3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

Merge branch 'unstable' of https://git01.codeplex.com/z3 into unstable

This commit is contained in:
Christoph M. Wintersteiger 2013-05-01 14:11:21 +01:00
commit 7053b7636b
90 changed files with 4876 additions and 907 deletions

View file

@ -20,6 +20,7 @@ Revision History:
#define _HASH_H_
#include<algorithm>
#include"util.h"
#ifndef __fallthrough
#define __fallthrough
@ -142,6 +143,11 @@ struct size_t_hash {
unsigned operator()(size_t x) const { return static_cast<unsigned>(x); }
};
struct uint64_hash {
typedef uint64 data;
unsigned operator()(uint64 x) const { return static_cast<unsigned>(x); }
};
struct bool_hash {
typedef bool data;
unsigned operator()(bool x) const { return static_cast<unsigned>(x); }

409
src/util/inf_eps_rational.h Normal file
View file

@ -0,0 +1,409 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
inf_eps_rational.h
Abstract:
Rational numbers with infinity and epsilon.
Author:
Nikolaj Bjorner (nbjorner) 2013-4-23.
Revision History:
--*/
#ifndef _INF_EPS_RATIONAL_H_
#define _INF_EPS_RATIONAL_H_
#include<stdlib.h>
#include<string>
#include"debug.h"
#include"vector.h"
#include"rational.h"
template<typename Numeral>
class inf_eps_rational {
rational m_infty;
Numeral m_r;
public:
unsigned hash() const {
return m_infty.hash() ^ m_r.hash();
}
struct hash_proc { unsigned operator()(inf_eps_rational const& r) const { return r.hash(); } };
struct eq_proc { bool operator()(inf_eps_rational const& r1, inf_eps_rational const& r2) const { return r1 == r2; } };
void swap(inf_eps_rational & n) {
m_infty.swap(n.m_infty);
m_r.swap(n.m_r);
}
std::string to_string() const {
if (m_infty.is_zero()) {
return m_r.to_string();
}
std::string si;
if (m_infty.is_one()) {
si = "oo";
}
else if (m_infty.is_minus_one()) {
si = "-oo";
}
else {
si = m_infty.to_string() += "*oo";
}
if (m_r.is_zero()) {
return si;
}
std::string s = "(";
s += si;
s += " + ";
s += m_r.to_string();
s += ")";
return s;
}
inf_eps_rational():
m_infty(),
m_r()
{}
inf_eps_rational(const inf_eps_rational & r):
m_infty(r.m_infty),
m_r(r.m_r)
{}
explicit inf_eps_rational(int n):
m_infty(),
m_r(n)
{}
explicit inf_eps_rational(Numeral const& r):
m_infty(),
m_r(r)
{}
explicit inf_eps_rational(rational const& i, Numeral const& r):
m_infty(i),
m_r(r) {
}
~inf_eps_rational() {}
/**
\brief Set inf_eps_rational to 0.
*/
void reset() {
m_infty.reset();
m_r.reset();
}
bool is_int() const {
return m_infty.is_zero() && m_r.is_int();
}
bool is_int64() const {
return m_infty.is_zero() && m_r.is_int64();
}
bool is_uint64() const {
return m_infty.is_zero() && m_r.is_uint64();
}
bool is_rational() const { return m_infty.is_zero() && m_r.is_rational(); }
int64 get_int64() const {
SASSERT(is_int64());
return m_r.get_int64();
}
uint64 get_uint64() const {
SASSERT(is_uint64());
return m_r.get_uint64();
}
rational const& get_rational() const {
return m_r.get_rational();
}
rational const& get_infinitesimal() const {
return m_r.get_infinitesimal();
}
rational const& get_infinity() const {
return m_infty;
}
inf_eps_rational & operator=(const inf_eps_rational & r) {
m_infty = r.m_infty;
m_r = r.m_r;
return *this;
}
inf_eps_rational & operator=(const rational & r) {
m_infty.reset();
m_r = r;
return *this;
}
inf_eps_rational & operator+=(const inf_eps_rational & r) {
m_infty += r.m_infty;
m_r += r.m_r;
return *this;
}
inf_eps_rational & operator-=(const inf_eps_rational & r) {
m_infty -= r.m_infty;
m_r -= r.m_r;
return *this;
}
inf_eps_rational & operator+=(const rational & r) {
m_r += r;
return *this;
}
inf_eps_rational & operator-=(const rational & r) {
m_r -= r;
return *this;
}
inf_eps_rational & operator*=(const rational & r1) {
m_infty *= r1;
m_r *= r1;
return *this;
}
inf_eps_rational & operator/=(const rational & r) {
m_infty /= r;
m_r /= r;
return *this;
}
inf_eps_rational & operator++() {
++m_r;
return *this;
}
const inf_eps_rational operator++(int) { inf_eps_rational tmp(*this); ++(*this); return tmp; }
inf_eps_rational & operator--() {
--m_r;
return *this;
}
const inf_eps_rational operator--(int) { inf_eps_rational tmp(*this); --(*this); return tmp; }
friend inline bool operator==(const inf_eps_rational & r1, const inf_eps_rational & r2) {
return r1.m_infty == r2.m_infty && r1.m_r == r2.m_r;
}
friend inline bool operator==(const rational & r1, const inf_eps_rational & r2) {
return r1 == r2.m_infty && r2.m_r.is_zero();
}
friend inline bool operator==(const inf_eps_rational & r1, const rational & r2) {
return r1.m_infty == r2 && r1.m_r.is_zero();
}
friend inline bool operator<(const inf_eps_rational & r1, const inf_eps_rational & r2) {
return
(r1.m_infty < r2.m_infty) ||
(r1.m_infty == r2.m_infty && r1.m_r < r2.m_r);
}
friend inline bool operator<(const rational & r1, const inf_eps_rational & r2) {
return
r2.m_infty.is_pos() ||
(r2.m_infty.is_zero() && r1 < r2.m_r);
}
friend inline bool operator<(const inf_eps_rational & r1, const rational & r2) {
return
r1.m_infty.is_neg() ||
(r1.m_infty.is_zero() && r1.m_r < r2);
}
void neg() {
m_infty.neg();
m_r.neg();
}
bool is_zero() const {
return m_infty.is_zero() && m_r.is_zero();
}
bool is_one() const {
return m_infty.is_zero() && m_r.is_one();
}
bool is_minus_one() const {
return m_infty.is_zero() && m_r.is_minus_one();
}
bool is_neg() const {
return
m_infty.is_neg() ||
(m_infty.is_zero() && m_r.is_neg());
}
bool is_pos() const {
return
m_infty.is_pos() ||
(m_infty.is_zero() && m_r.is_pos());
}
bool is_nonneg() const {
return
m_infty.is_pos() ||
(m_infty.is_zero() && m_r.is_nonneg());
}
bool is_nonpos() const {
return
m_infty.is_neg() ||
(m_infty.is_zero() && m_r.is_nonpos());
}
friend inline rational floor(const inf_eps_rational & r) {
SASSERT(r.m_infty.is_zero());
return floor(r.m_r);
}
friend inline rational ceil(const inf_eps_rational & r) {
SASSERT(r.m_infty.is_zero());
return ceil(r.m_r);
}
// Perform: this += c * k
void addmul(const rational & c, const inf_eps_rational & k) {
m_infty.addmul(c, k.m_infty);
m_r.addmul(c, k.m_r);
}
// Perform: this += c * k
void submul(const rational & c, const inf_eps_rational & k) {
m_infty.submul(c, k.m_infty);
m_r.submul(c, k.m_r);
}
};
template<typename N>
inline bool operator!=(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
return !operator==(r1, r2);
}
template<typename N>
inline bool operator!=(const rational & r1, const inf_eps_rational<N> & r2) {
return !operator==(r1, r2);
}
template<typename N>
inline bool operator!=(const inf_eps_rational<N> & r1, const rational & r2) {
return !operator==(r1, r2);
}
template<typename N>
inline bool operator>(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
return operator<(r2, r1);
}
template<typename N>
inline bool operator>(const inf_eps_rational<N> & r1, const rational & r2) {
return operator<(r2, r1);
}
template<typename N>
inline bool operator>(const rational & r1, const inf_eps_rational<N> & r2) {
return operator<(r2, r1);
}
template<typename N>
inline bool operator<=(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
return !operator>(r1, r2);
}
template<typename N>
inline bool operator<=(const rational & r1, const inf_eps_rational<N> & r2) {
return !operator>(r1, r2);
}
template<typename N>
inline bool operator<=(const inf_eps_rational<N> & r1, const rational & r2) {
return !operator>(r1, r2);
}
template<typename N>
inline bool operator>=(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
return !operator<(r1, r2);
}
template<typename N>
inline bool operator>=(const rational & r1, const inf_eps_rational<N> & r2) {
return !operator<(r1, r2);
}
template<typename N>
inline bool operator>=(const inf_eps_rational<N> & r1, const rational & r2) {
return !operator<(r1, r2);
}
template<typename N>
inline inf_eps_rational<N> operator+(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
return inf_eps_rational<N>(r1) += r2;
}
template<typename N>
inline inf_eps_rational<N> operator-(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
return inf_eps_rational<N>(r1) -= r2;
}
template<typename N>
inline inf_eps_rational<N> operator-(const inf_eps_rational<N> & r) {
inf_eps_rational<N> result(r);
result.neg();
return result;
}
template<typename N>
inline inf_eps_rational<N> operator*(const rational & r1, const inf_eps_rational<N> & r2) {
inf_eps_rational<N> result(r2);
result *= r1;
return result;
}
template<typename N>
inline inf_eps_rational<N> operator*(const inf_eps_rational<N> & r1, const rational & r2) {
return r2 * r1;
}
template<typename N>
inline inf_eps_rational<N> operator/(const inf_eps_rational<N> & r1, const rational & r2) {
inf_eps_rational<N> result(r1);
result /= r2;
return result;
}
template<typename N>
inline std::ostream & operator<<(std::ostream & target, const inf_eps_rational<N> & r) {
target << r.to_string();
return target;
}
template<typename N>
inline inf_eps_rational<N> abs(const inf_eps_rational<N> & r) {
inf_eps_rational<N> result(r);
if (result.is_neg()) {
result.neg();
}
return result;
}
#endif /* _INF_EPS_RATIONAL_H_ */

View file

@ -223,6 +223,7 @@ class inf_rational {
}
friend inline inf_rational operator*(const rational & r1, const inf_rational & r2);
friend inline inf_rational operator*(const inf_rational & r1, const rational & r2);
friend inline inf_rational operator/(const inf_rational & r1, const rational & r2);
inf_rational & operator++() {
@ -426,6 +427,10 @@ inline inf_rational operator*(const rational & r1, const inf_rational & r2) {
return result;
}
inline inf_rational operator*(const inf_rational & r1, const rational & r2) {
return r2 * r1;
}
inline inf_rational operator/(const inf_rational & r1, const rational & r2) {
inf_rational result(r1);
result.m_first /= r2;

View file

@ -231,9 +231,8 @@ void * memory::allocate(size_t s) {
return 0;
s = s + sizeof(size_t); // we allocate an extra field!
void * r = malloc(s);
if (r == 0) {
if (r == 0)
throw_out_of_memory();
}
*(static_cast<size_t*>(r)) = s;
g_memory_thread_alloc_size += s;
if (g_memory_thread_alloc_size > SYNCH_THRESHOLD) {

View file

@ -432,24 +432,29 @@ typedef svector<unsigned> unsigned_vector;
typedef svector<char> char_vector;
typedef svector<double> double_vector;
template<typename Hash>
struct vector_hash {
template<typename Hash, typename Vec>
struct vector_hash_tpl {
Hash m_hash;
typedef vector<typename Hash::data> data;
typedef Vec data;
unsigned operator()(data const& v, unsigned idx) const { return m_hash(v[idx]); }
vector_hash(Hash const& h = Hash()):m_hash(h) {}
vector_hash_tpl(Hash const& h = Hash()):m_hash(h) {}
unsigned operator()(data const& v) const {
if (v.empty()) {
return 778;
}
return get_composite_hash<data, default_kind_hash_proc<data>, vector_hash>(v, v.size());
return get_composite_hash<data, default_kind_hash_proc<data>, vector_hash_tpl>(v, v.size());
}
};
template<typename Hash>
struct vector_hash : public vector_hash_tpl<Hash, vector<typename Hash::data> > {};
template<typename Hash>
struct svector_hash : public vector_hash_tpl<Hash, svector<typename Hash::data> > {};
#endif /* _VECTOR_H_ */