3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

Move vector.h to old_vector.h and add a shim vector.h

To do so, one instance of the class keyword needs to be removed.
This commit is contained in:
Daniel Schemmel 2018-05-26 05:22:39 +02:00
parent 2ff2e77739
commit 721ea2a8d3
No known key found for this signature in database
GPG key ID: A176732062461ECC
3 changed files with 622 additions and 606 deletions

View file

@ -35,6 +35,6 @@ template lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::dense_matrix(uns
template lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >& lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::operator=(lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> > const&);
template lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> > lp::operator*<lp::mpq, lp::numeric_pair<lp::mpq> >(lp::matrix<lp::mpq, lp::numeric_pair<lp::mpq> >&, lp::matrix<lp::mpq, lp::numeric_pair<lp::mpq> >&);
template void lp::dense_matrix<lp::mpq, lp::numeric_pair< lp::mpq> >::apply_from_right( vector< lp::mpq> &);
template void lp::dense_matrix<double,double>::apply_from_right(class vector<double> &);
template void lp::dense_matrix<double,double>::apply_from_right(vector<double> &);
template void lp::dense_matrix<lp::mpq, lp::mpq>::apply_from_left(vector<lp::mpq>&);
#endif

609
src/util/old_vector.h Normal file
View file

@ -0,0 +1,609 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
old_vector.h
Abstract:
Dynamic array implementation.
Remarks:
- Empty arrays consume only sizeof(T *) bytes.
- There is the option of disabling the destructor invocation for elements stored in the vector.
This is useful for vectors of int.
Author:
Leonardo de Moura (leonardo) 2006-09-11.
Revision History:
--*/
#ifndef OLD_VECTOR_H_
#define OLD_VECTOR_H_
#include "util/debug.h"
#include<algorithm>
#include<type_traits>
#include<memory.h>
#include<functional>
#include "util/memory_manager.h"
#include "util/hash.h"
#include "util/z3_exception.h"
// disable warning for constant 'if' expressions.
// these are used heavily in templates.
#ifdef _MSC_VER
#pragma warning(disable:4127)
#endif
template<typename T, bool CallDestructors=true, typename SZ = unsigned>
class old_vector {
#define SIZE_IDX -1
#define CAPACITY_IDX -2
T * m_data;
void destroy_elements() {
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
void free_memory() {
memory::deallocate(reinterpret_cast<char*>(reinterpret_cast<SZ*>(m_data) - 2));
}
void expand_vector() {
if (m_data == nullptr) {
SZ capacity = 2;
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = 0;
mem++;
m_data = reinterpret_cast<T *>(mem);
}
else {
SASSERT(capacity() > 0);
SZ old_capacity = reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
SZ old_capacity_T = sizeof(T) * old_capacity + sizeof(SZ) * 2;
SZ new_capacity = (3 * old_capacity + 1) >> 1;
SZ new_capacity_T = sizeof(T) * new_capacity + sizeof(SZ) * 2;
if (new_capacity <= old_capacity || new_capacity_T <= old_capacity_T) {
throw default_exception("Overflow encountered when expanding old_vector");
}
SZ *mem, *old_mem = reinterpret_cast<SZ*>(m_data) - 2;
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
if (__has_trivial_copy(T)) {
#else
if (std::is_trivially_copyable<T>::value) {
#endif
mem = (SZ*)memory::reallocate(old_mem, new_capacity_T);
m_data = reinterpret_cast<T *>(mem + 2);
} else {
mem = (SZ*)memory::allocate(new_capacity_T);
auto old_data = m_data;
auto old_size = size();
mem[1] = old_size;
m_data = reinterpret_cast<T *>(mem + 2);
for (unsigned i = 0; i < old_size; ++i) {
new (&m_data[i]) T(std::move(old_data[i]));
old_data[i].~T();
}
memory::deallocate(old_mem);
}
*mem = new_capacity;
}
}
void copy_core(old_vector const & source) {
SZ size = source.size();
SZ capacity = source.capacity();
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = size;
mem++;
m_data = reinterpret_cast<T *>(mem);
const_iterator it = source.begin();
iterator it2 = begin();
SASSERT(it2 == m_data);
const_iterator e = source.end();
for (; it != e; ++it, ++it2) {
new (it2) T(*it);
}
}
void destroy() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
free_memory();
}
}
public:
typedef T data;
typedef T * iterator;
typedef const T * const_iterator;
old_vector():
m_data(nullptr) {
}
old_vector(SZ s) {
if (s == 0) {
m_data = nullptr;
return;
}
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * s + sizeof(SZ) * 2));
*mem = s;
mem++;
*mem = s;
mem++;
m_data = reinterpret_cast<T *>(mem);
// initialize elements
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
new (it) T();
}
}
old_vector(SZ s, T const & elem):
m_data(nullptr) {
resize(s, elem);
}
old_vector(old_vector const & source):
m_data(nullptr) {
if (source.m_data) {
copy_core(source);
}
SASSERT(size() == source.size());
}
old_vector(old_vector&& other) : m_data(nullptr) {
std::swap(m_data, other.m_data);
}
old_vector(SZ s, T const * data):
m_data(nullptr) {
for (SZ i = 0; i < s; i++) {
push_back(data[i]);
}
}
~old_vector() {
destroy();
}
void finalize() {
destroy();
m_data = nullptr;
}
bool operator==(old_vector const & other) const {
if (this == &other) {
return true;
}
if (size() != other.size())
return false;
for (unsigned i = 0; i < size(); i++) {
if ((*this)[i] != other[i])
return false;
}
return true;
}
bool operator!=(old_vector const & other) const {
return !(*this == other);
}
old_vector & operator=(old_vector const & source) {
if (this == &source) {
return *this;
}
destroy();
if (source.m_data) {
copy_core(source);
}
else {
m_data = nullptr;
}
return *this;
}
old_vector & operator=(old_vector && source) {
if (this == &source) {
return *this;
}
destroy();
m_data = nullptr;
std::swap(m_data, source.m_data);
return *this;
}
bool containsp(std::function<bool(T)>& predicate) const {
for (auto const& t : *this)
if (predicate(t))
return true;
return false;
}
/**
* retain elements that satisfy predicate. aka 'where'.
*/
old_vector filter_pure(std::function<bool(T)>& predicate) const {
old_vector result;
for (auto& t : *this)
if (predicate(t))
result.push_back(t);
return result;
}
old_vector& filter_update(std::function<bool(T)>& predicate) {
unsigned j = 0;
for (auto& t : *this)
if (predicate(t))
set(j++, t);
shrink(j);
return *this;
}
/**
* update elements using f, aka 'select'
*/
template <typename S>
old_vector<S> map_pure(std::function<S(T)>& f) const {
old_vector<S> result;
for (auto& t : *this)
result.push_back(f(t));
return result;
}
old_vector& map_update(std::function<T(T)>& f) {
unsigned j = 0;
for (auto& t : *this)
set(j++, f(t));
return *this;
}
void reset() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = 0;
}
}
void clear() { reset(); }
bool empty() const {
return m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == 0;
}
SZ size() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[SIZE_IDX];
}
SZ capacity() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
}
iterator begin() {
return m_data;
}
iterator end() {
return m_data + size();
}
const_iterator begin() const {
return m_data;
}
const_iterator end() const {
return m_data + size();
}
class reverse_iterator {
T* v;
public:
reverse_iterator(T* v):v(v) {}
T operator*() { return *v; }
reverse_iterator operator++(int) {
reverse_iterator tmp = *this;
--v;
return tmp;
}
reverse_iterator& operator++() {
--v;
return *this;
}
bool operator==(reverse_iterator const& other) const {
return other.v == v;
}
bool operator!=(reverse_iterator const& other) const {
return other.v != v;
}
};
reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
reverse_iterator rend() { return reverse_iterator(begin() - 1); }
void set_end(iterator it) {
if (m_data) {
SZ new_sz = static_cast<SZ>(it - m_data);
if (CallDestructors) {
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = new_sz;
}
else {
SASSERT(it == 0);
}
}
T & operator[](SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & operator[](SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
T & get(SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & get(SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
void set(SZ idx, T const & val) {
SASSERT(idx < size());
m_data[idx] = val;
}
void set(SZ idx, T && val) {
SASSERT(idx < size());
m_data[idx] = std::move(val);
}
T & back() {
SASSERT(!empty());
return operator[](size() - 1);
}
T const & back() const {
SASSERT(!empty());
return operator[](size() - 1);
}
void pop_back() {
SASSERT(!empty());
if (CallDestructors) {
back().~T();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void push_back(T const & elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(elem);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void push_back(T && elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(std::move(elem));
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void insert(T const & elem) {
push_back(elem);
}
void erase(iterator pos) {
SASSERT(pos >= begin() && pos < end());
iterator prev = pos;
++pos;
iterator e = end();
for(; pos != e; ++pos, ++prev) {
*prev = *pos;
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void erase(T const & elem) {
iterator it = std::find(begin(), end(), elem);
if (it != end()) {
erase(it);
}
}
void shrink(SZ s) {
if (m_data) {
SASSERT(s <= reinterpret_cast<SZ *>(m_data)[SIZE_IDX]);
if (CallDestructors) {
iterator it = m_data + s;
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
}
else {
SASSERT(s == 0);
}
}
template<typename Args>
void resize(SZ s, Args args...) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T(std::forward<Args>(args));
}
}
void resize(SZ s) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T();
}
}
void append(old_vector<T, CallDestructors> const & other) {
for(SZ i = 0; i < other.size(); ++i) {
push_back(other[i]);
}
}
void append(SZ sz, T const * data) {
for(SZ i = 0; i < sz; ++i) {
push_back(data[i]);
}
}
T * c_ptr() const {
return m_data;
}
void swap(old_vector & other) {
std::swap(m_data, other.m_data);
}
void reverse() {
SZ sz = size();
for (SZ i = 0; i < sz/2; ++i) {
std::swap(m_data[i], m_data[sz-i-1]);
}
}
void fill(T const & elem) {
iterator i = begin();
iterator e = end();
for (; i != e; ++i) {
*i = elem;
}
}
void fill(unsigned sz, T const & elem) {
resize(sz);
fill(elem);
}
bool contains(T const & elem) const {
const_iterator it = begin();
const_iterator e = end();
for (; it != e; ++it) {
if (*it == elem) {
return true;
}
}
return false;
}
// set pos idx with elem. If idx >= size, then expand using default.
void setx(SZ idx, T const & elem, T const & d) {
if (idx >= size()) {
resize(idx+1, d);
}
m_data[idx] = elem;
}
// return element at position idx, if idx >= size, then return default
T const & get(SZ idx, T const & d) const {
if (idx >= size()) {
return d;
}
return m_data[idx];
}
void reserve(SZ s, T const & d) {
if (s > size())
resize(s, d);
}
void reserve(SZ s) {
if (s > size())
resize(s);
}
};
template<typename T>
class old_ptr_vector : public old_vector<T *, false> {
public:
old_ptr_vector():old_vector<T *, false>() {}
old_ptr_vector(unsigned s):old_vector<T *, false>(s) {}
old_ptr_vector(unsigned s, T * elem):old_vector<T *, false>(s, elem) {}
old_ptr_vector(old_ptr_vector const & source):old_vector<T *, false>(source) {}
old_ptr_vector(old_ptr_vector && other) : old_vector<T*, false>(std::move(other)) {}
old_ptr_vector(unsigned s, T * const * data):old_vector<T *, false>(s, const_cast<T**>(data)) {}
old_ptr_vector & operator=(old_ptr_vector const & source) {
old_vector<T *, false>::operator=(source);
return *this;
}
};
template<typename T, typename SZ = unsigned>
class old_svector : public old_vector<T, false, SZ> {
public:
old_svector():old_vector<T, false, SZ>() {}
old_svector(SZ s):old_vector<T, false, SZ>(s) {}
old_svector(SZ s, T const & elem):old_vector<T, false, SZ>(s, elem) {}
old_svector(old_svector const & source):old_vector<T, false, SZ>(source) {}
old_svector(old_svector && other) : old_vector<T, false, SZ>(std::move(other)) {}
old_svector(SZ s, T const * data):old_vector<T, false, SZ>(s, data) {}
old_svector & operator=(old_svector const & source) {
old_vector<T, false, SZ>::operator=(source);
return *this;
}
};
#endif /* OLD_VECTOR_H_ */

View file

@ -1,616 +1,23 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
vector.h
Abstract:
Dynamic array implementation.
Remarks:
- Empty arrays consume only sizeof(T *) bytes.
- There is the option of disabling the destructor invocation for elements stored in the vector.
This is useful for vectors of int.
Author:
Leonardo de Moura (leonardo) 2006-09-11.
Revision History:
--*/
#ifndef VECTOR_H_
#define VECTOR_H_
#include "util/debug.h"
#include<algorithm>
#include<type_traits>
#include<memory.h>
#include<functional>
#include "util/memory_manager.h"
#include "util/hash.h"
#include "util/z3_exception.h"
// disable warning for constant 'if' expressions.
// these are used heavily in templates.
#ifdef _MSC_VER
#pragma warning(disable:4127)
#endif
#include "old_vector.h"
#include "hash.h"
template<typename T, bool CallDestructors=true, typename SZ = unsigned>
class vector {
#define SIZE_IDX -1
#define CAPACITY_IDX -2
T * m_data;
void destroy_elements() {
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
void free_memory() {
memory::deallocate(reinterpret_cast<char*>(reinterpret_cast<SZ*>(m_data) - 2));
}
void expand_vector() {
if (m_data == nullptr) {
SZ capacity = 2;
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = 0;
mem++;
m_data = reinterpret_cast<T *>(mem);
}
else {
SASSERT(capacity() > 0);
SZ old_capacity = reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
SZ old_capacity_T = sizeof(T) * old_capacity + sizeof(SZ) * 2;
SZ new_capacity = (3 * old_capacity + 1) >> 1;
SZ new_capacity_T = sizeof(T) * new_capacity + sizeof(SZ) * 2;
if (new_capacity <= old_capacity || new_capacity_T <= old_capacity_T) {
throw default_exception("Overflow encountered when expanding vector");
}
SZ *mem, *old_mem = reinterpret_cast<SZ*>(m_data) - 2;
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
if (__has_trivial_copy(T)) {
#else
if (std::is_trivially_copyable<T>::value) {
#endif
mem = (SZ*)memory::reallocate(old_mem, new_capacity_T);
m_data = reinterpret_cast<T *>(mem + 2);
} else {
mem = (SZ*)memory::allocate(new_capacity_T);
auto old_data = m_data;
auto old_size = size();
mem[1] = old_size;
m_data = reinterpret_cast<T *>(mem + 2);
for (unsigned i = 0; i < old_size; ++i) {
new (&m_data[i]) T(std::move(old_data[i]));
old_data[i].~T();
}
memory::deallocate(old_mem);
}
*mem = new_capacity;
}
}
void copy_core(vector const & source) {
SZ size = source.size();
SZ capacity = source.capacity();
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = size;
mem++;
m_data = reinterpret_cast<T *>(mem);
const_iterator it = source.begin();
iterator it2 = begin();
SASSERT(it2 == m_data);
const_iterator e = source.end();
for (; it != e; ++it, ++it2) {
new (it2) T(*it);
}
}
void destroy() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
free_memory();
}
}
public:
typedef T data;
typedef T * iterator;
typedef const T * const_iterator;
vector():
m_data(nullptr) {
}
vector(SZ s) {
if (s == 0) {
m_data = nullptr;
return;
}
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * s + sizeof(SZ) * 2));
*mem = s;
mem++;
*mem = s;
mem++;
m_data = reinterpret_cast<T *>(mem);
// initialize elements
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
new (it) T();
}
}
vector(SZ s, T const & elem):
m_data(nullptr) {
resize(s, elem);
}
vector(vector const & source):
m_data(nullptr) {
if (source.m_data) {
copy_core(source);
}
SASSERT(size() == source.size());
}
vector(vector&& other) : m_data(nullptr) {
std::swap(m_data, other.m_data);
}
vector(SZ s, T const * data):
m_data(nullptr) {
for (SZ i = 0; i < s; i++) {
push_back(data[i]);
}
}
~vector() {
destroy();
}
void finalize() {
destroy();
m_data = nullptr;
}
bool operator==(vector const & other) const {
if (this == &other) {
return true;
}
if (size() != other.size())
return false;
for (unsigned i = 0; i < size(); i++) {
if ((*this)[i] != other[i])
return false;
}
return true;
}
bool operator!=(vector const & other) const {
return !(*this == other);
}
vector & operator=(vector const & source) {
if (this == &source) {
return *this;
}
destroy();
if (source.m_data) {
copy_core(source);
}
else {
m_data = nullptr;
}
return *this;
}
vector & operator=(vector && source) {
if (this == &source) {
return *this;
}
destroy();
m_data = nullptr;
std::swap(m_data, source.m_data);
return *this;
}
bool containsp(std::function<bool(T)>& predicate) const {
for (auto const& t : *this)
if (predicate(t))
return true;
return false;
}
/**
* retain elements that satisfy predicate. aka 'where'.
*/
vector filter_pure(std::function<bool(T)>& predicate) const {
vector result;
for (auto& t : *this)
if (predicate(t))
result.push_back(t);
return result;
}
vector& filter_update(std::function<bool(T)>& predicate) {
unsigned j = 0;
for (auto& t : *this)
if (predicate(t))
set(j++, t);
shrink(j);
return *this;
}
/**
* update elements using f, aka 'select'
*/
template <typename S>
vector<S> map_pure(std::function<S(T)>& f) const {
vector<S> result;
for (auto& t : *this)
result.push_back(f(t));
return result;
}
vector& map_update(std::function<T(T)>& f) {
unsigned j = 0;
for (auto& t : *this)
set(j++, f(t));
return *this;
}
void reset() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = 0;
}
}
void clear() { reset(); }
bool empty() const {
return m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == 0;
}
SZ size() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[SIZE_IDX];
}
SZ capacity() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
}
iterator begin() {
return m_data;
}
iterator end() {
return m_data + size();
}
const_iterator begin() const {
return m_data;
}
const_iterator end() const {
return m_data + size();
}
class reverse_iterator {
T* v;
public:
reverse_iterator(T* v):v(v) {}
T operator*() { return *v; }
reverse_iterator operator++(int) {
reverse_iterator tmp = *this;
--v;
return tmp;
}
reverse_iterator& operator++() {
--v;
return *this;
}
bool operator==(reverse_iterator const& other) const {
return other.v == v;
}
bool operator!=(reverse_iterator const& other) const {
return other.v != v;
}
};
reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
reverse_iterator rend() { return reverse_iterator(begin() - 1); }
void set_end(iterator it) {
if (m_data) {
SZ new_sz = static_cast<SZ>(it - m_data);
if (CallDestructors) {
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = new_sz;
}
else {
SASSERT(it == 0);
}
}
T & operator[](SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & operator[](SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
T & get(SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & get(SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
void set(SZ idx, T const & val) {
SASSERT(idx < size());
m_data[idx] = val;
}
void set(SZ idx, T && val) {
SASSERT(idx < size());
m_data[idx] = std::move(val);
}
T & back() {
SASSERT(!empty());
return operator[](size() - 1);
}
T const & back() const {
SASSERT(!empty());
return operator[](size() - 1);
}
void pop_back() {
SASSERT(!empty());
if (CallDestructors) {
back().~T();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void push_back(T const & elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(elem);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void push_back(T && elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(std::move(elem));
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void insert(T const & elem) {
push_back(elem);
}
void erase(iterator pos) {
SASSERT(pos >= begin() && pos < end());
iterator prev = pos;
++pos;
iterator e = end();
for(; pos != e; ++pos, ++prev) {
*prev = *pos;
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void erase(T const & elem) {
iterator it = std::find(begin(), end(), elem);
if (it != end()) {
erase(it);
}
}
void shrink(SZ s) {
if (m_data) {
SASSERT(s <= reinterpret_cast<SZ *>(m_data)[SIZE_IDX]);
if (CallDestructors) {
iterator it = m_data + s;
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
}
else {
SASSERT(s == 0);
}
}
template<typename Args>
void resize(SZ s, Args args...) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T(std::forward<Args>(args));
}
}
void resize(SZ s) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T();
}
}
void append(vector<T, CallDestructors> const & other) {
for(SZ i = 0; i < other.size(); ++i) {
push_back(other[i]);
}
}
void append(SZ sz, T const * data) {
for(SZ i = 0; i < sz; ++i) {
push_back(data[i]);
}
}
T * c_ptr() const {
return m_data;
}
void swap(vector & other) {
std::swap(m_data, other.m_data);
}
void reverse() {
SZ sz = size();
for (SZ i = 0; i < sz/2; ++i) {
std::swap(m_data[i], m_data[sz-i-1]);
}
}
void fill(T const & elem) {
iterator i = begin();
iterator e = end();
for (; i != e; ++i) {
*i = elem;
}
}
void fill(unsigned sz, T const & elem) {
resize(sz);
fill(elem);
}
bool contains(T const & elem) const {
const_iterator it = begin();
const_iterator e = end();
for (; it != e; ++it) {
if (*it == elem) {
return true;
}
}
return false;
}
// set pos idx with elem. If idx >= size, then expand using default.
void setx(SZ idx, T const & elem, T const & d) {
if (idx >= size()) {
resize(idx+1, d);
}
m_data[idx] = elem;
}
// return element at position idx, if idx >= size, then return default
T const & get(SZ idx, T const & d) const {
if (idx >= size()) {
return d;
}
return m_data[idx];
}
void reserve(SZ s, T const & d) {
if (s > size())
resize(s, d);
}
void reserve(SZ s) {
if (s > size())
resize(s);
}
};
template<typename T>
class ptr_vector : public vector<T *, false> {
public:
ptr_vector():vector<T *, false>() {}
ptr_vector(unsigned s):vector<T *, false>(s) {}
ptr_vector(unsigned s, T * elem):vector<T *, false>(s, elem) {}
ptr_vector(ptr_vector const & source):vector<T *, false>(source) {}
ptr_vector(ptr_vector && other) : vector<T*, false>(std::move(other)) {}
ptr_vector(unsigned s, T * const * data):vector<T *, false>(s, const_cast<T**>(data)) {}
ptr_vector & operator=(ptr_vector const & source) {
vector<T *, false>::operator=(source);
return *this;
}
};
using vector = old_vector<T, CallDestructors, SZ>;
template<typename T, typename SZ = unsigned>
class svector : public vector<T, false, SZ> {
public:
svector():vector<T, false, SZ>() {}
svector(SZ s):vector<T, false, SZ>(s) {}
svector(SZ s, T const & elem):vector<T, false, SZ>(s, elem) {}
svector(svector const & source):vector<T, false, SZ>(source) {}
svector(svector && other) : vector<T, false, SZ>(std::move(other)) {}
svector(SZ s, T const * data):vector<T, false, SZ>(s, data) {}
svector & operator=(svector const & source) {
vector<T, false, SZ>::operator=(source);
return *this;
}
};
using svector = old_svector<T, SZ>;
typedef svector<int> int_vector;
typedef svector<unsigned> unsigned_vector;
typedef svector<char> char_vector;
typedef svector<signed char> signed_char_vector;
typedef svector<double> double_vector;
template<typename T>
using ptr_vector = old_ptr_vector<T>;
using int_vector = old_svector<int>;
using unsigned_vector = old_svector<unsigned>;
using char_vector = old_svector<char>;
using signed_char_vector = old_svector<signed char>;
using double_vector = old_svector<double>;
inline std::ostream& operator<<(std::ostream& out, unsigned_vector const& v) {
for (unsigned u : v) out << u << " ";