3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 00:26:38 +00:00

new files

This commit is contained in:
Nikolaj Bjorner 2023-12-11 14:51:31 -08:00
parent 17c480f837
commit 727a738958
2 changed files with 757 additions and 0 deletions

View file

@ -0,0 +1,663 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat constraints for bit operations.
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09
Notes:
Additional possible functionality on constraints:
- activate - when operation is first activated. It may be created and only activated later.
- bit-wise assignments - narrow based on bit assignment, not entire word assignment.
- integration with congruence tables
- integration with conflict resolution
--*/
#include "sat/smt/polysat/op_constraint.h"
#include "sat/smt/polysat/core.h"
namespace polysat {
op_constraint::op_constraint(code c, pdd const& p, pdd const& q, pdd const& r) :
m_op(c), m_p(p), m_q(q), m_r(r) {
vars().append(p.free_vars());
for (auto v : q.free_vars())
if (!vars().contains(v))
vars().push_back(v);
for (auto v : r.free_vars())
if (!vars().contains(v))
vars().push_back(v);
switch (c) {
case code::and_op:
if (p.index() > q.index())
std::swap(m_p, m_q);
break;
case code::inv_op:
SASSERT(q.is_zero());
default:
break;
}
VERIFY(r.is_var());
}
lbool op_constraint::eval() const {
return eval(p(), q(), r());
}
lbool op_constraint::eval(assignment const& a) const {
return eval(a.apply_to(p()), a.apply_to(q()), a.apply_to(r()));
}
lbool op_constraint::eval(pdd const& p, pdd const& q, pdd const& r) const {
switch (m_op) {
case code::lshr_op:
return eval_lshr(p, q, r);
case code::shl_op:
return eval_shl(p, q, r);
case code::and_op:
return eval_and(p, q, r);
case code::inv_op:
return eval_inv(p, r);
default:
return l_undef;
}
}
/** Evaluate constraint: r == p >> q */
lbool op_constraint::eval_lshr(pdd const& p, pdd const& q, pdd const& r) {
auto& m = p.manager();
if (q.is_zero() && p == r)
return l_true;
if (q.is_val() && q.val() >= m.power_of_2() && r.is_val())
return to_lbool(r.is_zero());
if (p.is_val() && q.is_val() && r.is_val()) {
SASSERT(q.val().is_unsigned()); // otherwise, previous condition should have been triggered
return to_lbool(r.val() == machine_div2k(p.val(), q.val().get_unsigned()));
}
// TODO: other cases when we know lower bound of q,
// e.g, q = 2^k*q1 + q2, where q2 is a constant.
return l_undef;
}
/** Evaluate constraint: r == p << q */
lbool op_constraint::eval_shl(pdd const& p, pdd const& q, pdd const& r) {
auto& m = p.manager();
if (q.is_zero() && p == r)
return l_true;
if (q.is_val() && q.val() >= m.power_of_2() && r.is_val())
return to_lbool(r.is_zero());
if (p.is_val() && q.is_val() && r.is_val()) {
SASSERT(q.val().is_unsigned()); // otherwise, previous condition should have been triggered
// TODO: use left-shift operation instead of multiplication?
auto factor = rational::power_of_two(q.val().get_unsigned());
return to_lbool(r == p * m.mk_val(factor));
}
// TODO: other cases when we know lower bound of q,
// e.g, q = 2^k*q1 + q2, where q2 is a constant.
// (bounds should be tracked by viable, then just use min_viable here)
return l_undef;
}
/** Evaluate constraint: r == p & q */
lbool op_constraint::eval_and(pdd const& p, pdd const& q, pdd const& r) {
if ((p.is_zero() || q.is_zero()) && r.is_zero())
return l_true;
if (p.is_val() && q.is_val() && r.is_val())
return r.val() == bitwise_and(p.val(), q.val()) ? l_true : l_false;
return l_undef;
}
/** Evaluate constraint: r == inv p */
lbool op_constraint::eval_inv(pdd const& p, pdd const& r) {
if (!p.is_val() || !r.is_val())
return l_undef;
if (p.is_zero() || r.is_zero()) // the inverse of 0 is 0 (by arbitrary definition). Just to have some unique value
return to_lbool(p.is_zero() && r.is_zero());
return to_lbool(p.val().pseudo_inverse(p.power_of_2()) == r.val());
}
std::ostream& op_constraint::display(std::ostream& out, lbool status) const {
switch (status) {
case l_true: return display(out, "==");
case l_false: return display(out, "!=");
default: return display(out, "?=");
}
}
std::ostream& operator<<(std::ostream& out, op_constraint::code c) {
switch (c) {
case op_constraint::code::ashr_op:
return out << ">>a";
case op_constraint::code::lshr_op:
return out << ">>";
case op_constraint::code::shl_op:
return out << "<<";
case op_constraint::code::and_op:
return out << "&";
case op_constraint::code::inv_op:
return out << "inv";
default:
UNREACHABLE();
return out;
}
return out;
}
std::ostream& op_constraint::display(std::ostream& out) const {
return display(out, l_true);
}
std::ostream& op_constraint::display(std::ostream& out, char const* eq) const {
if (m_op == code::inv_op)
return out << r() << " " << eq << " " << m_op << " " << p();
return out << r() << " " << eq << " " << p() << " " << m_op << " " << q();
}
#if 0
/**
* Produce lemmas that contradict the given assignment.
*
* We can assume that op_constraint is only asserted positive.
*/
clause_ref op_constraint::produce_lemma(solver& s, assignment const& a, bool is_positive) {
SASSERT(is_positive);
if (is_currently_true(a, is_positive))
return {};
return produce_lemma(s, a);
}
clause_ref op_constraint::produce_lemma(solver& s, assignment const& a) {
switch (m_op) {
case code::lshr_op:
return lemma_lshr(s, a);
case code::shl_op:
return lemma_shl(s, a);
case code::and_op:
return lemma_and(s, a);
case code::inv_op:
return lemma_inv(s, a);
default:
NOT_IMPLEMENTED_YET();
return {};
}
}
/**
* Enforce basic axioms for r == p >> q:
*
* q >= N -> r = 0
* q >= k -> r[i] = 0 for N - k <= i < N (bit indices range from 0 to N-1, inclusive)
* q >= k -> r <= 2^{N-k} - 1
* q = k -> r[i] = p[i+k] for 0 <= i < N - k
* r <= p
* q != 0 -> r <= p (subsumed by previous axiom)
* q != 0 /\ p > 0 -> r < p
* q = 0 -> r = p
* p = q -> r = 0
*
* when q is a constant, several axioms can be enforced at activation time.
*
* Enforce also inferences and bounds
*
* TODO: use also
* s.m_viable.min_viable();
* s.m_viable.max_viable()
* when r, q are variables.
*/
clause_ref op_constraint::lemma_lshr(solver& s, assignment const& a) {
auto& m = p().manager();
auto const pv = a.apply_to(p());
auto const qv = a.apply_to(q());
auto const rv = a.apply_to(r());
unsigned const N = m.power_of_2();
signed_constraint const lshr(this, true);
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
// r <= p
return s.mk_clause(~lshr, s.ule(r(), p()), true);
else if (qv.is_val() && qv.val() >= N && rv.is_val() && !rv.is_zero())
// TODO: instead of rv.is_val() && !rv.is_zero(), we should use !is_forced_zero(r) which checks whether eval(r) = 0 or bvalue(r=0) = true; see saturation.cpp
// q >= N -> r = 0
return s.mk_clause(~lshr, ~s.ule(N, q()), s.eq(r()), true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv)
// q = 0 -> p = r
return s.mk_clause(~lshr, ~s.eq(q()), s.eq(p(), r()), true);
else if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && rv.val() >= pv.val())
// q != 0 & p > 0 -> r < p
return s.mk_clause(~lshr, s.eq(q()), s.ule(p(), 0), s.ult(r(), p()), true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < N && rv.is_val() && rv.val() > rational::power_of_two(N - qv.val().get_unsigned()) - 1)
// q >= k -> r <= 2^{N-k} - 1
return s.mk_clause(~lshr, ~s.ule(qv.val(), q()), s.ule(r(), rational::power_of_two(N - qv.val().get_unsigned()) - 1), true);
// else if (pv == qv && !rv.is_zero())
// return s.mk_clause(~lshr, ~s.eq(p(), q()), s.eq(r()), true);
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned k = qv.val().get_unsigned();
// q = k -> r[i] = p[i+k] for 0 <= i < N - k
for (unsigned i = 0; i < N - k; ++i) {
if (rv.val().get_bit(i) && !pv.val().get_bit(i + k)) {
return s.mk_clause(~lshr, ~s.eq(q(), k), ~s.bit(r(), i), s.bit(p(), i + k), true);
}
if (!rv.val().get_bit(i) && pv.val().get_bit(i + k)) {
return s.mk_clause(~lshr, ~s.eq(q(), k), s.bit(r(), i), ~s.bit(p(), i + k), true);
}
}
}
else {
// forward propagation
SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val()));
// LOG(p() << " = " << pv << " and " << q() << " = " << qv << " yields [>>] " << r() << " = " << (qv.val().is_unsigned() ? machine_div2k(pv.val(), qv.val().get_unsigned()) : rational::zero()));
if (qv.is_val() && !rv.is_val()) {
rational const& q_val = qv.val();
if (q_val >= N)
// q >= N ==> r = 0
return s.mk_clause(~lshr, ~s.ule(N, q()), s.eq(r()), true);
if (pv.is_val()) {
SASSERT(q_val.is_unsigned());
// p = p_val & q = q_val ==> r = p_val / 2^q_val
rational const r_val = machine_div2k(pv.val(), q_val.get_unsigned());
return s.mk_clause(~lshr, ~s.eq(p(), pv), ~s.eq(q(), qv), s.eq(r(), r_val), true);
}
}
}
return {};
}
/**
* Enforce axioms for constraint: r == p << q
*
* q >= N -> r = 0
* q >= k -> r = 0 \/ r >= 2^k
* q >= k -> r[i] = 0 for i < k
* q = k -> r[i+k] = p[i] for 0 <= i < N - k
* q = 0 -> r = p
*/
clause_ref op_constraint::lemma_shl(solver& s, assignment const& a) {
auto& m = p().manager();
auto const pv = a.apply_to(p());
auto const qv = a.apply_to(q());
auto const rv = a.apply_to(r());
unsigned const N = m.power_of_2();
signed_constraint const shl(this, true);
if (qv.is_val() && qv.val() >= N && rv.is_val() && !rv.is_zero())
// q >= N -> r = 0
return s.mk_clause(~shl, ~s.ule(N, q()), s.eq(r()), true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && rv != pv)
// q = 0 -> r = p
return s.mk_clause(~shl, ~s.eq(q()), s.eq(r(), p()), true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < N && rv.is_val() &&
!rv.is_zero() && rv.val() < rational::power_of_two(qv.val().get_unsigned()))
// q >= k -> r = 0 \/ r >= 2^k (intuitive version)
// q >= k -> r - 1 >= 2^k - 1 (equivalent unit constraint to better support narrowing)
return s.mk_clause(~shl, ~s.ule(qv.val(), q()), s.ule(rational::power_of_two(qv.val().get_unsigned()) - 1, r() - 1), true);
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned k = qv.val().get_unsigned();
// q = k -> r[i+k] = p[i] for 0 <= i < N - k
for (unsigned i = 0; i < N - k; ++i) {
if (rv.val().get_bit(i + k) && !pv.val().get_bit(i)) {
return s.mk_clause(~shl, ~s.eq(q(), k), ~s.bit(r(), i + k), s.bit(p(), i), true);
}
if (!rv.val().get_bit(i + k) && pv.val().get_bit(i)) {
return s.mk_clause(~shl, ~s.eq(q(), k), s.bit(r(), i + k), ~s.bit(p(), i), true);
}
}
}
else {
// forward propagation
SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val()));
// LOG(p() << " = " << pv << " and " << q() << " = " << qv << " yields [<<] " << r() << " = " << (qv.val().is_unsigned() ? rational::power_of_two(qv.val().get_unsigned()) * pv.val() : rational::zero()));
if (qv.is_val() && !rv.is_val()) {
rational const& q_val = qv.val();
if (q_val >= N)
// q >= N ==> r = 0
return s.mk_clause("shl forward 1", {~shl, ~s.ule(N, q()), s.eq(r())}, true);
if (pv.is_val()) {
SASSERT(q_val.is_unsigned());
// p = p_val & q = q_val ==> r = p_val * 2^q_val
rational const r_val = pv.val() * rational::power_of_two(q_val.get_unsigned());
return s.mk_clause("shl forward 2", {~shl, ~s.eq(p(), pv), ~s.eq(q(), qv), s.eq(r(), r_val)}, true);
}
}
}
return {};
}
void op_constraint::activate_and(solver& s) {
auto x = p(), y = q();
if (x.is_val())
std::swap(x, y);
if (!y.is_val())
return;
auto& m = x.manager();
auto yv = y.val();
if (!(yv + 1).is_power_of_two())
return;
signed_constraint const andc(this, true);
if (yv == m.max_value())
s.add_clause(~andc, s.eq(x, r()), false);
else if (yv == 0)
s.add_clause(~andc, s.eq(r()), false);
else {
unsigned N = m.power_of_2();
unsigned k = yv.get_num_bits();
SASSERT(k < N);
rational exp = rational::power_of_two(N - k);
s.add_clause(~andc, s.eq(x * exp, r() * exp), false);
s.add_clause(~andc, s.ule(r(), y), false); // maybe always activate these constraints regardless?
}
}
/**
* Produce lemmas for constraint: r == p & q
* r <= p
* r <= q
* p = q => r = p
* p[i] && q[i] = r[i]
* p = 2^N - 1 => q = r
* q = 2^N - 1 => p = r
* p = 2^k - 1 => r*2^{N - k} = q*2^{N - k}
* q = 2^k - 1 => r*2^{N - k} = p*2^{N - k}
* p = 2^k - 1 && r = 0 && q != 0 => q >= 2^k
* q = 2^k - 1 && r = 0 && p != 0 => p >= 2^k
*/
clause_ref op_constraint::lemma_and(solver& s, assignment const& a) {
auto& m = p().manager();
auto pv = a.apply_to(p());
auto qv = a.apply_to(q());
auto rv = a.apply_to(r());
signed_constraint const andc(this, true); // op_constraints are always true
// r <= p
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
return s.mk_clause(~andc, s.ule(r(), p()), true);
// r <= q
if (qv.is_val() && rv.is_val() && rv.val() > qv.val())
return s.mk_clause(~andc, s.ule(r(), q()), true);
// p = q => r = p
if (pv.is_val() && qv.is_val() && rv.is_val() && pv == qv && rv != pv)
return s.mk_clause(~andc, ~s.eq(p(), q()), s.eq(r(), p()), true);
if (pv.is_val() && qv.is_val() && rv.is_val()) {
// p = -1 => r = q
if (pv.is_max() && qv != rv)
return s.mk_clause(~andc, ~s.eq(p(), m.max_value()), s.eq(q(), r()), true);
// q = -1 => r = p
if (qv.is_max() && pv != rv)
return s.mk_clause(~andc, ~s.eq(q(), m.max_value()), s.eq(p(), r()), true);
unsigned const N = m.power_of_2();
unsigned pow;
if ((pv.val() + 1).is_power_of_two(pow)) {
// p = 2^k - 1 && r = 0 && q != 0 => q >= 2^k
if (rv.is_zero() && !qv.is_zero() && qv.val() <= pv.val())
return s.mk_clause(~andc, ~s.eq(p(), pv), ~s.eq(r()), s.eq(q()), s.ule(pv + 1, q()), true);
// p = 2^k - 1 ==> r*2^{N - k} = q*2^{N - k}
if (rv != qv)
return s.mk_clause(~andc, ~s.eq(p(), pv), s.eq(r() * rational::power_of_two(N - pow), q() * rational::power_of_two(N - pow)), true);
}
if ((qv.val() + 1).is_power_of_two(pow)) {
// q = 2^k - 1 && r = 0 && p != 0 ==> p >= 2^k
if (rv.is_zero() && !pv.is_zero() && pv.val() <= qv.val())
return s.mk_clause(~andc, ~s.eq(q(), qv), ~s.eq(r()), s.eq(p()), s.ule(qv + 1, p()), true);
// q = 2^k - 1 ==> r*2^{N - k} = p*2^{N - k}
if (rv != pv)
return s.mk_clause(~andc, ~s.eq(q(), qv), s.eq(r() * rational::power_of_two(N - pow), p() * rational::power_of_two(N - pow)), true);
}
for (unsigned i = 0; i < N; ++i) {
bool pb = pv.val().get_bit(i);
bool qb = qv.val().get_bit(i);
bool rb = rv.val().get_bit(i);
if (rb == (pb && qb))
continue;
if (pb && qb && !rb)
return s.mk_clause(~andc, ~s.bit(p(), i), ~s.bit(q(), i), s.bit(r(), i), true);
else if (!pb && rb)
return s.mk_clause(~andc, s.bit(p(), i), ~s.bit(r(), i), true);
else if (!qb && rb)
return s.mk_clause(~andc, s.bit(q(), i), ~s.bit(r(), i), true);
else
UNREACHABLE();
}
return {};
}
// Propagate r if p or q are 0
if (pv.is_zero() && !rv.is_zero()) // rv not necessarily fully evaluated
return s.mk_clause(~andc, s.ule(r(), p()), true);
if (qv.is_zero() && !rv.is_zero()) // rv not necessarily fully evaluated
return s.mk_clause(~andc, s.ule(r(), q()), true);
// p = a && q = b ==> r = a & b
if (pv.is_val() && qv.is_val() && !rv.is_val()) {
// Just assign by this very weak justification. It will be strengthened in saturation in case of a conflict
LOG(p() << " = " << pv << " and " << q() << " = " << qv << " yields [band] " << r() << " = " << bitwise_and(pv.val(), qv.val()));
return s.mk_clause(~andc, ~s.eq(p(), pv), ~s.eq(q(), qv), s.eq(r(), bitwise_and(pv.val(), qv.val())), true);
}
return {};
}
/**
* Produce lemmas for constraint: r == inv p
* p = 0 ==> r = 0
* r = 0 ==> p = 0
* p != 0 ==> odd(r)
* parity(p) >= k ==> p * r >= 2^k
* parity(p) < k ==> p * r <= 2^k - 1
* parity(p) < k ==> r <= 2^(N - k) - 1 (because r is the smallest pseudo-inverse)
*/
clause_ref op_constraint::lemma_inv(solver& s, assignment const& a) {
auto& m = p().manager();
auto pv = a.apply_to(p());
auto rv = a.apply_to(r());
if (eval_inv(pv, rv) == l_true)
return {};
signed_constraint const invc(this, true);
// p = 0 ==> r = 0
if (pv.is_zero())
return s.mk_clause(~invc, ~s.eq(p()), s.eq(r()), true);
// r = 0 ==> p = 0
if (rv.is_zero())
return s.mk_clause(~invc, ~s.eq(r()), s.eq(p()), true);
// forward propagation: p assigned ==> r = pseudo_inverse(eval(p))
// TODO: (later) this should be propagated instead of adding a clause
/*if (pv.is_val() && !rv.is_val())
return s.mk_clause(~invc, ~s.eq(p(), pv), s.eq(r(), pv.val().pseudo_inverse(m.power_of_2())), true);*/
if (!pv.is_val() || !rv.is_val())
return {};
unsigned parity_pv = pv.val().trailing_zeros();
unsigned parity_rv = rv.val().trailing_zeros();
LOG("p: " << p() << " := " << pv << " parity " << parity_pv);
LOG("r: " << r() << " := " << rv << " parity " << parity_rv);
// p != 0 ==> odd(r)
if (parity_rv != 0)
return s.mk_clause("r = inv p & p != 0 ==> odd(r)", {~invc, s.eq(p()), s.odd(r())}, true);
pdd prod = p() * r();
rational prodv = (pv * rv).val();
// if (prodv != rational::power_of_two(parity_pv))
// verbose_stream() << prodv << " " << rational::power_of_two(parity_pv) << " " << parity_pv << " " << pv << " " << rv << "\n";
unsigned lower = 0, upper = m.power_of_2();
// binary search for the parity (otw. we would have justifications like "parity_at_most(k) && parity_at_least(k)" for at most "k" widths
while (lower + 1 < upper) {
unsigned middle = (upper + lower) / 2;
LOG("Splitting on " << middle);
if (parity_pv >= middle) { // parity at least middle
lower = middle;
LOG("Its in [" << lower << "; " << upper << ")");
// parity(p) >= k ==> p * r >= 2^k
if (prodv < rational::power_of_two(middle))
return s.mk_clause("r = inv p & parity(p) >= k ==> p*r >= 2^k",
{~invc, ~s.parity_at_least(p(), middle), s.uge(prod, rational::power_of_two(middle))}, false);
// parity(p) >= k ==> r <= 2^(N - k) - 1 (because r is the smallest pseudo-inverse)
rational const max_rv = rational::power_of_two(m.power_of_2() - middle) - 1;
if (rv.val() > max_rv)
return s.mk_clause("r = inv p & parity(p) >= k ==> r <= 2^(N - k) - 1",
{~invc, ~s.parity_at_least(p(), middle), s.ule(r(), max_rv)}, false);
}
else { // parity less than middle
SASSERT(parity_pv < middle);
upper = middle;
LOG("Its in [" << lower << "; " << upper << ")");
// parity(p) < k ==> p * r <= 2^k - 1
if (prodv > rational::power_of_two(middle))
return s.mk_clause("r = inv p & parity(p) < k ==> p*r <= 2^k - 1",
{~invc, s.parity_at_least(p(), middle), s.ule(prod, rational::power_of_two(middle) - 1)}, false);
}
}
// Why did it evaluate to false in this case?
UNREACHABLE();
return {};
}
void op_constraint::activate_udiv(solver& s) {
// signed_constraint const udivc(this, true); Do we really need this premiss? We anyway assert these constraints as unit clauses
pdd const& quot = r();
pdd const& rem = m_linked->r();
// Axioms for quotient/remainder:
// a = b*q + r
// multiplication does not overflow in b*q
// addition does not overflow in (b*q) + r; for now expressed as: r <= bq+r
// b ≠ 0 ==> r < b
// b = 0 ==> q = -1
// TODO: when a,b become evaluable, can we actually propagate q,r? doesn't seem like it.
// Maybe we need something like an op_constraint for better propagation.
s.add_clause(s.eq(q() * quot + rem - p()), false);
s.add_clause(~s.umul_ovfl(q(), quot), false);
// r <= b*q+r
// { apply equivalence: p <= q <=> q-p <= -p-1 }
// b*q <= -r-1
s.add_clause(s.ule(q() * quot, -rem - 1), false);
auto c_eq = s.eq(q());
s.add_clause(c_eq, s.ult(rem, q()), false);
s.add_clause(~c_eq, s.eq(quot + 1), false);
}
/**
* Produce lemmas for constraint: r == p / q
* q = 0 ==> r = max_value
* p = 0 ==> r = 0 || r = max_value
* q = 1 ==> r = p
*/
clause_ref op_constraint::lemma_udiv(solver& s, assignment const& a) {
auto pv = a.apply_to(p());
auto qv = a.apply_to(q());
auto rv = a.apply_to(r());
if (eval_udiv(pv, qv, rv) == l_true)
return {};
signed_constraint const udivc(this, true);
if (qv.is_zero() && !rv.is_val())
return s.mk_clause(~udivc, ~s.eq(q()), s.eq(r(), r().manager().max_value()), true);
if (pv.is_zero() && !rv.is_val())
return s.mk_clause(~udivc, ~s.eq(p()), s.eq(r()), s.eq(r(), r().manager().max_value()), true);
if (qv.is_one())
return s.mk_clause(~udivc, ~s.eq(q(), 1), s.eq(r(), p()), true);
if (pv.is_val() && qv.is_val() && !rv.is_val()) {
SASSERT(!qv.is_zero());
// TODO: We could actually propagate an interval. Instead of p = 9 & q = 4 => r = 2 we could do p >= 8 && p < 12 && q = 4 => r = 2
return s.mk_clause(~udivc, ~s.eq(p(), pv.val()), ~s.eq(q(), qv.val()), s.eq(r(), div(pv.val(), qv.val())), true);
}
return {};
}
/**
* Produce lemmas for constraint: r == p % q
* p = 0 ==> r = 0
* q = 1 ==> r = 0
* q = 0 ==> r = p
*/
clause_ref op_constraint::lemma_urem(solver& s, assignment const& a) {
auto pv = a.apply_to(p());
auto qv = a.apply_to(q());
auto rv = a.apply_to(r());
if (eval_urem(pv, qv, rv) == l_true)
return {};
signed_constraint const urem(this, true);
if (pv.is_zero() && !rv.is_val())
return s.mk_clause(~urem, ~s.eq(p()), s.eq(r()), true);
if (qv.is_one() && !rv.is_val())
return s.mk_clause(~urem, ~s.eq(q(), 1), s.eq(r()), true);
if (qv.is_zero())
return s.mk_clause(~urem, ~s.eq(q()), s.eq(r(), p()), true);
if (pv.is_val() && qv.is_val() && !rv.is_val()) {
SASSERT(!qv.is_zero());
return s.mk_clause(~urem, ~s.eq(p(), pv.val()), ~s.eq(q(), qv.val()), s.eq(r(), mod(pv.val(), qv.val())), true);
}
return {};
}
/** Evaluate constraint: r == p % q */
lbool op_constraint::eval_urem(pdd const& p, pdd const& q, pdd const& r) {
if (q.is_one() && r.is_val()) {
return r.val().is_zero() ? l_true : l_false;
}
if (q.is_zero()) {
if (r == p)
return l_true;
}
if (!p.is_val() || !q.is_val() || !r.is_val())
return l_undef;
return r.val() == mod(p.val(), q.val()) ? l_true : l_false; // mod == rem as we know hat q > 0
}
#endif
}

View file

@ -0,0 +1,94 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
Op constraint.
lshr: r == p >> q
ashr: r == p >>a q
lshl: r == p << q
and: r == p & q
not: r == ~p
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09
--*/
#pragma once
#include "sat/smt/polysat/constraints.h"
#include <optional>
namespace polysat {
class core;
class op_constraint final : public constraint {
public:
enum class code {
/// r is the logical right shift of p by q.
lshr_op,
/// r is the arithmetic right shift of p by q.
ashr_op,
/// r is the left shift of p by q.
shl_op,
/// r is the bit-wise 'and' of p and q.
and_op,
/// r is the smallest multiplicative pseudo-inverse of p;
/// by definition we set r == 0 when p == 0.
/// Note that in general, there are 2^parity(p) many pseudo-inverses of p.
inv_op,
};
protected:
friend class constraints;
code m_op;
pdd m_p; // operand1
pdd m_q; // operand2
pdd m_r; // result
op_constraint(code c, pdd const& r, pdd const& p, pdd const& q);
lbool eval(pdd const& r, pdd const& p, pdd const& q) const;
// clause_ref produce_lemma(core& s, assignment const& a);
// clause_ref lemma_lshr(core& s, assignment const& a);
static lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r);
// clause_ref lemma_shl(core& s, assignment const& a);
static lbool eval_shl(pdd const& p, pdd const& q, pdd const& r);
// clause_ref lemma_and(core& s, assignment const& a);
static lbool eval_and(pdd const& p, pdd const& q, pdd const& r);
// clause_ref lemma_inv(core& s, assignment const& a);
static lbool eval_inv(pdd const& p, pdd const& r);
// clause_ref lemma_udiv(core& s, assignment const& a);
static lbool eval_udiv(pdd const& p, pdd const& q, pdd const& r);
// clause_ref lemma_urem(core& s, assignment const& a);
static lbool eval_urem(pdd const& p, pdd const& q, pdd const& r);
std::ostream& display(std::ostream& out, char const* eq) const;
void activate(core& s);
void activate_and(core& s);
void activate_udiv(core& s);
public:
~op_constraint() override {}
pdd const& p() const { return m_p; }
pdd const& q() const { return m_q; }
pdd const& r() const { return m_r; }
code get_op() const { return m_op; }
std::ostream& display(std::ostream& out, lbool status) const override;
std::ostream& display(std::ostream& out) const override;
lbool eval() const override;
lbool eval(assignment const& a) const override;
bool is_always_true() const { return false; }
bool is_always_false() const { return false; }
};
}