num_decls(); ++i)
|
||||
binding[i] = _binding[i];
|
||||
return binding;
|
||||
for (unsigned i = c.num_decls(); i-- > 0; )
|
||||
m_tmp_binding->m_nodes[i] = b[i];
|
||||
m_tmp_binding->m_pattern = pat;
|
||||
m_tmp_binding->c = &c;
|
||||
|
||||
return m_tmp_binding.get();
|
||||
}
|
||||
|
||||
void ematch::add_binding(clause& c, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_top, unsigned max_top) {
|
||||
binding* ematch::alloc_binding(clause& c, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_top, unsigned max_top) {
|
||||
|
||||
binding* b = tmp_binding(c, pat, _binding);
|
||||
|
||||
if (m_bindings.contains(b))
|
||||
return nullptr;
|
||||
|
||||
for (unsigned i = c.num_decls(); i-- > 0; )
|
||||
b->m_nodes[i] = b->m_nodes[i]->get_root();
|
||||
|
||||
if (m_bindings.contains(b))
|
||||
return nullptr;
|
||||
|
||||
unsigned n = c.num_decls();
|
||||
binding* b = alloc_binding(n, pat, max_generation, min_top, max_top);
|
||||
unsigned sz = sizeof(binding) + sizeof(euf::enode* const*) * n;
|
||||
void* mem = ctx.get_region().allocate(sz);
|
||||
b = new (mem) binding(c, pat, max_generation, min_top, max_top);
|
||||
b->init(b);
|
||||
for (unsigned i = 0; i < n; ++i)
|
||||
b->m_nodes[i] = _binding[i];
|
||||
binding::push_to_front(c.m_bindings, b);
|
||||
ctx.push(remove_binding(ctx, c, b));
|
||||
++m_stats.m_num_delayed_bindings;
|
||||
b->m_nodes[i] = _binding[i];
|
||||
|
||||
m_bindings.insert(b);
|
||||
ctx.push(insert_map<bindings, binding*>(m_bindings, b));
|
||||
return b;
|
||||
}
|
||||
|
||||
euf::enode* const* ematch::copy_nodes(clause& c, euf::enode* const* nodes) {
|
||||
unsigned sz = sizeof(euf::enode* const*) * c.num_decls();
|
||||
euf::enode** new_nodes = (euf::enode**)ctx.get_region().allocate(sz);
|
||||
for (unsigned i = 0; i < c.num_decls(); ++i)
|
||||
new_nodes[i] = nodes[i];
|
||||
return new_nodes;
|
||||
}
|
||||
|
||||
void ematch::on_binding(quantifier* q, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_gen, unsigned max_gen) {
|
||||
TRACE("q", tout << "on-binding " << mk_pp(q, m) << "\n";);
|
||||
unsigned idx = m_q2clauses[q];
|
||||
clause& c = *m_clauses[idx];
|
||||
bool new_propagation = false;
|
||||
if (!propagate(false, _binding, max_generation, c, new_propagation))
|
||||
add_binding(c, pat, _binding, max_generation, min_gen, max_gen);
|
||||
binding* b = alloc_binding(c, pat, _binding, max_generation, min_gen, max_gen);
|
||||
if (!b)
|
||||
return;
|
||||
TRACE("q", b->display(ctx, tout << "on-binding " << mk_pp(q, m) << "\n") << "\n";);
|
||||
|
||||
|
||||
if (false && propagate(false, _binding, max_generation, c, new_propagation))
|
||||
return;
|
||||
|
||||
binding::push_to_front(c.m_bindings, b);
|
||||
ctx.push(remove_binding(ctx, c, b));
|
||||
++m_stats.m_num_delayed_bindings;
|
||||
}
|
||||
|
||||
bool ematch::propagate(bool is_owned, euf::enode* const* binding, unsigned max_generation, clause& c, bool& propagated) {
|
||||
|
@ -272,7 +323,7 @@ namespace q {
|
|||
if (ev == l_undef && max_generation > m_generation_propagation_threshold)
|
||||
return false;
|
||||
if (!is_owned)
|
||||
binding = alloc_binding(c, binding);
|
||||
binding = copy_nodes(c, binding);
|
||||
|
||||
auto j_idx = mk_justification(idx, c, binding);
|
||||
|
||||
|
@ -308,17 +359,14 @@ namespace q {
|
|||
return true;
|
||||
}
|
||||
|
||||
void ematch::instantiate(binding& b, clause& c) {
|
||||
void ematch::instantiate(binding& b) {
|
||||
if (m_stats.m_num_instantiations > ctx.get_config().m_qi_max_instances)
|
||||
return;
|
||||
unsigned max_generation = b.m_max_generation;
|
||||
max_generation = std::max(max_generation, c.m_stat->get_generation());
|
||||
c.m_stat->update_max_generation(max_generation);
|
||||
fingerprint * f = add_fingerprint(c, b, max_generation);
|
||||
if (!f)
|
||||
return;
|
||||
m_inst_queue.insert(f);
|
||||
m_stats.m_num_instantiations++;
|
||||
max_generation = std::max(max_generation, b.c->m_stat->get_generation());
|
||||
b.c->m_stat->update_max_generation(max_generation);
|
||||
m_stats.m_num_instantiations++;
|
||||
m_inst_queue.insert(&b);
|
||||
}
|
||||
|
||||
void ematch::add_instantiation(clause& c, binding& b, sat::literal lit) {
|
||||
|
@ -326,35 +374,6 @@ namespace q {
|
|||
ctx.propagate(lit, mk_justification(UINT_MAX, c, b.nodes()));
|
||||
}
|
||||
|
||||
void ematch::set_tmp_binding(fingerprint& fp) {
|
||||
binding& b = *fp.b;
|
||||
clause& c = *fp.c;
|
||||
if (c.num_decls() > m_tmp_binding_capacity) {
|
||||
void* mem = memory::allocate(sizeof(binding) + c.num_decls()*sizeof(euf::enode*));
|
||||
m_tmp_binding = new (mem) binding(b.m_pattern, 0, 0, 0);
|
||||
m_tmp_binding_capacity = c.num_decls();
|
||||
}
|
||||
|
||||
fp.b = m_tmp_binding.get();
|
||||
for (unsigned i = c.num_decls(); i-- > 0; )
|
||||
fp.b->m_nodes[i] = b[i];
|
||||
}
|
||||
|
||||
fingerprint* ematch::add_fingerprint(clause& c, binding& b, unsigned max_generation) {
|
||||
fingerprint fp(c, b, max_generation);
|
||||
if (m_fingerprints.contains(&fp))
|
||||
return nullptr;
|
||||
set_tmp_binding(fp);
|
||||
for (unsigned i = c.num_decls(); i-- > 0; )
|
||||
fp.b->m_nodes[i] = fp.b->m_nodes[i]->get_root();
|
||||
if (m_fingerprints.contains(&fp))
|
||||
return nullptr;
|
||||
fingerprint* f = new (ctx.get_region()) fingerprint(c, b, max_generation);
|
||||
m_fingerprints.insert(f);
|
||||
ctx.push(insert_map<fingerprints, fingerprint*>(m_fingerprints, f));
|
||||
return f;
|
||||
}
|
||||
|
||||
sat::literal ematch::instantiate(clause& c, euf::enode* const* binding, lit const& l) {
|
||||
expr_ref_vector _binding(m);
|
||||
for (unsigned i = 0; i < c.num_decls(); ++i)
|
||||
|
@ -427,7 +446,10 @@ namespace q {
|
|||
cl->m_literal.neg();
|
||||
expr_ref body(mk_not(m, q->get_expr()), m);
|
||||
q = m.update_quantifier(q, forall_k, body);
|
||||
}
|
||||
}
|
||||
q = nnf_skolem(q);
|
||||
|
||||
|
||||
expr_ref_vector ors(m);
|
||||
flatten_or(q->get_expr(), ors);
|
||||
for (expr* arg : ors)
|
||||
|
@ -547,11 +569,16 @@ namespace q {
|
|||
}
|
||||
|
||||
|
||||
bool ematch::unit_propagate() {
|
||||
return false;
|
||||
return ctx.get_config().m_ematching && propagate(false);
|
||||
}
|
||||
|
||||
bool ematch::propagate(bool flush) {
|
||||
m_mam->propagate();
|
||||
bool propagated = flush_prop_queue();
|
||||
if (m_qhead >= m_clause_queue.size())
|
||||
return m_inst_queue.propagate();
|
||||
return m_inst_queue.propagate() || propagated;
|
||||
ctx.push(value_trail<unsigned>(m_qhead));
|
||||
ptr_buffer<binding> to_remove;
|
||||
for (; m_qhead < m_clause_queue.size(); ++m_qhead) {
|
||||
|
@ -561,12 +588,13 @@ namespace q {
|
|||
if (!b)
|
||||
continue;
|
||||
|
||||
do {
|
||||
if (propagate(true, b->m_nodes, b->m_max_generation, c, propagated))
|
||||
do {
|
||||
if (false && propagate(true, b->m_nodes, b->m_max_generation, c, propagated))
|
||||
to_remove.push_back(b);
|
||||
else if (flush) {
|
||||
instantiate(*b, c);
|
||||
instantiate(*b);
|
||||
to_remove.push_back(b);
|
||||
propagated = true;
|
||||
}
|
||||
b = b->next();
|
||||
}
|
||||
|
@ -592,21 +620,22 @@ namespace q {
|
|||
TRACE("q", m_mam->display(tout););
|
||||
if (propagate(false))
|
||||
return true;
|
||||
if (m_lazy_mam) {
|
||||
if (m_lazy_mam)
|
||||
m_lazy_mam->propagate();
|
||||
if (propagate(false))
|
||||
return true;
|
||||
}
|
||||
unsigned idx = 0;
|
||||
for (clause* c : m_clauses) {
|
||||
if (c->m_bindings)
|
||||
insert_clause_in_queue(idx);
|
||||
idx++;
|
||||
}
|
||||
if (propagate(false))
|
||||
return true;
|
||||
for (unsigned i = 0; i < m_clauses.size(); ++i)
|
||||
if (m_clauses[i]->m_bindings)
|
||||
insert_clause_in_queue(i);
|
||||
if (propagate(true))
|
||||
return true;
|
||||
if (m_inst_queue.lazy_propagate())
|
||||
return true;
|
||||
for (unsigned i = 0; i < m_clauses.size(); ++i)
|
||||
if (m_clauses[i]->m_bindings)
|
||||
IF_VERBOSE(0, verbose_stream() << "missed propagation " << i << "\n");
|
||||
|
||||
TRACE("q", tout << "no more propagation\n";);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -19,11 +19,11 @@ Author:
|
|||
#include "util/nat_set.h"
|
||||
#include "ast/quantifier_stat.h"
|
||||
#include "ast/pattern/pattern_inference.h"
|
||||
#include "ast/normal_forms/nnf.h"
|
||||
#include "solver/solver.h"
|
||||
#include "sat/smt/sat_th.h"
|
||||
#include "sat/smt/q_mam.h"
|
||||
#include "sat/smt/q_clause.h"
|
||||
#include "sat/smt/q_fingerprint.h"
|
||||
#include "sat/smt/q_queue.h"
|
||||
#include "sat/smt/q_eval.h"
|
||||
|
||||
|
@ -69,7 +69,7 @@ namespace q {
|
|||
ast_manager& m;
|
||||
eval m_eval;
|
||||
quantifier_stat_gen m_qstat_gen;
|
||||
fingerprints m_fingerprints;
|
||||
bindings m_bindings;
|
||||
scoped_ptr<binding> m_tmp_binding;
|
||||
unsigned m_tmp_binding_capacity = 0;
|
||||
queue m_inst_queue;
|
||||
|
@ -90,16 +90,16 @@ namespace q {
|
|||
unsigned_vector m_clause_queue;
|
||||
euf::enode_pair_vector m_evidence;
|
||||
|
||||
binding* alloc_binding(unsigned n, app* pat, unsigned max_generation, unsigned min_top, unsigned max_top);
|
||||
euf::enode* const* alloc_binding(clause& c, euf::enode* const* _binding);
|
||||
void add_binding(clause& c, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_top, unsigned max_top);
|
||||
|
||||
euf::enode* const* copy_nodes(clause& c, euf::enode* const* _binding);
|
||||
binding* tmp_binding(clause& c, app* pat, euf::enode* const* _binding);
|
||||
binding* alloc_binding(clause& c, app* pat, euf::enode* const* _binding, unsigned max_generation, unsigned min_top, unsigned max_top);
|
||||
|
||||
sat::ext_justification_idx mk_justification(unsigned idx, clause& c, euf::enode* const* b);
|
||||
|
||||
void ensure_ground_enodes(expr* e);
|
||||
void ensure_ground_enodes(clause const& c);
|
||||
|
||||
void instantiate(binding& b, clause& c);
|
||||
void instantiate(binding& b);
|
||||
sat::literal instantiate(clause& c, euf::enode* const* binding, lit const& l);
|
||||
|
||||
// register as callback into egraph.
|
||||
|
@ -115,21 +115,26 @@ namespace q {
|
|||
clause* clausify(quantifier* q);
|
||||
lit clausify_literal(expr* arg);
|
||||
|
||||
fingerprint* add_fingerprint(clause& c, binding& b, unsigned max_generation);
|
||||
void set_tmp_binding(fingerprint& fp);
|
||||
|
||||
bool flush_prop_queue();
|
||||
void propagate(bool is_conflict, unsigned idx, sat::ext_justification_idx j_idx);
|
||||
|
||||
bool propagate(bool flush);
|
||||
|
||||
expr_ref_vector m_new_defs;
|
||||
proof_ref_vector m_new_proofs;
|
||||
defined_names m_dn;
|
||||
nnf m_nnf;
|
||||
|
||||
quantifier_ref nnf_skolem(quantifier* q);
|
||||
|
||||
public:
|
||||
|
||||
ematch(euf::solver& ctx, solver& s);
|
||||
|
||||
bool operator()();
|
||||
|
||||
bool propagate(bool flush);
|
||||
bool unit_propagate();
|
||||
|
||||
// void init_search();
|
||||
|
||||
void add(quantifier* q);
|
||||
|
||||
|
|
|
@ -1,77 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2020 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
q_fingerprint.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Fingerprint summary of a quantifier instantiation
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2021-01-24
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "util/hashtable.h"
|
||||
#include "ast/ast.h"
|
||||
#include "ast/quantifier_stat.h"
|
||||
#include "ast/euf/euf_enode.h"
|
||||
#include "sat/smt/q_clause.h"
|
||||
|
||||
|
||||
namespace q {
|
||||
|
||||
struct fingerprint {
|
||||
clause* c;
|
||||
binding* b;
|
||||
unsigned m_max_generation;
|
||||
|
||||
unsigned size() const { return c->num_decls(); }
|
||||
euf::enode* const* nodes() const { return b->nodes(); }
|
||||
quantifier* q() const { return c->m_q; }
|
||||
|
||||
fingerprint(clause& _c, binding& _b, unsigned mg) :
|
||||
c(&_c), b(&_b), m_max_generation(mg) {}
|
||||
|
||||
bool eq(fingerprint const& other) const {
|
||||
if (c->m_q != other.c->m_q)
|
||||
return false;
|
||||
for (unsigned i = size(); i--> 0; )
|
||||
if ((*b)[i] != (*other.b)[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct fingerprint_khasher {
|
||||
unsigned operator()(fingerprint const * f) const { return f->c->m_q->get_id(); }
|
||||
};
|
||||
|
||||
struct fingerprint_chasher {
|
||||
unsigned operator()(fingerprint const * f, unsigned idx) const { return f->b->m_nodes[idx]->hash(); }
|
||||
};
|
||||
|
||||
struct fingerprint_hash_proc {
|
||||
unsigned operator()(fingerprint const * f) const {
|
||||
return get_composite_hash<fingerprint *, fingerprint_khasher, fingerprint_chasher>(const_cast<fingerprint*>(f), f->size());
|
||||
}
|
||||
};
|
||||
|
||||
struct fingerprint_eq_proc {
|
||||
bool operator()(fingerprint const* a, fingerprint const* b) const { return a->eq(*b); }
|
||||
};
|
||||
|
||||
typedef ptr_hashtable<fingerprint, fingerprint_hash_proc, fingerprint_eq_proc> fingerprints;
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, fingerprint const& f) {
|
||||
out << "[fp " << f.q()->get_id() << ":";
|
||||
for (unsigned i = 0; i < f.size(); ++i)
|
||||
out << " " << (*f.b)[i]->get_expr_id();
|
||||
return out << "]";
|
||||
}
|
||||
|
||||
}
|
|
@ -409,16 +409,17 @@ namespace q {
|
|||
unsigned m_num_args; //!< we need this information to avoid the nary *,+ crash bug
|
||||
bool m_filter_candidates;
|
||||
unsigned m_num_regs;
|
||||
unsigned m_num_choices;
|
||||
instruction * m_root;
|
||||
unsigned m_num_choices = 0;
|
||||
instruction * m_root = nullptr;
|
||||
enode_vector m_candidates;
|
||||
unsigned m_qhead = 0;
|
||||
#ifdef Z3DEBUG
|
||||
egraph * m_egraph;
|
||||
egraph * m_egraph = nullptr;
|
||||
svector<std::pair<quantifier*, app*>> m_patterns;
|
||||
#endif
|
||||
#ifdef _PROFILE_MAM
|
||||
stopwatch m_watch;
|
||||
unsigned m_counter;
|
||||
unsigned m_counter = 0;
|
||||
#endif
|
||||
friend class compiler;
|
||||
friend class code_tree_manager;
|
||||
|
@ -492,13 +493,7 @@ namespace q {
|
|||
m_root_lbl(lbl),
|
||||
m_num_args(num_args),
|
||||
m_filter_candidates(filter_candidates),
|
||||
m_num_regs(num_args + 1),
|
||||
m_num_choices(0),
|
||||
m_root(nullptr) {
|
||||
DEBUG_CODE(m_egraph = nullptr;);
|
||||
#ifdef _PROFILE_MAM
|
||||
m_counter = 0;
|
||||
#endif
|
||||
m_num_regs(num_args + 1) {
|
||||
(void)m_lbl_hasher;
|
||||
}
|
||||
|
||||
|
@ -546,16 +541,40 @@ namespace q {
|
|||
return m_root;
|
||||
}
|
||||
|
||||
void add_candidate(enode * n) {
|
||||
void add_candidate(euf::solver& ctx, enode * n) {
|
||||
m_candidates.push_back(n);
|
||||
ctx.push(push_back_trail<enode*, false>(m_candidates));
|
||||
}
|
||||
|
||||
void unmark(unsigned head) {
|
||||
for (unsigned i = m_candidates.size(); i-- > head; ) {
|
||||
enode* app = m_candidates[i];
|
||||
if (app->is_marked1())
|
||||
app->unmark1();
|
||||
}
|
||||
}
|
||||
|
||||
struct scoped_unmark {
|
||||
unsigned m_qhead;
|
||||
code_tree* t;
|
||||
scoped_unmark(code_tree* t) : m_qhead(t->m_qhead), t(t) {}
|
||||
~scoped_unmark() { t->unmark(m_qhead); }
|
||||
};
|
||||
|
||||
|
||||
bool has_candidates() const {
|
||||
return !m_candidates.empty();
|
||||
return m_qhead < m_candidates.size();
|
||||
}
|
||||
|
||||
void reset_candidates() {
|
||||
m_candidates.reset();
|
||||
void save_qhead(euf::solver& ctx) {
|
||||
ctx.push(value_trail<unsigned>(m_qhead));
|
||||
}
|
||||
|
||||
enode* next_candidate() {
|
||||
if (m_qhead < m_candidates.size())
|
||||
return m_candidates[m_qhead++];
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
enode_vector const & get_candidates() const {
|
||||
|
@ -1987,33 +2006,29 @@ namespace q {
|
|||
m_backtrack_stack.resize(t->get_num_choices());
|
||||
}
|
||||
|
||||
|
||||
void execute(code_tree * t) {
|
||||
if (!t->has_candidates())
|
||||
return;
|
||||
TRACE("trigger_bug", tout << "execute for code tree:\n"; t->display(tout););
|
||||
init(t);
|
||||
if (t->filter_candidates()) {
|
||||
for (unsigned i = 0; i < t->get_candidates().size(); ++i) {
|
||||
enode* app = t->get_candidates()[i];
|
||||
TRACE("trigger_bug", tout << "candidate\n" << mk_ismt2_pp(app->get_expr(), m) << "\n";);
|
||||
t->save_qhead(ctx);
|
||||
enode* app;
|
||||
if (t->filter_candidates()) {
|
||||
code_tree::scoped_unmark _unmark(t);
|
||||
while ((app = t->next_candidate()) && !ctx.resource_limits_exceeded()) {
|
||||
TRACE("trigger_bug", tout << "candidate\n" << ctx.bpp(app) << "\n";);
|
||||
if (!app->is_marked1() && app->is_cgr()) {
|
||||
if (ctx.resource_limits_exceeded() || !execute_core(t, app))
|
||||
return;
|
||||
execute_core(t, app);
|
||||
app->mark1();
|
||||
}
|
||||
}
|
||||
for (enode* app : t->get_candidates()) {
|
||||
if (app->is_marked1())
|
||||
app->unmark1();
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (unsigned i = 0; i < t->get_candidates().size(); ++i) {
|
||||
enode* app = t->get_candidates()[i];
|
||||
TRACE("trigger_bug", tout << "candidate\n" << mk_ismt2_pp(app->get_expr(), m) << "\n";);
|
||||
if (app->is_cgr()) {
|
||||
TRACE("trigger_bug", tout << "is_cgr\n";);
|
||||
if (ctx.resource_limits_exceeded() || !execute_core(t, app))
|
||||
return;
|
||||
}
|
||||
while ((app = t->next_candidate()) && !ctx.resource_limits_exceeded()) {
|
||||
TRACE("trigger_bug", tout << "candidate\n" << ctx.bpp(app) << "\n";);
|
||||
if (app->is_cgr())
|
||||
execute_core(t, app);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2474,17 +2489,18 @@ namespace q {
|
|||
|
||||
case YIELD1:
|
||||
m_bindings[0] = m_registers[static_cast<const yield *>(m_pc)->m_bindings[0]];
|
||||
#define ON_MATCH(NUM) \
|
||||
#define ON_MATCH(NUM) \
|
||||
m_max_generation = std::max(m_max_generation, get_max_generation(NUM, m_bindings.begin())); \
|
||||
if (!m.inc()) { \
|
||||
return false; \
|
||||
} \
|
||||
if (!m.inc()) \
|
||||
return false; \
|
||||
\
|
||||
m_mam.on_match(static_cast<const yield *>(m_pc)->m_qa, \
|
||||
static_cast<const yield *>(m_pc)->m_pat, \
|
||||
NUM, \
|
||||
m_bindings.begin(), \
|
||||
m_max_generation)
|
||||
|
||||
SASSERT(static_cast<const yield *>(m_pc)->m_qa->get_decl_sort(0) == m_bindings[0]->get_expr()->get_sort());
|
||||
ON_MATCH(1);
|
||||
goto backtrack;
|
||||
|
||||
|
@ -3056,29 +3072,9 @@ namespace q {
|
|||
// temporary field used to collect candidates
|
||||
ptr_vector<path_tree> m_todo;
|
||||
|
||||
enode * m_root { nullptr }; // temp field
|
||||
enode * m_other { nullptr }; // temp field
|
||||
bool m_check_missing_instances { false };
|
||||
|
||||
class pop_to_match : public trail {
|
||||
mam_impl& i;
|
||||
public:
|
||||
pop_to_match(mam_impl& i):i(i) {}
|
||||
void undo() override {
|
||||
code_tree* t = i.m_to_match.back();
|
||||
t->reset_candidates();
|
||||
i.m_to_match.pop_back();
|
||||
}
|
||||
};
|
||||
|
||||
class reset_new_patterns : public trail {
|
||||
mam_impl& i;
|
||||
public:
|
||||
reset_new_patterns(mam_impl& i):i(i) {}
|
||||
void undo() override {
|
||||
i.m_new_patterns.reset();
|
||||
}
|
||||
};
|
||||
enode * m_root = nullptr; // temp field
|
||||
enode * m_other = nullptr; // temp field
|
||||
bool m_check_missing_instances = false;
|
||||
|
||||
enode_vector * mk_tmp_vector() {
|
||||
enode_vector * r = m_pool.mk();
|
||||
|
@ -3091,14 +3087,14 @@ namespace q {
|
|||
}
|
||||
|
||||
void add_candidate(code_tree * t, enode * app) {
|
||||
if (t) {
|
||||
TRACE("mam_candidate", tout << "adding candidate:\n" << mk_ll_pp(app->get_expr(), m););
|
||||
if (!t->has_candidates()) {
|
||||
ctx.push(pop_to_match(*this));
|
||||
m_to_match.push_back(t);
|
||||
}
|
||||
t->add_candidate(app);
|
||||
if (!t)
|
||||
return;
|
||||
TRACE("q", tout << "candidate " << t << " " << ctx.bpp(app) << "\n";);
|
||||
if (!t->has_candidates()) {
|
||||
ctx.push(push_back_trail<code_tree*, false>(m_to_match));
|
||||
m_to_match.push_back(t);
|
||||
}
|
||||
t->add_candidate(ctx, app);
|
||||
}
|
||||
|
||||
void add_candidate(enode * app) {
|
||||
|
@ -3675,14 +3671,20 @@ namespace q {
|
|||
}
|
||||
}
|
||||
|
||||
void match_new_patterns() {
|
||||
unsigned m_new_patterns_qhead = 0;
|
||||
|
||||
void propagate_new_patterns() {
|
||||
if (m_new_patterns_qhead >= m_new_patterns.size())
|
||||
return;
|
||||
ctx.push(value_trail<unsigned>(m_new_patterns_qhead));
|
||||
|
||||
TRACE("mam_new_pat", tout << "matching new patterns:\n";);
|
||||
m_tmp_trees_to_delete.reset();
|
||||
for (auto const& kv : m_new_patterns) {
|
||||
for (; m_new_patterns_qhead < m_new_patterns.size(); ++m_new_patterns_qhead) {
|
||||
if (!m.inc())
|
||||
break;
|
||||
quantifier * qa = kv.first;
|
||||
app * mp = kv.second;
|
||||
auto [qa, mp] = m_new_patterns[m_new_patterns_qhead];
|
||||
|
||||
SASSERT(m.is_pattern(mp));
|
||||
app * p = to_app(mp->get_arg(0));
|
||||
func_decl * lbl = p->get_decl();
|
||||
|
@ -3714,7 +3716,6 @@ namespace q {
|
|||
m_tmp_trees[lbl_id] = nullptr;
|
||||
dealloc(tmp_tree);
|
||||
}
|
||||
m_new_patterns.reset();
|
||||
}
|
||||
|
||||
public:
|
||||
|
@ -3750,7 +3751,7 @@ namespace q {
|
|||
return; // ignore multi-pattern containing ground pattern.
|
||||
update_filters(qa, mp);
|
||||
m_new_patterns.push_back(qp_pair(qa, mp));
|
||||
ctx.push(reset_new_patterns(*this));
|
||||
ctx.push(push_back_trail<qp_pair, false>(m_new_patterns));
|
||||
// The matching abstract machine implements incremental
|
||||
// e-matching. So, for a multi-pattern [ p_1, ..., p_n ],
|
||||
// we have to make n insertions. In the i-th insertion,
|
||||
|
@ -3761,7 +3762,6 @@ namespace q {
|
|||
|
||||
void reset() override {
|
||||
m_trees.reset();
|
||||
m_new_patterns.reset();
|
||||
m_is_plbl.reset();
|
||||
m_is_clbl.reset();
|
||||
reset_pp_pc();
|
||||
|
@ -3776,22 +3776,18 @@ namespace q {
|
|||
return out;
|
||||
}
|
||||
|
||||
void propagate() override {
|
||||
TRACE("trigger_bug", tout << "match\n"; display(tout););
|
||||
if (m_to_match_head >= m_to_match.size())
|
||||
void propagate_to_match() {
|
||||
if (m_to_match_head >= m_to_match.size())
|
||||
return;
|
||||
ctx.push(value_trail<unsigned>(m_to_match_head));
|
||||
for (; m_to_match_head < m_to_match.size(); ++m_to_match_head) {
|
||||
code_tree* t = m_to_match[m_to_match_head];
|
||||
if (t->has_candidates()) {
|
||||
m_interpreter.execute(t);
|
||||
t->reset_candidates();
|
||||
}
|
||||
}
|
||||
if (!m_new_patterns.empty()) {
|
||||
match_new_patterns();
|
||||
m_new_patterns.reset();
|
||||
}
|
||||
for (; m_to_match_head < m_to_match.size(); ++m_to_match_head)
|
||||
m_interpreter.execute(m_to_match[m_to_match_head]);
|
||||
}
|
||||
|
||||
void propagate() override {
|
||||
TRACE("trigger_bug", tout << "match\n"; display(tout););
|
||||
propagate_to_match();
|
||||
propagate_new_patterns();
|
||||
}
|
||||
|
||||
void rematch(bool use_irrelevant) override {
|
||||
|
|
|
@ -86,13 +86,13 @@ namespace q {
|
|||
m_parser.add_var("cs_factor");
|
||||
}
|
||||
|
||||
void queue::set_values(fingerprint& f, float cost) {
|
||||
void queue::set_values(binding& f, float cost) {
|
||||
quantifier_stat * stat = f.c->m_stat;
|
||||
quantifier* q = f.q();
|
||||
app* pat = f.b->m_pattern;
|
||||
app* pat = f.m_pattern;
|
||||
m_vals[COST] = cost;
|
||||
m_vals[MIN_TOP_GENERATION] = static_cast<float>(f.b->m_min_top_generation);
|
||||
m_vals[MAX_TOP_GENERATION] = static_cast<float>(f.b->m_max_top_generation);
|
||||
m_vals[MIN_TOP_GENERATION] = static_cast<float>(f.m_min_top_generation);
|
||||
m_vals[MAX_TOP_GENERATION] = static_cast<float>(f.m_max_top_generation);
|
||||
m_vals[INSTANCES] = static_cast<float>(stat->get_num_instances_curr_branch());
|
||||
m_vals[SIZE] = static_cast<float>(stat->get_size());
|
||||
m_vals[DEPTH] = static_cast<float>(stat->get_depth());
|
||||
|
@ -108,14 +108,14 @@ namespace q {
|
|||
TRACE("q_detail", for (unsigned i = 0; i < m_vals.size(); i++) { tout << m_vals[i] << " "; } tout << "\n";);
|
||||
}
|
||||
|
||||
float queue::get_cost(fingerprint& f) {
|
||||
float queue::get_cost(binding& f) {
|
||||
set_values(f, 0);
|
||||
float r = m_evaluator(m_cost_function, m_vals.size(), m_vals.data());
|
||||
f.c->m_stat->update_max_cost(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
unsigned queue::get_new_gen(fingerprint& f, float cost) {
|
||||
unsigned queue::get_new_gen(binding& f, float cost) {
|
||||
set_values(f, cost);
|
||||
float r = m_evaluator(m_new_gen_function, m_vals.size(), m_vals.data());
|
||||
return std::max(f.m_max_generation + 1, static_cast<unsigned>(r));
|
||||
|
@ -129,7 +129,7 @@ namespace q {
|
|||
}
|
||||
};
|
||||
|
||||
void queue::insert(fingerprint* f) {
|
||||
void queue::insert(binding* f) {
|
||||
float cost = get_cost(*f);
|
||||
if (m_new_entries.empty())
|
||||
ctx.push(reset_new_entries(m_new_entries));
|
||||
|
@ -137,7 +137,7 @@ namespace q {
|
|||
}
|
||||
|
||||
void queue::instantiate(entry& ent) {
|
||||
fingerprint & f = *ent.m_qb;
|
||||
binding& f = *ent.m_qb;
|
||||
quantifier * q = f.q();
|
||||
unsigned num_bindings = f.size();
|
||||
quantifier_stat * stat = f.c->m_stat;
|
||||
|
@ -146,12 +146,18 @@ namespace q {
|
|||
|
||||
unsigned gen = get_new_gen(f, ent.m_cost);
|
||||
bool new_propagation = false;
|
||||
if (em.propagate(true, f.nodes(), gen, *f.c, new_propagation))
|
||||
if (false && em.propagate(true, f.nodes(), gen, *f.c, new_propagation))
|
||||
return;
|
||||
|
||||
#if 0
|
||||
std::cout << mk_pp(q, m) << "\n";
|
||||
std::cout << num_bindings << "\n";
|
||||
for (unsigned i = 0; i < num_bindings; ++i)
|
||||
std::cout << mk_pp(f[i]->get_expr(), m) << " " << mk_pp(f[i]->get_sort(), m) << "\n";
|
||||
#endif
|
||||
auto* ebindings = m_subst(q, num_bindings);
|
||||
for (unsigned i = 0; i < num_bindings; ++i)
|
||||
ebindings[i] = f.nodes()[i]->get_expr();
|
||||
ebindings[i] = f[i]->get_expr();
|
||||
expr_ref instance = m_subst();
|
||||
ctx.get_rewriter()(instance);
|
||||
if (m.is_true(instance)) {
|
||||
|
@ -161,10 +167,13 @@ namespace q {
|
|||
stat->inc_num_instances();
|
||||
|
||||
m_stats.m_num_instances++;
|
||||
|
||||
// f.display(ctx, std::cout << mk_pp(f.q(), m) << "\n" << instance << "\n") << "\n";
|
||||
|
||||
|
||||
euf::solver::scoped_generation _sg(ctx, gen);
|
||||
sat::literal result_l = ctx.mk_literal(instance);
|
||||
em.add_instantiation(*f.c, *f.b, result_l);
|
||||
em.add_instantiation(*f.c, f, result_l);
|
||||
}
|
||||
|
||||
bool queue::propagate() {
|
||||
|
@ -178,7 +187,7 @@ namespace q {
|
|||
if (0 == since_last_check && ctx.resource_limits_exceeded())
|
||||
break;
|
||||
|
||||
fingerprint& f = *curr.m_qb;
|
||||
binding& f = *curr.m_qb;
|
||||
|
||||
if (curr.m_cost <= m_eager_cost_threshold)
|
||||
instantiate(curr);
|
||||
|
@ -223,15 +232,14 @@ namespace q {
|
|||
}
|
||||
}
|
||||
bool instantiated = false;
|
||||
unsigned idx = 0;
|
||||
for (entry & e : m_delayed_entries) {
|
||||
for (unsigned idx = 0; idx < m_delayed_entries.size(); ++idx) {
|
||||
entry & e = m_delayed_entries[idx];
|
||||
if (!e.m_instantiated && e.m_cost <= cost_limit) {
|
||||
instantiated = true;
|
||||
ctx.push(reset_instantiated(*this, idx));
|
||||
m_stats.m_num_lazy_instances++;
|
||||
instantiate(e);
|
||||
}
|
||||
++idx;
|
||||
}
|
||||
return instantiated;
|
||||
}
|
||||
|
|
|
@ -20,7 +20,7 @@ Author:
|
|||
#include "ast/cost_evaluator.h"
|
||||
#include "ast/rewriter/cached_var_subst.h"
|
||||
#include "parsers/util/cost_parser.h"
|
||||
#include "sat/smt/q_fingerprint.h"
|
||||
#include "sat/smt/q_clause.h"
|
||||
|
||||
|
||||
|
||||
|
@ -51,12 +51,12 @@ namespace q {
|
|||
cost_evaluator m_evaluator;
|
||||
cached_var_subst m_subst;
|
||||
svector<float> m_vals;
|
||||
double m_eager_cost_threshold { 0 };
|
||||
double m_eager_cost_threshold = 0;
|
||||
struct entry {
|
||||
fingerprint * m_qb;
|
||||
binding * m_qb;
|
||||
float m_cost;
|
||||
bool m_instantiated{ false };
|
||||
entry(fingerprint * f, float c):m_qb(f), m_cost(c) {}
|
||||
bool m_instantiated = false;
|
||||
entry(binding * f, float c):m_qb(f), m_cost(c) {}
|
||||
};
|
||||
struct reset_new_entries;
|
||||
struct reset_instantiated;
|
||||
|
@ -64,18 +64,18 @@ namespace q {
|
|||
svector<entry> m_new_entries;
|
||||
svector<entry> m_delayed_entries;
|
||||
|
||||
float get_cost(fingerprint& f);
|
||||
void set_values(fingerprint& f, float cost);
|
||||
float get_cost(binding& f);
|
||||
void set_values(binding& f, float cost);
|
||||
void init_parser_vars();
|
||||
void setup();
|
||||
unsigned get_new_gen(fingerprint& f, float cost);
|
||||
unsigned get_new_gen(binding& f, float cost);
|
||||
void instantiate(entry& e);
|
||||
|
||||
public:
|
||||
|
||||
queue(ematch& em, euf::solver& ctx);
|
||||
|
||||
void insert(fingerprint* f);
|
||||
void insert(binding* f);
|
||||
|
||||
bool propagate();
|
||||
|
||||
|
|
|
@ -100,7 +100,7 @@ namespace q {
|
|||
}
|
||||
|
||||
bool solver::unit_propagate() {
|
||||
return ctx.get_config().m_ematching && m_ematch.propagate(false);
|
||||
return m_ematch.unit_propagate();
|
||||
}
|
||||
|
||||
euf::theory_var solver::mk_var(euf::enode* n) {
|
||||
|
|
|
@ -52,7 +52,7 @@ namespace euf {
|
|||
virtual void apply_sort_cnstr(enode* n, sort* s) {}
|
||||
|
||||
/**
|
||||
\record that an equality has been internalized.
|
||||
\brief Record that an equality has been internalized.
|
||||
*/
|
||||
virtual void eq_internalized(enode* n) {}
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ Author:
|
|||
#include "sat/smt/user_solver.h"
|
||||
#include "sat/smt/euf_solver.h"
|
||||
|
||||
namespace user {
|
||||
namespace user_solver {
|
||||
|
||||
solver::solver(euf::solver& ctx) :
|
||||
th_euf_solver(ctx, symbol("user"), ctx.get_manager().mk_family_id("user"))
|
||||
|
|
|
@ -23,7 +23,7 @@ Author:
|
|||
#include "solver/solver.h"
|
||||
|
||||
|
||||
namespace user {
|
||||
namespace user_solver {
|
||||
|
||||
class solver : public euf::th_euf_solver, public ::solver::propagate_callback {
|
||||
|
||||
|
|
|
@ -2091,7 +2091,6 @@ namespace {
|
|||
enode * n = m_registers[j2->m_reg]->get_root();
|
||||
if (n->get_num_parents() == 0)
|
||||
return nullptr;
|
||||
unsigned num_args = n->get_num_args();
|
||||
enode_vector * v = mk_enode_vector();
|
||||
enode_vector::const_iterator it1 = n->begin_parents();
|
||||
enode_vector::const_iterator end1 = n->end_parents();
|
||||
|
|
|
@ -684,11 +684,12 @@ bool theory_seq::branch_quat_variable(depeq const& e) {
|
|||
cond = true;
|
||||
}
|
||||
// xs and ys cannot align
|
||||
else if (!can_align_from_lhs(xs, ys) && !can_align_from_rhs(xs, ys))
|
||||
else if (!can_align_from_lhs(xs, ys) && !can_align_from_rhs(xs, ys) && !can_align_from_lhs(ys, xs) && !can_align_from_rhs(ys, xs))
|
||||
cond = true;
|
||||
|
||||
if (!cond)
|
||||
return false;
|
||||
|
||||
|
||||
literal_vector lits;
|
||||
if (xs == ys) {
|
||||
|
@ -724,7 +725,7 @@ bool theory_seq::branch_quat_variable(depeq const& e) {
|
|||
}
|
||||
}
|
||||
else {
|
||||
TRACE("seq", tout << mk_pp(x1, m) << " > " << mk_pp(y1, m) << "\n";);
|
||||
TRACE("seq", tout << mk_pp(x1, m) << " >\n" << mk_pp(y1, m) << "\n";);
|
||||
if (ctx.get_assignment(lit3) == l_undef) {
|
||||
ctx.mark_as_relevant(lit3);
|
||||
return true;
|
||||
|
@ -1144,7 +1145,7 @@ bool theory_seq::solve_nth_eq(expr_ref_vector const& ls, expr_ref_vector const&
|
|||
m.inc_ref(rhs);
|
||||
m.inc_ref(ls[0]);
|
||||
m_nth_eq2_cache.insert(std::make_pair(rhs, ls[0]));
|
||||
ctx.push_trail(remove_obj_pair_map(m, m_nth_eq2_cache, rhs, ls[0]));
|
||||
get_trail_stack().push(remove_obj_pair_map(m, m_nth_eq2_cache, rhs, ls[0]));
|
||||
ls1.push_back(s);
|
||||
if (!idx_is_zero) rs1.push_back(m_sk.mk_pre(s, idx));
|
||||
rs1.push_back(m_util.str.mk_unit(rhs));
|
||||
|
|
|
@ -42,7 +42,7 @@ namespace smt {
|
|||
seq_offset_eq(theory& th, ast_manager& m);
|
||||
bool empty() const { return m_offset_equalities.empty(); }
|
||||
/**
|
||||
\breif determine if r1 = r2 + offset
|
||||
\brief determine if r1 = r2 + offset
|
||||
*/
|
||||
bool find(enode* r1, enode* r2, int& offset) const;
|
||||
bool contains(enode* r1, enode* r2) const { int offset = 0; return find(r1, r2, offset); }
|
||||
|
|
|
@ -12,6 +12,7 @@ Abstract:
|
|||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2020-5-22
|
||||
Margus Veanes 2021
|
||||
|
||||
--*/
|
||||
|
||||
|
@ -253,10 +254,8 @@ namespace smt {
|
|||
* (accept s (i + 1) (derivative s[i] r)
|
||||
*
|
||||
* Acceptance of a derivative is unfolded into a disjunction over
|
||||
* all derivatives. Effectively, this implements the following rule,
|
||||
* but all in one step:
|
||||
* (accept s i (ite c r1 r2)) =>
|
||||
* c & (accept s i r1) \/ ~c & (accept s i r2)
|
||||
* all derivatives. Effectively, this implements the following rule:
|
||||
* (accept s i (ite c r1 r2)) => (ite c (accept s i r1) (accept s i r2))
|
||||
*/
|
||||
void seq_regex::propagate_accept(literal lit) {
|
||||
SASSERT(!lit.sign());
|
||||
|
@ -302,6 +301,7 @@ namespace smt {
|
|||
unsigned min_len = re().min_length(r);
|
||||
unsigned min_len_plus_i = u().max_plus(min_len, idx);
|
||||
literal len_s_ge_min = th.m_ax.mk_ge(th.mk_len(s), min_len_plus_i);
|
||||
// Acc(s,i,r) ==> |s| >= i + minlength(r)
|
||||
th.propagate_lit(nullptr, 1, &lit, len_s_ge_min);
|
||||
// Axiom equivalent to the above: th.add_axiom(~lit, len_s_ge_min);
|
||||
|
||||
|
@ -316,6 +316,8 @@ namespace smt {
|
|||
STRACE("seq_regex_brief", tout
|
||||
<< " (Warning: min_length returned 0 for"
|
||||
<< " non-nullable regex)";);
|
||||
// since nullable(r) = false:
|
||||
// Acc(s,i,r) ==> |s|>i
|
||||
th.propagate_lit(nullptr, 1, &lit, ~len_s_le_i);
|
||||
}
|
||||
else if (!m.is_true(is_nullable)) {
|
||||
|
@ -327,7 +329,9 @@ namespace smt {
|
|||
<< " (Warning: is_nullable did not simplify)";);
|
||||
literal is_nullable_lit = th.mk_literal(is_nullable);
|
||||
ctx.mark_as_relevant(is_nullable_lit);
|
||||
// Acc(s,i,r) & |s|<=i ==> nullable(r)
|
||||
th.add_axiom(~lit, ~len_s_le_i, is_nullable_lit);
|
||||
//TODO: what if is_nullable contains an in_re
|
||||
if (str().is_in_re(is_nullable))
|
||||
th.add_unhandled_expr(is_nullable);
|
||||
}
|
||||
|
@ -335,14 +339,19 @@ namespace smt {
|
|||
|
||||
// Rule 3: derivative unfolding
|
||||
literal_vector accept_next;
|
||||
expr_ref hd = th.mk_nth(s, i);
|
||||
expr_ref s_i = th.mk_nth(s, i);
|
||||
expr_ref deriv(m);
|
||||
deriv = derivative_wrapper(hd, r);
|
||||
deriv = mk_derivative_wrapper(s_i, r);
|
||||
STRACE("seq_regex", tout
|
||||
<< "mk_derivative_wrapper: " << re().to_str(deriv) << std::endl;);
|
||||
expr_ref accept_deriv(m);
|
||||
accept_deriv = mk_deriv_accept(s, idx + 1, deriv);
|
||||
accept_next.push_back(~lit);
|
||||
accept_next.push_back(len_s_le_i);
|
||||
accept_next.push_back(th.mk_literal(accept_deriv));
|
||||
// Acc(s, i, r) => (|s|<=i or Acc(s, i+1, D(s_i,r)))
|
||||
// where Acc(s, i+1, ite(c, t, f)) = ite(c, Acc(s, i+1, t), Acc(s, i+1, t))
|
||||
// and Acc(s, i+1, r U s) = Acc(s, i+1, r) or Acc(s, i+1, s)
|
||||
th.add_axiom(accept_next);
|
||||
}
|
||||
|
||||
|
@ -418,20 +427,21 @@ namespace smt {
|
|||
/*
|
||||
Wrapper around calls to is_nullable from the seq rewriter.
|
||||
|
||||
Note: the nullable wrapper and derivative wrapper actually use
|
||||
TODO: clean up the following:
|
||||
Note: the is_nullable_wrapper and mk_derivative_wrapper actually use
|
||||
different sequence rewriters; these are at:
|
||||
m_seq_rewrite
|
||||
(returned by seq_rw())
|
||||
th.m_rewrite.m_imp->m_cfg.m_seq_rw
|
||||
(private, can't be accessed directly)
|
||||
As a result operations are cached separately for the nullable
|
||||
and derivative calls. TBD if caching them using the same rewriter
|
||||
makes any difference.
|
||||
and derivative calls.
|
||||
*/
|
||||
expr_ref seq_regex::is_nullable_wrapper(expr* r) {
|
||||
STRACE("seq_regex", tout << "nullable: " << mk_pp(r, m) << std::endl;);
|
||||
|
||||
expr_ref result = seq_rw().is_nullable(r);
|
||||
//TODO: rewrite seems unnecessary here
|
||||
rewrite(result);
|
||||
|
||||
STRACE("seq_regex", tout << "nullable result: " << mk_pp(result, m) << std::endl;);
|
||||
|
@ -442,39 +452,28 @@ namespace smt {
|
|||
}
|
||||
|
||||
/*
|
||||
Wrapper around the regex symbolic derivative from the seq rewriter.
|
||||
Ensures that the derivative is written in a normalized BDD form
|
||||
with optimizations for if-then-else expressions involving the head.
|
||||
|
||||
Note: the nullable wrapper and derivative wrapper actually use
|
||||
different sequence rewriters; these are at:
|
||||
m_seq_rewrite
|
||||
(returned by seq_rw())
|
||||
th.m_rewrite.m_imp->m_cfg.m_seq_rw
|
||||
(private, can't be accessed directly)
|
||||
As a result operations are cached separately for the nullable
|
||||
and derivative calls. TBD if caching them using the same rewriter
|
||||
makes any difference.
|
||||
First creates a derivatrive of r wrt x=(:var 0) and then replaces x by ele.
|
||||
This will create a cached entry for the generic derivative of r that is independent of ele.
|
||||
*/
|
||||
expr_ref seq_regex::derivative_wrapper(expr* hd, expr* r) {
|
||||
STRACE("seq_regex", tout << "derivative(" << mk_pp(hd, m) << "): " << mk_pp(r, m) << std::endl;);
|
||||
expr_ref seq_regex::mk_derivative_wrapper(expr* ele, expr* r) {
|
||||
STRACE("seq_regex", tout << "derivative(" << mk_pp(ele, m) << "): " << mk_pp(r, m) << std::endl;);
|
||||
|
||||
// Use canonical variable for head
|
||||
expr_ref hd_canon(m.mk_var(0, hd->get_sort()), m);
|
||||
expr_ref result(re().mk_derivative(hd_canon, r), m);
|
||||
rewrite(result);
|
||||
// Uses canonical variable (:var 0) for the derivative element
|
||||
expr_ref der(seq_rw().mk_derivative(r), m);
|
||||
|
||||
// Substitute with real head
|
||||
// Substitute (:var 0) with the actual element
|
||||
var_subst subst(m);
|
||||
expr_ref_vector sub(m);
|
||||
sub.push_back(hd);
|
||||
result = subst(result, sub);
|
||||
sub.push_back(ele);
|
||||
der = subst(der, sub);
|
||||
|
||||
STRACE("seq_regex", tout << "derivative result: " << mk_pp(result, m) << std::endl;);
|
||||
STRACE("seq_regex", tout << "derivative result: " << mk_pp(der, m) << std::endl;);
|
||||
STRACE("seq_regex_brief", tout << "d(" << state_str(r) << ")="
|
||||
<< state_str(result) << " ";);
|
||||
<< state_str(der) << " ";);
|
||||
|
||||
return result;
|
||||
//TODO: simplify der further, if ele implies further simplifications
|
||||
//e.g. if ele='b' then de(ite (x='a') t f) simplifies to t
|
||||
return der;
|
||||
}
|
||||
|
||||
void seq_regex::propagate_eq(expr* r1, expr* r2) {
|
||||
|
@ -557,7 +556,7 @@ namespace smt {
|
|||
literal null_lit = th.mk_literal(is_nullable);
|
||||
expr_ref hd = mk_first(r, n);
|
||||
expr_ref d(m);
|
||||
d = derivative_wrapper(hd, r);
|
||||
d = mk_derivative_wrapper(hd, r);
|
||||
|
||||
literal_vector lits;
|
||||
lits.push_back(~lit);
|
||||
|
@ -584,11 +583,10 @@ namespace smt {
|
|||
}
|
||||
|
||||
/*
|
||||
Given a string s, index i, and a derivative regex d, return an
|
||||
Given a string s, index i, and a derivative r, return an
|
||||
expression that is equivalent to
|
||||
accept s i r
|
||||
but which pushes accept s i r into the leaves (next derivatives to
|
||||
explore).
|
||||
but which pushes accept s i r into the leaves
|
||||
|
||||
Input r is of type regex; output is of type bool.
|
||||
|
||||
|
@ -600,14 +598,18 @@ namespace smt {
|
|||
expr_ref seq_regex::mk_deriv_accept(expr* s, unsigned i, expr* r) {
|
||||
vector<expr*> to_visit;
|
||||
to_visit.push_back(r);
|
||||
obj_map<expr, expr*> re_to_bool;
|
||||
obj_map<expr, expr*> re_to_accept;
|
||||
expr_ref_vector _temp_bool_owner(m); // temp owner for bools we create
|
||||
|
||||
// DFS
|
||||
bool s_is_longer_than_i = str().min_length(s) > i;
|
||||
expr* i_int = a().mk_int(i);
|
||||
_temp_bool_owner.push_back(i_int);
|
||||
|
||||
// DFS, avoids duplicating derivative construction that has already been done
|
||||
while (to_visit.size() > 0) {
|
||||
expr* e = to_visit.back();
|
||||
expr* econd = nullptr, *e1 = nullptr, *e2 = nullptr;
|
||||
if (!re_to_bool.contains(e)) {
|
||||
if (!re_to_accept.contains(e)) {
|
||||
// First visit: add children
|
||||
STRACE("seq_regex_verbose", tout << "1";);
|
||||
if (m.is_ite(e, econd, e1, e2) ||
|
||||
|
@ -616,36 +618,40 @@ namespace smt {
|
|||
to_visit.push_back(e2);
|
||||
}
|
||||
// Mark first visit by adding nullptr to the map
|
||||
re_to_bool.insert(e, nullptr);
|
||||
re_to_accept.insert(e, nullptr);
|
||||
}
|
||||
else if (re_to_bool.find(e) == nullptr) {
|
||||
else if (re_to_accept.find(e) == nullptr) {
|
||||
// Second visit: set value
|
||||
STRACE("seq_regex_verbose", tout << "2";);
|
||||
to_visit.pop_back();
|
||||
if (m.is_ite(e, econd, e1, e2)) {
|
||||
expr* b1 = re_to_bool.find(e1);
|
||||
expr* b2 = re_to_bool.find(e2);
|
||||
expr* b = m.mk_ite(econd, b1, b2);
|
||||
expr* b1 = re_to_accept.find(e1);
|
||||
expr* b2 = re_to_accept.find(e2);
|
||||
expr* b = m.is_true(econd) || b1 == b2 ? b1 : m.is_false(econd) ? b2 : m.mk_ite(econd, b1, b2);
|
||||
_temp_bool_owner.push_back(b);
|
||||
re_to_bool.find(e) = b;
|
||||
re_to_accept.find(e) = b;
|
||||
}
|
||||
else if (re().is_empty(e) || (s_is_longer_than_i && re().is_epsilon(e)))
|
||||
{
|
||||
// s[i..] in [] <==> false, also: s[i..] in () <==> false when |s|>i
|
||||
re_to_accept.find(e) = m.mk_false();
|
||||
}
|
||||
else if (re().is_full_seq(e) || (s_is_longer_than_i && re().is_dot_plus(e)))
|
||||
{
|
||||
// s[i..] in .* <==> true, also: s[i..] in .+ <==> true when |s|>i
|
||||
re_to_accept.find(e) = m.mk_true();
|
||||
}
|
||||
/*
|
||||
else if (re().is_empty(e))
|
||||
{
|
||||
re_to_bool.find(e) = m.mk_false();
|
||||
}
|
||||
else if (re().is_epsilon(e))
|
||||
{
|
||||
expr* iplus1 = a().mk_int(i);
|
||||
expr* one = a().mk_int(1);
|
||||
_temp_bool_owner.push_back(iplus1);
|
||||
_temp_bool_owner.push_back(one);
|
||||
//the substring starting after position iplus1 must be empty
|
||||
expr* s_end = str().mk_substr(s, iplus1, one);
|
||||
//the substring starting after position i must be empty
|
||||
expr* s_end = str().mk_substr(s, i_int, one);
|
||||
expr* s_end_is_epsilon = m.mk_eq(s_end, str().mk_empty(m.get_sort(s)));
|
||||
|
||||
_temp_bool_owner.push_back(s_end_is_epsilon);
|
||||
re_to_bool.find(e) = s_end_is_epsilon;
|
||||
re_to_accept.find(e) = s_end_is_epsilon;
|
||||
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "added empty sequence leaf: "
|
||||
|
@ -653,18 +659,16 @@ namespace smt {
|
|||
}
|
||||
*/
|
||||
else if (re().is_union(e, e1, e2)) {
|
||||
expr* b1 = re_to_bool.find(e1);
|
||||
expr* b2 = re_to_bool.find(e2);
|
||||
expr* b = m.mk_or(b1, b2);
|
||||
expr* b1 = re_to_accept.find(e1);
|
||||
expr* b2 = re_to_accept.find(e2);
|
||||
expr* b = m.is_false(b1) || b1 == b2 ? b2 : m.is_false(b2) ? b1 : m.mk_or(b1, b2);
|
||||
_temp_bool_owner.push_back(b);
|
||||
re_to_bool.find(e) = b;
|
||||
re_to_accept.find(e) = b;
|
||||
}
|
||||
else {
|
||||
expr* iplus1 = a().mk_int(i);
|
||||
_temp_bool_owner.push_back(iplus1);
|
||||
expr_ref acc_leaf = sk().mk_accept(s, iplus1, e);
|
||||
expr_ref acc_leaf = sk().mk_accept(s, i_int, e);
|
||||
_temp_bool_owner.push_back(acc_leaf);
|
||||
re_to_bool.find(e) = acc_leaf;
|
||||
re_to_accept.find(e) = acc_leaf;
|
||||
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "mk_deriv_accept: added accept leaf: "
|
||||
|
@ -680,59 +684,44 @@ namespace smt {
|
|||
|
||||
// Finalize
|
||||
expr_ref result(m);
|
||||
result = re_to_bool.find(r); // Assigns ownership of all exprs in
|
||||
// re_to_bool for after this completes
|
||||
result = re_to_accept.find(r); // Assigns ownership of all exprs in
|
||||
// re_to_accept for after this completes
|
||||
rewrite(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Return a list of all leaves in the derivative of a regex r,
|
||||
Return a list of all target regexes in the derivative of a regex r,
|
||||
ignoring the conditions along each path.
|
||||
|
||||
Warning: Although the derivative
|
||||
normal form tries to eliminate unsat condition paths, one cannot
|
||||
assume that the path to each leaf is satisfiable in general
|
||||
(e.g. when regexes are created using re.pred).
|
||||
So not all results may correspond to satisfiable predicates.
|
||||
It is OK to rely on the results being satisfiable for completeness,
|
||||
but not soundness.
|
||||
The derivative construction uses (:var 0) and tries
|
||||
to eliminate unsat condition paths but it does not perform
|
||||
full satisfiability checks and it is not guaranteed
|
||||
that all targets are actually reachable
|
||||
*/
|
||||
void seq_regex::get_all_derivatives(expr* r, expr_ref_vector& results) {
|
||||
// Get derivative
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(u().is_re(r, seq_sort));
|
||||
expr_ref n(m.mk_fresh_const("re.char", seq_sort), m);
|
||||
expr_ref hd = mk_first(r, n);
|
||||
expr_ref d(m);
|
||||
d = derivative_wrapper(hd, r);
|
||||
void seq_regex::get_derivative_targets(expr* r, expr_ref_vector& targets) {
|
||||
// constructs the derivative wrt (:var 0)
|
||||
expr_ref d(seq_rw().mk_derivative(r), m);
|
||||
|
||||
// DFS
|
||||
vector<expr*> to_visit;
|
||||
to_visit.push_back(d);
|
||||
obj_map<expr, bool> visited; // set<expr> (bool is used as a unit type)
|
||||
while (to_visit.size() > 0) {
|
||||
expr* e = to_visit.back();
|
||||
to_visit.pop_back();
|
||||
if (visited.contains(e)) continue;
|
||||
visited.insert(e, true);
|
||||
expr* econd = nullptr, *e1 = nullptr, *e2 = nullptr;
|
||||
if (m.is_ite(e, econd, e1, e2) ||
|
||||
re().is_union(e, e1, e2)) {
|
||||
to_visit.push_back(e1);
|
||||
to_visit.push_back(e2);
|
||||
}
|
||||
else if (!re().is_empty(e)) {
|
||||
results.push_back(e);
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "get_all_derivatives: added deriv: "
|
||||
<< mk_pp(e, m) << std::endl;);
|
||||
// use DFS to collect all the targets (leaf regexes) in d.
|
||||
expr* _1 = nullptr, * e1 = nullptr, * e2 = nullptr;
|
||||
obj_hashtable<expr>::entry* _2 = nullptr;
|
||||
vector<expr*> workset;
|
||||
workset.push_back(d);
|
||||
obj_hashtable<expr> done;
|
||||
done.insert(d);
|
||||
while (workset.size() > 0) {
|
||||
expr* e = workset.back();
|
||||
workset.pop_back();
|
||||
if (m.is_ite(e, _1, e1, e2) || re().is_union(e, e1, e2)) {
|
||||
if (done.insert_if_not_there_core(e1, _2))
|
||||
workset.push_back(e1);
|
||||
if (done.insert_if_not_there_core(e2, _2))
|
||||
workset.push_back(e2);
|
||||
}
|
||||
else if (!re().is_empty(e))
|
||||
targets.push_back(e);
|
||||
}
|
||||
|
||||
STRACE("seq_regex", tout << "Number of derivatives: "
|
||||
<< results.size() << std::endl;);
|
||||
STRACE("seq_regex_brief", tout << "#derivs=" << results.size() << " ";);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -800,7 +789,7 @@ namespace smt {
|
|||
th.add_axiom(~lit, ~th.mk_literal(is_nullable));
|
||||
expr_ref hd = mk_first(r, n);
|
||||
expr_ref d(m);
|
||||
d = derivative_wrapper(hd, r);
|
||||
d = mk_derivative_wrapper(hd, r);
|
||||
literal_vector lits;
|
||||
expr_ref_pair_vector cofactors(m);
|
||||
get_cofactors(d, cofactors);
|
||||
|
@ -884,7 +873,7 @@ namespace smt {
|
|||
|
||||
STRACE("state_graph",
|
||||
if (!m_state_graph.is_seen(r_id))
|
||||
tout << std::endl << "state(" << r_id << ") = " << seq_util::rex::pp(re(), r) << std::endl << "info(" << r_id << ") = " << re().get_info(r) << std::endl;);
|
||||
tout << std::endl << "state(" << r_id << ") = " << re().to_str(r) << std::endl << "info(" << r_id << ") = " << re().get_info(r) << std::endl;);
|
||||
// Add state
|
||||
m_state_graph.add_state(r_id);
|
||||
STRACE("seq_regex", tout << "Updating state graph for regex "
|
||||
|
@ -900,14 +889,14 @@ namespace smt {
|
|||
expr_ref_vector derivatives(m);
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "getting all derivs: " << r_id << " " << std::endl;);
|
||||
get_all_derivatives(r, derivatives);
|
||||
get_derivative_targets(r, derivatives);
|
||||
for (auto const& dr: derivatives) {
|
||||
unsigned dr_id = get_state_id(dr);
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< std::endl << " traversing deriv: " << dr_id << " ";);
|
||||
STRACE("state_graph",
|
||||
if (!m_state_graph.is_seen(dr_id))
|
||||
tout << "state(" << dr_id << ") = " << seq_util::rex::pp(re(), dr) << std::endl << "info(" << dr_id << ") = " << re().get_info(dr) << std::endl;);
|
||||
tout << "state(" << dr_id << ") = " << re().to_str(dr) << std::endl << "info(" << dr_id << ") = " << re().get_info(dr) << std::endl;);
|
||||
// Add state
|
||||
m_state_graph.add_state(dr_id);
|
||||
bool maybecycle = can_be_in_cycle(r, dr);
|
||||
|
|
|
@ -158,12 +158,12 @@ namespace smt {
|
|||
expr_ref symmetric_diff(expr* r1, expr* r2);
|
||||
|
||||
expr_ref is_nullable_wrapper(expr* r);
|
||||
expr_ref derivative_wrapper(expr* hd, expr* r);
|
||||
expr_ref mk_derivative_wrapper(expr* hd, expr* r);
|
||||
|
||||
// Various support for unfolding derivative expressions that are
|
||||
// returned by derivative_wrapper
|
||||
expr_ref mk_deriv_accept(expr* s, unsigned i, expr* r);
|
||||
void get_all_derivatives(expr* r, expr_ref_vector& results);
|
||||
void get_derivative_targets(expr* r, expr_ref_vector& targets);
|
||||
void get_cofactors(expr* r, expr_ref_pair_vector& result);
|
||||
void get_cofactors_rec(expr* r, expr_ref_vector& conds,
|
||||
expr_ref_pair_vector& result);
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue