3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-20 12:53:38 +00:00
This commit is contained in:
Jakob Rath 2023-06-15 10:43:47 +02:00
parent b316534df8
commit 71ef78fb25
2 changed files with 313 additions and 154 deletions

View file

@ -17,132 +17,233 @@ Author:
namespace polysat { namespace polysat {
void slicing::push_var() { void slicing::push_scope() {
m_stack.push_scope(); // TODO: we don't need a scope for each variable m_scopes.push_back(m_trail.size());
#if 0
m_src.push_back(null_var);
m_hi.push_back(0);
m_lo.push_back(0);
#endif
pvar const v = m_var_slices.size();
slice_idx const s = alloc_slice();
m_var_slices.push_back(s);
} }
void slicing::pop_var() { void slicing::pop_scope(unsigned num_scopes) {
#if 0 if (num_scopes == 0)
if (m_src != null_var) { return;
extract_key key{m_src.back(), m_hi.back(), m_lo.back()}; unsigned const lvl = m_scopes.size();
m_extracted.remove(key); SASSERT(num_scopes <= lvl);
unsigned const target_lvl = lvl - num_scopes;
unsigned const target_size = m_scopes[target_lvl];
while (m_trail.size() > target_size) {
switch (m_trail.back()) {
case trail_item::add_var: undo_add_var(); break;
case trail_item::alloc_slice: undo_alloc_slice(); break;
case trail_item::split_slice: undo_split_slice(); break;
case trail_item::merge_class: undo_merge_class(); break;
default: UNREACHABLE();
}
m_trail.pop_back();
} }
m_src.pop_back(); m_scopes.shrink(target_lvl);
m_hi.pop_back(); }
m_lo.pop_back();
#endif void slicing::add_var(unsigned bit_width) {
m_var_slices.pop_back(); pvar const v = m_var2slice.size();
m_stack.pop_scope(1); slice_idx const s = alloc_slice();
m_slice_width[s] = bit_width;
m_var2slice.push_back(s);
}
void slicing::undo_add_var() {
m_var2slice.pop_back();
} }
slicing::slice_idx slicing::alloc_slice() { slicing::slice_idx slicing::alloc_slice() {
slice_idx const s = m_slices_uf.mk_var(); slice_idx const s = m_slice_cut.size();
SASSERT_EQ(s, m_slices.size()); m_slice_width.push_back(0);
m_slices.push_back({}); m_slice_cut.push_back(null_cut);
m_stack.push_ptr(&m_alloc_slice_trail); m_slice_sub.push_back(null_slice_idx);
m_find.push_back(s);
m_size.push_back(1);
m_next.push_back(s);
m_trail.push_back(trail_item::alloc_slice);
return s; return s;
} }
void slicing::alloc_slice_trail::undo() { void slicing::undo_alloc_slice() {
m_owner.m_slices.pop_back(); m_slice_width.pop_back();
m_slice_cut.pop_back();
m_slice_sub.pop_back();
m_find.pop_back();
m_size.pop_back();
m_next.pop_back();
} }
void slicing::set_extract(pvar v, pvar src, unsigned hi, unsigned lo) { slicing::slice slicing::var2slice(pvar v) const {
#if 0 slice_idx const idx = find(m_var2slice[v]);
SASSERT(!is_extract(v)); slice s;
SASSERT(lo < hi && hi <= s.size(src)); s.idx = idx;
SASSERT_EQ(hi - lo, s.size(v)); s.hi = m_slice_width[idx] - 1;
SASSERT(src < v); // s.hi = m_solver.size(v) - 1;
SASSERT(!m_extracted.contains(extract_key{src, hi, lo})); s.lo = 0;
#if 0 // try without this first return s;
if (is_extract(src)) {
// y = (x[k:m])[h:l] = x[h+m:l+m]
unsigned const offset = m_lo[src];
set_extract(m_src[src], hi + offset, lo + offset);
return;
}
#endif
m_extracted.insert({src, hi, lo}, v);
m_src[v] = src;
m_hi[v] = hi;
m_lo[v] = lo;
#endif
} }
slicing::slice_info slicing::var2slice(pvar v) const { slicing::slice slicing::sub_hi(slice const& parent) const {
slice_info si;
si.idx = m_var_slices[v];
si.hi = s.size(v) - 1;
si.lo = 0;
return si;
}
slicing::slice_info slicing::sub_hi(slice_info const& parent) const {
SASSERT(has_sub(parent)); SASSERT(has_sub(parent));
slice const& parent_slice = m_slices[parent.idx]; SASSERT(parent.hi >= parent.lo);
slice_info si; slice s;
si.idx = parent_slice.sub; s.idx = find(m_slice_sub[parent.idx]);
si.hi = parent.hi; // |parent|-1 ... cut+1 and cut ............ 0
si.lo = parent_slice.cut + 1; // hi ........... lo+cut+1 lo+cut ........ lo
SASSERT(si.hi >= si.lo); s.hi = parent.hi;
return si; s.lo = parent.lo + m_slice_cut[parent.idx] + 1;
SASSERT(s.hi >= s.lo);
SASSERT_EQ(m_slice_width[s.idx], s.hi - s.lo + 1);
return s;
} }
slicing::slice_info slicing::sub_lo(slice_info const& parent) const { slicing::slice slicing::sub_lo(slice const& parent) const {
SASSERT(has_sub(parent)); SASSERT(has_sub(parent));
slice const& parent_slice = m_slices[parent.idx]; slice s;
slice_info si; s.idx = find(m_slice_sub[parent.idx] + 1);
si.idx = parent_slice.sub + 1; // |parent|-1 ... cut+1 and cut ............ 0
si.hi = parent_slice.cut; // hi ........... lo+cut+1 lo+cut ........ lo
si.lo = parent.lo; s.hi = parent.lo + m_slice_cut[parent.idx];
SASSERT(si.hi >= si.lo); s.lo = parent.lo;
return si; SASSERT(s.hi >= s.lo);
SASSERT_EQ(m_slice_width[s.idx], s.hi - s.lo + 1);
return s;
} }
unsigned slicing::get_cut(slice_info const& si) const { void slicing::split(slice_idx s, unsigned cut) {
SASSERT(has_sub(si)); SASSERT(!has_sub(s));
return m_slices[si.idx].cut;
}
void slicing::split(slice_info const& si, unsigned const cut) {
SASSERT(!has_sub(si));
SASSERT(si.hi > cut); SASSERT(cut >= si.lo);
slice_idx const sub1 = alloc_slice(); slice_idx const sub1 = alloc_slice();
slice_idx const sub2 = alloc_slice(); slice_idx const sub2 = alloc_slice();
slice& s = m_slices[si.idx]; m_slice_cut[s] = cut;
s.cut = cut; m_slice_sub[s] = sub1;
s.sub = sub1;
SASSERT_EQ(sub2, sub1 + 1); SASSERT_EQ(sub2, sub1 + 1);
m_slice_width[sub1] = m_slice_width[s] - cut - 1;
m_slice_width[sub2] = cut + 1;
m_trail.push_back(trail_item::split_slice);
m_split_trail.push_back(s);
} }
void slicing::mk_slice(slice_info const& src, unsigned const hi, unsigned const lo, vector<slice_info>& out) void slicing::split(slice const& s, unsigned const cut) {
{ SASSERT(s.hi > cut); SASSERT(cut >= s.lo);
split(s.idx, cut - s.lo);
}
void slicing::undo_split_slice() {
slice_idx i = m_split_trail.back();
m_split_trail.pop_back();
m_slice_cut[i] = null_cut;
m_slice_sub[i] = null_slice_idx;
}
slicing::slice_idx slicing::find(slice_idx i) const {
while (true) {
SASSERT(i < m_find.size());
slice_idx const new_i = m_find[i];
if (new_i == i)
return i;
i = new_i;
}
}
void slicing::merge(slice_idx s1, slice_idx s2) {
SASSERT(!has_sub(s1));
SASSERT(!has_sub(s2));
slice_idx r1 = find(s1);
slice_idx r2 = find(s2);
if (r1 == r2)
return;
if (m_size[r1] > m_size[r2])
std::swap(r1, r2);
// r2 becomes the representative of the merged class
m_find[r1] = r2;
m_size[r2] += m_size[r1];
std::swap(m_next[r1], m_next[r2]);
m_trail.push_back(trail_item::merge_class);
m_merge_trail.push_back(r1);
}
void slicing::undo_merge_class() {
slice_idx r1 = m_merge_trail.back();
m_merge_trail.pop_back();
slice_idx r2 = m_find[r1];
SASSERT(find(r2) == r2);
m_find[r1] = r1;
m_size[r2] -= m_size[r1];
std::swap(m_next[r1], m_next[r2]);
}
void slicing::merge(slice_vector& xs, slice_vector& ys) {
while (!xs.empty()) {
SASSERT(!ys.empty());
slice x = xs.back();
slice y = ys.back();
xs.pop_back();
ys.pop_back();
SASSERT_EQ(x.lo, y.lo);
SASSERT(!has_sub(x));
SASSERT(!has_sub(y));
if (x.hi == y.hi) {
merge(x.idx, y.idx);
}
else if (x.hi > y.hi) {
// need to split x according to y
mk_slice(x, y.hi, y.lo, xs);
ys.push_back(y);
}
else {
SASSERT(y.hi > x.hi);
// need to split y according to x
mk_slice(y, x.hi, x.lo, ys);
xs.push_back(x);
}
}
}
void slicing::find_base(slice src, slice_vector& out_base) const {
// splits are only stored for the representative
SASSERT_EQ(src.idx, find(src.idx));
if (!has_sub(src)) {
out_base.push_back(src);
return;
}
slice_vector& todo = m_tmp1;
SASSERT(todo.empty());
todo.push_back(src);
while (!todo.empty()) {
slice s = todo.back();
todo.pop_back();
if (!has_sub(s))
out_base.push_back(s);
else {
todo.push_back(sub_lo(s));
todo.push_back(sub_hi(s));
}
}
SASSERT(todo.empty());
}
void slicing::mk_slice(slice src, unsigned const hi, unsigned const lo, slice_vector& out_base) {
// splits are only stored for the representative
SASSERT_EQ(src.idx, find(src.idx));
// extracted range must be fully contained inside the src slice // extracted range must be fully contained inside the src slice
SASSERT(src.hi >= hi); SASSERT(hi >= lo); SASSERT(lo >= src.lo); SASSERT(src.hi >= hi); SASSERT(hi >= lo); SASSERT(lo >= src.lo);
if (src.hi == hi && src.lo == lo) { if (src.hi == hi && src.lo == lo) {
out.push_back(src); find_base(src, out_base);
return; return;
} }
if (has_sub(src)) { if (has_sub(src)) {
// src is split into [src.hi, cut+1] and [cut, src.lo] // src is split into [src.hi, cut+1] and [cut, src.lo]
unsigned const cut = get_cut(src); unsigned const cut = m_slice_cut[src.idx] + src.lo; // adjust cut to current bounds
if (lo >= cut + 1) if (lo >= cut + 1)
return mk_slice(sub_hi(src), hi, lo, out); return mk_slice(sub_hi(src), hi, lo, out_base);
else if (cut >= hi) else if (cut >= hi)
return mk_slice(sub_lo(src), hi, lo, out); return mk_slice(sub_lo(src), hi, lo, out_base);
else { else {
SASSERT(hi > cut && cut >= lo); SASSERT(hi > cut && cut >= lo);
// desired range spans over the cutpoint, so we get multiple slices in the result // desired range spans over the cutpoint, so we get multiple slices in the result
mk_slice(sub_hi(src), hi, cut + 1, out); mk_slice(sub_hi(src), hi, cut + 1, out_base);
mk_slice(sub_lo(src), cut, lo, out); mk_slice(sub_lo(src), cut, lo, out_base);
return; return;
} }
} }
@ -150,16 +251,17 @@ namespace polysat {
// [src.hi, src.lo] has no subdivision yet // [src.hi, src.lo] has no subdivision yet
if (src.hi > hi) { if (src.hi > hi) {
split(src, hi); split(src, hi);
mk_slice(sub_lo(src), hi, lo, out); mk_slice(sub_lo(src), hi, lo, out_base);
return; return;
} }
else { else {
SASSERT(src.hi == hi); SASSERT(src.hi == hi);
SASSERT(lo > src.lo); SASSERT(lo > src.lo);
split(src, lo - 1); split(src, lo - 1);
slice_info si = sub_hi(src); slice s = sub_hi(src);
SASSERT_EQ(si.hi, hi); SASSERT_EQ(si.lo, lo); SASSERT_EQ(s.hi, hi);
out.push_back(si); SASSERT_EQ(s.lo, lo);
out_base.push_back(s);
return; return;
} }
} }
@ -167,7 +269,7 @@ namespace polysat {
} }
pvar slicing::mk_extract_var(pvar src, unsigned hi, unsigned lo) { pvar slicing::mk_extract_var(pvar src, unsigned hi, unsigned lo) {
vector<slice_info> slices; slice_vector slices;
mk_slice(var2slice(src), hi, lo, slices); mk_slice(var2slice(src), hi, lo, slices);
// src[hi:lo] is the concatenation of the returned slices // src[hi:lo] is the concatenation of the returned slices
// TODO: for each slice, set_extract // TODO: for each slice, set_extract
@ -183,15 +285,16 @@ namespace polysat {
#endif #endif
} }
#if 0
pdd slicing::mk_extract(pvar src, unsigned hi, unsigned lo) { pdd slicing::mk_extract(pvar src, unsigned hi, unsigned lo) {
return s.var(mk_extract_var(src, hi, lo)); return m_solver.var(mk_extract_var(src, hi, lo));
} }
pdd slicing::mk_extract(pdd const& p, unsigned hi, unsigned lo) { pdd slicing::mk_extract(pdd const& p, unsigned hi, unsigned lo) {
if (!lo) { if (!lo) {
// TODO: we could push the extract down into variables of the term instead of introducing a name. // TODO: we could push the extract down into variables of the term instead of introducing a name.
} }
pvar const v = s.m_names.mk_name(p); pvar const v = m_solver.m_names.mk_name(p);
return mk_extract(v, hi, lo); return mk_extract(v, hi, lo);
} }
@ -218,6 +321,29 @@ namespace polysat {
#endif #endif
NOT_IMPLEMENTED_YET(); NOT_IMPLEMENTED_YET();
} }
#endif
void slicing::set_extract(pvar v, pvar src, unsigned hi, unsigned lo) {
#if 0
SASSERT(!is_extract(v));
SASSERT(lo < hi && hi <= s.size(src));
SASSERT_EQ(hi - lo + 1, s.size(v));
SASSERT(src < v);
SASSERT(!m_extracted.contains(extract_key{src, hi, lo}));
#if 0 // try without this first
if (is_extract(src)) {
// y = (x[k:m])[h:l] = x[h+m:l+m]
unsigned const offset = m_lo[src];
set_extract(m_src[src], hi + offset, lo + offset);
return;
}
#endif
m_extracted.insert({src, hi, lo}, v);
m_src[v] = src;
m_hi[v] = hi;
m_lo[v] = lo;
#endif
}
void slicing::propagate(pvar v) { void slicing::propagate(pvar v) {
} }

View file

@ -25,8 +25,6 @@ Notation:
--*/ --*/
#pragma once #pragma once
#include "math/polysat/types.h" #include "math/polysat/types.h"
#include "util/trail.h"
#include "util/union_find.h"
namespace polysat { namespace polysat {
@ -34,8 +32,9 @@ namespace polysat {
class slicing final { class slicing final {
solver& s; // solver& m_solver;
#if 0
/// If y := x[h:l], then m_src[y] = x, m_hi[y] = h, m_lo[y] = l. /// If y := x[h:l], then m_src[y] = x, m_hi[y] = h, m_lo[y] = l.
/// Otherwise m_src[y] = null_var. /// Otherwise m_src[y] = null_var.
/// ///
@ -46,7 +45,6 @@ namespace polysat {
unsigned_vector m_hi; unsigned_vector m_hi;
unsigned_vector m_lo; unsigned_vector m_lo;
#if 0
struct extract_key { struct extract_key {
pvar src; pvar src;
unsigned hi; unsigned hi;
@ -68,81 +66,116 @@ namespace polysat {
// need src -> [v] and v -> [src] for propagation? // need src -> [v] and v -> [src] for propagation?
#endif #endif
trail_stack m_stack;
using slice_idx = unsigned; using slice_idx = unsigned;
static constexpr slice_idx null_slice_idx = UINT_MAX; using slice_idx_vector = unsigned_vector;
static constexpr slice_idx null_slice_idx = std::numeric_limits<slice_idx>::max();
struct slice { static constexpr unsigned null_cut = std::numeric_limits<unsigned>::max();
// If sub != null_slice_idx, the bit-vector x has been sliced into x[|x|-1:cut+1] and x[cut:0]
unsigned cut = UINT_MAX;
// If sub != null_slice_idx, the sub-slices are at indices sub and sub+1
slice_idx sub = null_slice_idx;
bool has_sub() const { return cut != 0; } // number of bits in the slice
slice_idx sub_hi() const { return sub; } // TODO: slice width is useful for debugging but we can probably drop it in release mode?
slice_idx sub_lo() const { return sub + 1; } unsigned_vector m_slice_width;
}; // Cut point: if slice represents bit-vector x, then x has been sliced into x[|x|-1:cut+1] and x[cut:0].
svector<slice> m_slices; // slice_idx -> slice // The cut point is relative to the parent slice (rather than a root variable, which might not be unique)
svector<slice_idx> m_var_slices; // pvar -> slice_idx // (UINT_MAX for leaf slices)
unsigned_vector m_slice_cut;
// The sub-slices are at indices sub and sub+1 (null_slice_idx if no subdivision)
slice_idx_vector m_slice_sub;
slice_idx_vector m_find; // representative of equivalence class
slice_idx_vector m_size; // number of elements in equivalence class
slice_idx_vector m_next; // next element of the equivalence class
// union_find over slices (union_find vars are indices into m_slices, i.e., slice_idx) slice_idx_vector m_var2slice; // pvar -> slice_idx
union_find<slicing> m_slices_uf;
slice_idx alloc_slice(); slice_idx alloc_slice();
friend class alloc_slice_trail; // track slice range while traversing sub-slices
class alloc_slice_trail : public trail { // (reference point of hi/lo is user-defined, e.g., relative to entry point of traversal)
slicing& m_owner; struct slice {
public: slice_idx idx = null_slice_idx;
alloc_slice_trail(slicing& o): m_owner(o) {} unsigned hi = UINT_MAX;
void undo() override; unsigned lo = UINT_MAX;
}; };
alloc_slice_trail m_alloc_slice_trail; using slice_vector = svector<slice>;
slice var2slice(pvar v) const;
bool has_sub(slice_idx i) const { return m_slice_sub[i] != null_slice_idx; }
bool has_sub(slice const& s) const { return has_sub(s.idx); }
slice sub_hi(slice const& s) const;
slice sub_lo(slice const& s) const;
// Split a slice into two; the cut is relative to |s|...0
void split(slice_idx s, unsigned cut);
// Split a slice into two; NOTE: the cut point here is relative to hi/lo in s
void split(slice const& s, unsigned cut);
// Retrieve base slices s_1,...,s_n such that src == s_1 ++ ... + s_n
void find_base(slice src, slice_vector& out_base) const;
// Retrieve (or create) base slices s_1,...,s_n such that src[hi:lo] == s_1 ++ ... ++ s_n
void mk_slice(slice src, unsigned hi, unsigned lo, slice_vector& out_base);
// find representative
slice_idx find(slice_idx i) const;
// merge equivalence classes of two base slices
void merge(slice_idx s1, slice_idx s2);
// Equality x_1 ++ ... ++ x_n == y_1 ++ ... ++ y_k
//
// Precondition:
// - sequence of base slices without holes (TODO: condition on holes probably not necessary? total widths have to match of course)
// - ordered from msb to lsb
// - slices have the same reference point
void merge(slice_vector& xs, slice_vector& ys);
void set_extract(pvar v, pvar src, unsigned hi_bit, unsigned lo_bit); void set_extract(pvar v, pvar src, unsigned hi_bit, unsigned lo_bit);
struct slice_info {
slice_idx idx; enum class trail_item {
unsigned hi; add_var,
unsigned lo; alloc_slice,
split_slice,
merge_class,
}; };
slice_info var2slice(pvar v) const; svector<trail_item> m_trail;
bool has_sub(slice_info const& si) const { return m_slices[si.idx].has_sub(); } slice_idx_vector m_split_trail;
slice_info sub_hi(slice_info const& si) const; slice_idx_vector m_merge_trail;
slice_info sub_lo(slice_info const& si) const; unsigned_vector m_scopes;
unsigned get_cut(slice_info const& si) const;
void split(slice_info const& si, unsigned cut); void undo_add_var();
void mk_slice(slice_info const& src, unsigned hi, unsigned lo, vector<slice_info>& out); void undo_alloc_slice();
void undo_split_slice();
void undo_merge_class();
mutable slice_vector m_tmp1;
public: public:
slicing(solver& s): // slicing(solver& s): m_solver(s) {}
s(s),
m_slices_uf(*this),
m_alloc_slice_trail(*this)
{}
trail_stack& get_trail_stack() { return m_stack; } void push_scope();
void pop_scope(unsigned num_scopes = 1);
void push_var(); void add_var(unsigned bit_width);
void pop_var();
bool is_extract(pvar v) const { return m_src[v] != null_var; }
// bool is_extract(pvar v) const { return m_src[v] != null_var; }
/** Get variable representing x[hi:lo] */ /** Get variable representing x[hi:lo] */
pvar mk_extract_var(pvar x, unsigned hi, unsigned lo); pvar mk_extract_var(pvar x, unsigned hi, unsigned lo);
/** Create expression for x[hi:lo] */ // /** Create expression for x[hi:lo] */
pdd mk_extract(pvar x, unsigned hi, unsigned lo); // pdd mk_extract(pvar x, unsigned hi, unsigned lo);
/** Create expression for p[hi:lo] */ // /** Create expression for p[hi:lo] */
pdd mk_extract(pdd const& p, unsigned hi, unsigned lo); // pdd mk_extract(pdd const& p, unsigned hi, unsigned lo);
/** Create expression for p ++ q */ // /** Create expression for p ++ q */
pdd mk_concat(pdd const& p, pdd const& q); // pdd mk_concat(pdd const& p, pdd const& q);
// propagate: // propagate:
// - value assignments // - value assignments