3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

Merge branch 'working' of https://z3-1/gw/git/z3 into working

This commit is contained in:
unknown 2012-10-10 20:42:36 -07:00
commit 703c0d4f78
56 changed files with 1369 additions and 439 deletions

View file

@ -19,6 +19,10 @@ LIBS=@LIBS@
## -lrt is for timer_create and timer_settime
LDFLAGS=@LDFLAGS@ -lpthread -fopenmp
LDFLAGS_EXTRA=
PREFIX=@prefix@
HAS_PYTHON=@HAS_PYTHON@
PYTHON_PACKAGE_DIR=@PYTHON_PACKAGE_DIR@
PYTHON=@PYTHON@
#########################
Z3=z3
@ -293,124 +297,6 @@ clean:
find . -name 'a.exe' -exec rm -f '{}' ';'
find . -name 'core' -exec rm -f '{}' ';'
################################
#
# Release
#
# NOTE: In 64-bit systems it is not possible to build a dynamic library using static gmp.
# So, EXTRA_LIBS="" in 64-bit systems.
# EXTRA_LIBS="$(BIN_DIR)/lib$(Z3)-gmp.so" in 32-bit systems.
#
# Remark: disable ocaml bindings in the release.
# They will be re-enabled in the future.
# To re-enable them, I just have to include ocamlrelease in the list of dependencies.
# I had to disable them because the stub generator uses non-portable scripts, and
# were not included at z3.codeplex.com. Thus, this part is temporarily broken.
#
# iZ3 is also temporarily removed from the release package. To re-enable it, we just have to include iz3release in the
# list of dependencies.
#
# I also permanently removed test_user_theory example. Now, that the source code
# is available, we don't need it anymore.
#
################################
release: $(BIN_DIR)/$(Z3) $(BIN_DIR)/lib$(Z3).@SO_EXT@ @EXTRA_LIBS@ $(BIN_DIR)/lib$(Z3).a
@rm -f -r z3
@mkdir -p z3
@mkdir -p z3/bin
@mkdir -p z3/lib
@mkdir -p z3/include
@mkdir -p z3/examples
@mkdir -p z3/python
@mkdir -p z3/examples/c
@mkdir -p z3/examples/c++
@mkdir -p z3/examples/python
@mkdir -p z3/examples/maxsat
@cp lib/z3.h z3/include
@cp lib/z3_v1.h z3/include
@cp lib/z3_api.h z3/include
@cp lib/z3_macros.h z3/include
@$(DOS2UNIX) z3/include/*
@cp $(BIN_DIR)/$(Z3) z3/bin
@cp $(BIN_DIR)/lib$(Z3).@SO_EXT@ z3/lib
@cp $(BIN_DIR)/lib$(Z3).a z3/lib
@cp test_capi/test_capi.c z3/examples/c
@$(DOS2UNIX) z3/examples/c/test_capi.c
@cp test_capi/README-$(PLATFORM).txt z3/examples/c/README
@$(DOS2UNIX) z3/examples/c/README
@cp test_capi/build-external-$(PLATFORM).sh z3/examples/c/build.sh
@cp test_capi/build-static-$(PLATFORM).sh z3/examples/c/build-static.sh
@$(DOS2UNIX) z3/examples/c/build.sh
@chmod +rwx z3/examples/c/build.sh
@$(DOS2UNIX) z3/examples/c/build-static.sh
@chmod +rwx z3/examples/c/build-static.sh
@cp test_capi/exec-external-$(PLATFORM).sh z3/examples/c/exec.sh
@$(DOS2UNIX) z3/examples/c/exec.sh
@chmod +rwx z3/examples/c/exec.sh
@cp maxsat/maxsat.c z3/examples/maxsat
@$(DOS2UNIX) z3/examples/maxsat/maxsat.c
@cp maxsat/README-$(PLATFORM).txt z3/examples/maxsat/README
@$(DOS2UNIX) z3/examples/maxsat/README
@cp maxsat/build-external-$(PLATFORM).sh z3/examples/maxsat/build.sh
@cp maxsat/build-static-$(PLATFORM).sh z3/examples/maxsat/build-static.sh
@$(DOS2UNIX) z3/examples/maxsat/build.sh
@chmod +rwx z3/examples/maxsat/build.sh
@$(DOS2UNIX) z3/examples/maxsat/build-static.sh
@chmod +rwx z3/examples/maxsat/build-static.sh
@cp maxsat/exec-external-$(PLATFORM).sh z3/examples/maxsat/exec.sh
@$(DOS2UNIX) z3/examples/maxsat/exec.sh
@chmod +rwx z3/examples/maxsat/exec.sh
@cp c++/z3++.h z3/include
@cp c++/example.cpp z3/examples/c++
@cp c++/build-external-$(PLATFORM).sh z3/examples/c++/build.sh
@$(DOS2UNIX) z3/examples/c++/build.sh
@chmod +rwx z3/examples/c++/build.sh
@cp c++/exec-external-$(PLATFORM).sh z3/examples/c++/exec.sh
@$(DOS2UNIX) z3/examples/c++/exec.sh
@chmod +rwx z3/examples/c++/exec.sh
@cp python/z3.py z3/python
@cp python/z3core.py z3/python
@cp python/z3types.py z3/python
@cp python/z3consts.py z3/python
@cp python/z3tactics.py z3/python
@cp python/z3printer.py z3/python
@cp python/README-$(PLATFORM).txt z3/examples/python/README
@cp python/exec-$(PLATFORM).sh z3/examples/python/exec.sh
@cp python/example.py z3/examples/python
@$(DOS2UNIX) z3/python/*.py
@$(DOS2UNIX) z3/examples/python/*.py
@$(DOS2UNIX) z3/examples/python/*.sh
@chmod +rwx z3/examples/python/*.sh
@tar -cvzf z3.tar.gz z3
ocamlrelease:
@mkdir -p z3/ocaml
@mkdir -p z3/examples/ocaml
@cp ml/z3_stubs.c z3/ocaml
@cp ml/z3_theory_stubs.c z3/ocaml
@cp ml/z3.mli z3/ocaml
@cp ml/z3.ml z3/ocaml
@cp ml_release/build-lib.sh z3/ocaml
@$(DOS2UNIX) z3/ocaml/build-lib.sh
@chmod +rwx z3/ocaml/build-lib.sh
@cp ml_release/README_$(PLATFORM) z3/ocaml/README
@$(DOS2UNIX) z3/ocaml/README
@cp ml_release/build-test.sh z3/examples/ocaml
@$(DOS2UNIX) z3/examples/ocaml/build-test.sh
@chmod +rwx z3/examples/ocaml/build-test.sh
@cp ml_release/README_test_$(PLATFORM) z3/examples/ocaml/README
@$(DOS2UNIX) z3/examples/ocaml/README
@cp ml_release/exec-$(PLATFORM).sh z3/examples/ocaml/exec.sh
@$(DOS2UNIX) z3/examples/ocaml/exec.sh
@chmod +rwx z3/examples/ocaml/exec.sh
@cp ml/test_mlapi.ml z3/examples/ocaml
@$(DOS2UNIX) z3/examples/ocaml/test_mlapi.ml
iz3release:
@$(DOS2UNIX) iZ3/pack-iz3-$(PLATFORM).sh
@chmod +rwx iZ3/pack-iz3-$(PLATFORM).sh
@iZ3/pack-iz3-$(PLATFORM).sh
################################
#
# Support
@ -435,3 +321,54 @@ checkgmake:
@ ./gmaketest --make=$(MAKE) || \
(echo "Z3 needs GNU-Make to be built"; exit 1)
################################
#
# installation/uninstallation
#
################################
install: $(BIN_DIR)/$(Z3) $(BIN_DIR)/lib$(Z3).@SO_EXT@ $(BIN_DIR)/lib$(Z3).a
@mkdir -p $(PREFIX)/bin
@mkdir -p $(PREFIX)/lib
@mkdir -p $(PREFIX)/include
@cp $(BIN_DIR)/$(Z3) $(PREFIX)/bin
@cp $(BIN_DIR)/lib$(Z3).@SO_EXT@ $(PREFIX)/lib
@cp $(BIN_DIR)/lib$(Z3).a $(PREFIX)/lib
@cp lib/z3_api.h $(PREFIX)/include
@cp lib/z3.h $(PREFIX)/include
@cp lib/z3_v1.h $(PREFIX)/include
@cp lib/z3_macros.h $(PREFIX)/include
@cp c++/z3++.h $(PREFIX)/include
uninstall:
@rm -f $(PREFIX)/bin/$(Z3)
@rm -f $(PREFIX)/lib/lib$(Z3).@SO_EXT@
@rm -f $(PREFIX)/lib/lib$(Z3).a
@rm -f $(PREFIX)/include/z3_api.h
@rm -f $(PREFIX)/include/z3.h
@rm -f $(PREFIX)/include/z3_v1.h
@rm -f $(PREFIX)/include/z3_macros.h
@rm -f $(PREFIX)/include/z3++.h
install-python: $(BIN_DIR)/lib$(Z3).@SO_EXT@
@if test $(HAS_PYTHON) -eq 0; then echo "Python is not available in your system."; exit 1; fi
@echo "Installing Python bindings at $(PYTHON_PACKAGE_DIR)."
@$(PYTHON) python/example.py > /dev/null
@cp python/z3.pyc $(PYTHON_PACKAGE_DIR)
@cp python/z3core.pyc $(PYTHON_PACKAGE_DIR)
@cp python/z3types.pyc $(PYTHON_PACKAGE_DIR)
@cp python/z3consts.pyc $(PYTHON_PACKAGE_DIR)
@cp python/z3tactics.pyc $(PYTHON_PACKAGE_DIR)
@cp python/z3printer.pyc $(PYTHON_PACKAGE_DIR)
@cp $(BIN_DIR)/lib$(Z3).@SO_EXT@ $(PYTHON_PACKAGE_DIR)
uninstall-python:
@if test $(HAS_PYTHON) -eq 0; then echo "Python is not available in your system."; exit 1; fi
@echo "Uninstalling Python bindings from $(PYTHON_PACKAGE_DIR)."
@rm -f $(PYTHON_PACKAGE_DIR)/z3.pyc
@rm -f $(PYTHON_PACKAGE_DIR)/z3core.pyc
@rm -f $(PYTHON_PACKAGE_DIR)/z3types.pyc
@rm -f $(PYTHON_PACKAGE_DIR)/z3consts.pyc
@rm -f $(PYTHON_PACKAGE_DIR)/z3tactics.pyc
@rm -f $(PYTHON_PACKAGE_DIR)/z3printer.pyc
@rm -f $(PYTHON_PACKAGE_DIR)/$(BIN_DIR)/lib$(Z3).@SO_EXT@

View file

@ -169,6 +169,7 @@ namespace Microsoft.Z3
Z3_OP_CONST_ARRAY = 770,
Z3_OP_BSDIV = 1031,
Z3_OP_OR = 262,
Z3_OP_PR_HYPER_RESOLVE = 1319,
Z3_OP_AGNUM = 513,
Z3_OP_PR_PUSH_QUANT = 1298,
Z3_OP_BSMOD = 1035,

28
README
View file

@ -19,33 +19,35 @@ Z3 can be built using Visual Studio Command Prompt, Visual Studio and make/gcc.
msbuild z3-prover.sln
All components will be located at /debug
1) Building Z3 using g++/make
2) Building Z3 using g++/make
Your machine must also have the following commands to be able to build Z3:
autoconf, sed, awk, dos2unix commands
- Open a shell
- For building the z3 executable, execute
autoconf
./configure
make
sudo make install
The z3 executable will be located at bin/external/
It will install z3 executable at /usr/local/bin, libraries at /usr/local/lib, and include files at /usr/local/include.
Use the following commands to install in a different prefix (e.g., /usr).
- If you want a static library for Z3
autoconf
./configure --prefix=/usr
make
sudo make install
make a
To uninstall Z3, use
- If you also want the z3 shared library, execute
sudo make uninstall
make so
To install Z3 Python bindings, use
for libz3.so (on Linux)
sudo make install-python
make dylib
To uninstall Z3 Python bindings, use
for libz3.dylib (on OSX)
sudo make uninstall-python
Remark: the Z3 makefile imports the source file list from Visual Studio project files.
To add new source files to the Z3 core, you must include them at: lib/lib.vcxproj

673
RELEASE_NOTES Normal file
View file

@ -0,0 +1,673 @@
RELEASE NOTES
First source code release (October 2, 2012)
===========================================
- Fixed bug in Z3Py. The method that builds Z3 applications could crash if one of the arguments have to be "casted" into the correct sort (Thanks to Dennis Yurichev).
- Fixed bug in datatype theory (Thanks to Ayrat).
- Fixed bug in the definition of MkEmptySet and MkFullSet in the .Net API.
- Display warning message and ignore option CASE_SPLIT=3,4 or 5 when auto configuration is enabled (AUTO_CONFIG=true) (Thanks Tobias from StackOverflow).
- Made the predicates <, <=, > and >= chainable as defined in the SMT 2.0 standard (Thanks to Matthias Weiler).
- Added missing Z3_decl_kind's for datatypes: Z3_OP_DT_CONSTRUCTOR, Z3_OP_DT_ACCESSOR, Z3_OP_DT_RECOGNISER.
- Added support for numbers in scientific notation at Z3_ast Z3_mk_numeral(__in Z3_context c, __in Z3_string numeral, __in Z3_sort ty).
- New builtin symbols in the arithmetic theory: pi, euler, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh. The first two are constants, and the others are unary functions. These symbols are not available if the a SMT 2.0 logic is specified (e.g., QF_LRA, QF_NRA, QF_LIA, etc) because these symbols are not defined in these logics. That is, the new symbols are only available if the logic is not specified.
Version 4.1
===========
- New OCAML API (Many thanks to Josh Berdine)
- CodeContracts in the .NET API (Many thanks to Francesco Logozzo).
Users can now check whether they are using the .NET API correctly
using <a href="http://msdn.microsoft.com/en-us/devlabs/dd491992">Clousot</a>.
- Added option :error-behavior. The default value is
continued-execution. Now, users can force the Z3 SMT 2.0 frontend to
exit whenever an error is reported. They just have to use the
command (set-option :error-behavior immediate-exit).
- Fixed bug in term-if-then-else elimination (Thanks to Artur Niewiadomski).
- Fixed bug in difference logic detection code (Thanks to Dejan Jovanovic).
- Fixed bug in the pseudo-boolean preprocessor (Thanks to Adrien Champion).
- Fixed bug in bvsmod preprocessing rules (Thanks to Dejan Jovanovic).
- Fixed bug in Tactic tseitin-cnf (Thanks to Georg Hofferek).
- Added missing simplification step in nlsat.
- Fixed bug in model construction for linear real arithmetic (Thanks to Marcello Bersani).
- Fixed bug in preprocessor that eliminated rational powers (e.g., (^ x (/ 1.0 2.0))), the bug affected only problems where the denominator was even (Thanks to Johannes Eriksson).
- Fixed bug in the k-th root operation in the algebraic number package. The result was correct, but the resulting polynomial could be incorrectly tagged as minimal and trigger nontermination on comparison operations. (Thanks to Johannes Eriksson).
- Fixed bug affecting problems containing patterns with n-ary arithmetic terms such as (p (+ x y 2)). This bug was introduced in Z3 4.0. (Thanks to Paul Jackson).
- Fixed crash when running out of memory.
- Fixed crash reported by Alex Summers. The crash was happening on scripts that contain quantifiers, and use boolean formulas inside terms.
- Fixed crash in the MBQI module (Thanks to Stephan Falke).
- Fixed bug in the E-matching engine. It was missing instances of multi-patterns (Thanks Alex Summers).
- Fixed bug in Z3Py pretty printer.
- The pattern inference module does not generate warning messages by default anymore. This module was responsible for producing messages such as: "WARNING: failed to find a pattern for quantifier (quantifier id: k!199)". The option PI_WARNINGS=true can be used to enable these warning messages.
- Added missing return statements in z3++.h (Thanks to Daniel Neider).
- Removed support for TPTP5 and Simplify input formats.
- Removed support for Z3 (low-level) input format. It is still available in the API.
- Removed support for "SMT 1.5" input format (aka .smtc files). This was a hybrid input format that was implemented while the SMT 2.0 standard was being designed. Users should move to SMT 2.0 format. Note that SMT 1.0 format is still available.
- Made tseitin-cnf tactic more "user friendly". It automatically applies required transformations needed to eliminate operators such as: and, distinct, etc.
- Implemented new PSC (principal subresultant coefficient) algorithm. This was one of the bottlenecks in the new nlsat solver/tactic.
Version 4.0
===========
Z3 4.0 is a major release. The main new features are:
- New C API, and it is backwards compatible, but several methods are marked as deprecated.
In the new API, many solvers can be created in the same context. It also includes support
for user defined strategies using Tactics. It also exposes a new interface for browsing models.
- A thin C++ layer around the C API that illustrates how to
leverage reference counting of ast objects.
Several examples can be found in the directory 'examples/c++'.
- New .NET API together with updated version of the legacy .NET API.
The new .NET API supports the new features, Tactics, Solvers, Goals,
and integration of with reference counting. Terms and sorts life-times
no longer requires a scoping discipline.
- <a class="el" href="http://rise4fun.com/Z3Py/tutorial/guide">Z3Py: Python interface for Z3</a>.
It covers all main features in the Z3 API.
- <a class="el" href="http://research.microsoft.com/apps/pubs/default.aspx?id=159549">NLSAT solver</a> for nonlinear arithmetic.
- The PDR algorithm in muZ.
- iZ3: an interpolating theorem prover built on top of Z3 (\ref iz3documentation). iZ3 is only available for Windows and Linux.
- New logging infrastructure. Z3 logs are used to record every Z3 API call performed by your application.
If you find a bug, just the log need to be sent to the Z3 team.
The following APIs were removed: Z3_trace_to_file, Z3_trace_to_stderr, Z3_trace_to_stdout, Z3_trace_off.
The APIs: Z3_open_log, Z3_append_log and Z3_close_log do not receive a Z3_context anymore.
When creating a log, you must invoke Z3_open_log before any other Z3 function call.
The new logs are much more precise.
However, they still have two limitations. They are not useful for logging applications that use callbacks (e.g., theory plugins)
because the log interpreter does not have access to these callbacks.
They are not precise for applications that are using multiple threads for processing multiple Z3 contexts.
- Z3 (for Linux and OSX) does not depend on GMP anymore.
- Z3 1.x backwards compatibility macros are defined in z3_v1.h. If you still use them, you have to explicitly include this file.
- Fixed all bugs reported at Stackoverflow.
Temporarily disabled features:
- User theories cannot be used with the new Solver API yet. Users may still use them with the deprecated solver API.
- Parallel Z3 is also disabled in this release. However, we have parallel combinators for creating stragegies (See <a href="http://rise4fun.com/Z3/tutorial/strategies"> tutorial</a>).
The two features above will return in future releases.
Here is a list of all <a class="el" href="deprecated.html">deprecated functions</a>.
Version 3.2
===========
This is a bug-fix refresh that fixes reported problems with 3.1.
- Added support for chainable and right associative attributes.
- Fixed model generation for QBVF (aka UFBV) logic. Now, Z3 officially supports the logics BV and UFBV.
These are essentially QF_BV and QF_UFBV with quantifiers.
- Fixed bug in eval and get-value commands. Thanks to Levent Erkok.
- Fixed performance bug that was affecting VCC and Slayer. Thanks to Michal Moskal.
- Fixed time measurement on Linux. Thanks to Ayrat Khalimov.
- Fixed bug in destructive equality resolution (DER=true).
- Fixed bug in map operator in the theory of arrays. Thanks to Shaz Quadeer.
- Improved OCaml build scripts for Windows. Thanks to Josh Berdine.
- Fixed crash in MBQI (when Real variables were used).
- Fixed bugs in quantifier elimination. Thanks to Josh Berdine.
- Fixed crash when an invalid datatype declaration is used.
- Fixed bug in the SMT2 parser.
- Fixed crash in quick checker for quantified formulas. Thanks to Swen Jacobs.
- Fixed bug in the bvsmod simplifier. Thanks to Trevor Hansen.
- New APIs: \c Z3_substitute and \c Z3_substitute_vars.
- Fixed crash in MBQI. Thanks to Dejan Jovanovic.
Version 3.1
===========
This is a bug-fix refresh that fixes reported problems with 3.0.
- Fixed a bug in model generation. Thanks to Arlen Cox and Gordon Fraser.
- Fixed a bug in Z3_check_assumptions that prevented it from being used between satisfiable instances. Thanks to Krystof Hoder.
- Fixed two bugs in quantifier elimination. Thanks to Josh Berdine.
- Fixed bugs in the preprocessor.
- Fixed performance bug in MBQI. Thanks to Kathryn Stolee.
- Improved strategy for QBVF (aka UFBV) logic.
- Added support for negative assumptions in the check-sat command.
Version 3.0
===========
- Fully compliant SMT-LIB 2.0 (SMT2) front-end. The old front-end is still available (command line option -smtc).
The <a class="el" href="http://rise4fun.com/z3/tutorial/guide">Z3 Guide</a> describes the new front-end.
- Parametric inductive datatypes, and parametric user defined types.
- New SAT solver. Z3 can also read dimacs input formulas.
- New Bitvector (QF_BV) solver. The new solver is only available when using the new SMT2 front-end.
- Major performace improvements.
- New preprocessing stack.
- Performance improvements for linear and nonlinear arithmetic. The improvements are only available when using the the SMT2 front-end.
- Added API for parsing SMT2 files.
- Fixed bug in AUTO_CONFIG=true. Thanks to Alberto Griggio.
- Fixed bug in the Z3 simplifier cache. It was not being reset during backtracking. Thanks to Alberto Griggio.
- Fixed many other bugs reported by users.
- Improved model-based quantifier instantiation (MBQI).
- New solver for Quantified Bitvector Logic (QBVF).
- Z3 checks the user specified logic.
- <a href="http://www.cs.miami.edu/~tptp/">TPTP</a> 5 front-end.
Version 2.19
============
- In the SMT-LIB 1.0 frontend, Z3 will only display the model when requested by the user (MODEL=true).
- Fixed bug in the variable elimination preprocessor. Thanks to Alberto Griggio.
- Fixed bug in the expression strong simplifier. Thanks to Marko.
- Fixed bug in the Z3 auto configuration mode. Thanks to Vladimir Klebanov.
- Fixed bug when model generation is used in the context of user-defined-theories. Thanks to Philippe Suter.
- Fixed bug in quantifier elimination procedure. Thanks to Mikkel Larsen Pedersen.
- Improved speed of Z3 lexer for SMT-LIB frontend.
- Added a sample under examples/fixedpoints to illustrate using
the API for pluggable relations.
- Added an API method \c Z3_get_param_value for retrieving a
configuration value given a configuration parameter name.
Version 2.18
============
- Z3 has a new mode for solving fixed-point queries.
It allows formulating Datalogish queries combined with constraints.
<a class="el" href="http://rise4fun.com/z3py/tutorial/fixedpoints">Try it online</a>.
- Fixed bug that affects the array theory over the API using
RELEVANCY=0. Thanks to Josh Berdine.
Version 2.17
============
- Z3 has new model finding capabilities for Quantified SMT formulas.
The new features are enabled with <tt>MBQI=true</tt>.
(Model Based Quantifier Instantiation). MBQI implements a
counter-example based refinement loop, where candidate models are
built and checked. When the model checking step fails, it creates new
quantifier instantiations. The models are returned as simple
functional programs. The new feature is also a decision procedure for
many known decidable fragments such as: EPR (Effectively
Propositional), Bradley&Manna&Sipma's Array Property Fragment (VMCAI'06), Almost
Uninterpreted Fragment (Complete instantiation for quantified SMT formulas, CAV'09),
McPeak&Necula's list fragment (CAV'05), QBVF (Quantified Bit-Vector Formulas FMCAD'10),
to cite a few.
MBQI is useful for checking the consistency of background axiomatizations,
synthesizing functions, and building real counterexamples for
verification tools. Users can constrain the search space by
providing templates for function symbols, and constraints
on the size of the universe and range of functions.
- Fixed bug in the command <tt>(simplify [expr])</tt> SMT-LIB 2.0 frontend.
- New model pretty printer. The old style is still available (option <tt>MODEL_V2=true</tt>).
Z3 1.x style is also available (option <tt>MODEL_V1=true</tt>).
- Removed \c ARRAY_PROPERTY option. It is subsumed by <tt>MBQI=true</tt>.
- Z3 uses the <tt>(set-logic [name])</tt> to configure itself.
- Assumptions can be provided to the \c check-sat command.
The command <tt>(check-sat [assumptions])</tt> checks the satisfiability of the logical context modulo
the given set of assumptions. The assumptions must be Boolean constants or
the negation of Boolean constants. When the logical context is
unsatisfiable modulo the given assumptions, Z3 will display a subset
of the \c assumptions that contributed to the conflict. Lemmas
learned during the execution of \c check-sat are preserved.
- Added command <tt>(echo [string])</tt> to the SMT-LIB 2.0 frontend.
- Z3 models explicitly include an interpretation for uninterpreted sorts.
The interpretation is presented using the \c define-sort primitive.
For example,
\code
(define-sort S e_1 ... e_n)
\endcode
states that the interpretation of the uninterpreted sort S is finite, and
its universe is composed by values \c e_1, ..., \c e_n.
- Options \c WARNING and \c VERBOSE can be set in the SMT-LIB 2.0 frontend using
the commands <tt>(set-option WARNING <flag>)</tt> <tt>(set-option VERBOSE <flag>)</tt>.
- Fixed unintentional side-effects in the Z3 pretty printer. Thanks to Swen Jacobs.
- Added interpreted constants of the form <tt>as-array[f]</tt>. The constants
are used in models produced by Z3 to encode the interpretation of arrays.
The following axiom scheme axiomatizes the new constants:
\code
(forall (x1 S1) ... (xn Sn) (= (select as-array[f] x1 ... xn) (f x1 ... xn)))
\endcode
- Fixed bug in the option MACRO_FINDER=true.
- Fixed bug in the <tt>(eval [expr])</tt> command in the SMT-LIB 2.0 frontend.
- Soundness bug in solver for array property fragment. Thanks to Trevor Hansen.
Version 2.16
============
The following bugs are fixed in this release:
- Bugs in quantifier elimination. Thanks to Mikkel Larsen Pedersen.
- Crash in non-linear arithmetic. Thanks to Trevor Hansen.
- Unsoundness in mixed integer-linear version using to_real. Thanks to Hirai.
- A crash and bugs in check_assumptions feature. Thanks to Akash Lal and Shaz Qadeer.
Version 2.15
============
The following bugs are fixed in this release:
- A bug in the quantifier elimination that affects nested
alternating quantifiers that cannot be fully eliminated.
- A crash in proof generation. Thanks to Sascha Boehme.
Version 2.14
============
The following bugs are fixed in this release:
- A crash in arithmetic simplification. Thanks to Trevor Hansen.
- An unsoundness bug in the quantifier elimination.
It affects the equivalence of answers that are computed
in some cases.
- Incorrect printing of parameters and other values
in SMT-LIB2 mode.
Thanks to Tjark Weber.
Version 2.13
============
The following bugs are fixed in this release:
- Soundness bug in solver for array property fragment. Thanks to Trevor Hansen.
- Soundness bug introduced in macro expansion utilities. Thanks to Wintersteiger.
- Incorrect handling of QF_NRA. Thanks to Trevor Hansen.
- Mixup between SMT2 and SMT1 pretty printing formats. Thanks to Alvin Cheung and Tjark Weber.
Version 2.12
============
News:
- Philippe Suter made a JNI binding available.
There is also an existing Python binding by Sascha Boehme.
See \ref contrib.
The following features are added in this release:
- Enable check_assumptions without enclosing push/pop.
This resolves the limitation described
in \ref sub_release_limitations_2_0.
- Expose coefficients used in arithmetical proofs.
- Allow quantified theory axioms.
The following bugs are fixed in this release:
- Fixes to the SMT-LIB 2.0 pretty printing mode.
- Detect miss-annotated SMT-LIB benchmarks to avoid crashes when
using the wrong solvers. Thanks to Trevor Hansen.
- A digression in the managed API from 2.10
when passing null parameters.
- Crash/incorrect handling of inequalities over the reals
during quantifier elimination.
Thanks to Mikkel Larsen Pedersen.
- Bug in destructive equality resolution.
Thanks to Sascha Boehme.
- Bug in initialization for x64_mt executable on SMT benchmarks.
Thanks to Alvin Cheung.
Version 2.11
============
The following features are added in this release:
- SMT-LIB 2.0 parsing support for (! ..) in quantifiers and (_ ..).
- Allow passing strings to function and sort declarations in the .NET Theory builders.
- Add a parameter to the proof construct for theory lemmas to indicate which theory
provided the lemma.
- More detailed proof production in rewrite steps.
The following bugs are fixed in this release:
- A bug in BV propagation. Thanks to Trevor Hansen.
Version 2.10
============
The following bugs are fixed in this release:
- Inconsistent printing of integer and real types from
the low level and SMT-LIB pretty printers.
Thanks to Sascha Boehme.
- Missing relevancy propagation and memory smash in
user-theory plugins.
Thanks to Stan Rosenberg.
Version 2.9
===========
The following bugs are fixed in this release:
- Incorrect constant folding of extraction for large bit-vectors.
Thanks to Alvin.
- Z3 crashed when using patterns that are variables.
Thanks to Michael Emmi.
- Unsound array property fragment handling of non-integer types.
Thanks to Juergen Christ.
- The quantifier elimination procedure for data-types has
been replaced.
Thanks to Josh Berdine.
- Refresh 2.9.1: Add missing AssumeEq to the .NET managed API.
Thanks to Stan Rosenberg.
Version 2.8
===========
The following features have been added:
- User theories: The user can add theory solvers that
get invoked by Z3's core during search.
See also \ref theory_plugin_ex.
- SMT2 features: parse smt2 let bindings.
The following bugs are fixed in this release:
- Incorrect semantics of constant folding for (bvsmod 0 x), where
x is positive, incorrect constant folding for bvsdiv, incorrect
simplification of bvnor, bvnand, incorrect compilation of
bvshl when using a shift amount that evaluates to the length
of the bit-vector. Thanks to Trevor Hansen and Robert Brummayer.
- Incorrect NNF conversion in linear quantifier elimniation routines.
Thanks to Josh Berdine.
- Missing constant folding of extraction for large bit-vectors.
Thanks to Alvin.
- Missing APIs for bvredand and bvredor.
Version 2.7
===========
The following features have been added:
- Partial support for SMT-LIB 2.0 format:
Added declare-fun, define-fun, declare-sort, define-sort, get-value
- Added coercion function to_int and testing function is_int.
To coerce from reals to integers and to test whether a real is an integer.
The function to_real was already supported.
- Added Z3_repeat to create the repetition of bit-vectors.
The following bugs are fixed in this release:
- Incorrect semantics of constant folding for bvsmod.
- Incorrect semantics of constant folding for div/mod.
Thanks to Sascha Boehme.
- Non-termination problem associated with option LOOKAHEAD=true.
It gets set for QF_UF in auto-configuration mode.
Thanks to Pierre-Christophe Bué.
- Incorrect axioms created for injective functions.
Thanks to Sascha Boehme.
- Stack overflow during simplification of large nested
bit-vector terms. Thanks to David Molnar.
- Crash in unsat-core generation when enabling SOLVER=true.
Thanks to Lucas Cordeiro.
- Unlimited cache growth while simplifying bit-vectors.
Thanks to Eric Landers.
- Crash when solving array property formulas using non-standard
array operators.
Thanks to Sascha Boehme.
Version 2.6
===========
This release fixes a few bugs.
Thanks to Marko Kääramees for reporting a bug in the strong context simplifier and
to Josh Berdine.
This release also introduces some new preprocessing features:
- More efficient destructive equality resolution DER=true.
- DISTRIBUTE_FORALL=true (distributes universal quatifiers over conjunctions, this transformation may affect pattern inference).
- Rewriter that uses universally quantified equations PRE_DEMODULATOR=true (yes, the option name is not good, we will change it in a future release).
- REDUCE_ARGS=true (this transformation is essentially a partial ackermannization for functions where a particular argument is always an interpreted value).
- Better support for macro detection (a macro is a universally quantified formula of the form Forall X. F(X) = T[X]). We also change the option name, now it is called MACRO_FINDER=true.
- ELIM_QUANTIFIERS=true enables quantifier elimination methods. Previous variants called QUANT_ARITH are deprecated.
Version 2.5
===========
This release introduces the following features:
- STRONG_CONTEXT_SIMPLIFIER=true allows simplifying sub-formulas
to true/false depending on context-dependent information.
The approach that we use is described on
the <a href="http://community.research.microsoft.com/forums/p/4493/8140.aspx">
Microsoft Z3 forum</a>.
- Some parameter values can be updated over the API. This functionality is called
<tt>Z3_update_param_value</tt> in the C API. This is particularly useful
for turning the strong context simplifier on and off.
It also fixes bugs reported by Enric Rodríguez Carbonell,
Nuno Lopes, Josh Berdine, Ethan Jackson, Rob Quigley and
Lucas Cordeiro.
Version 2.4
===========
This release introduces the following features:
- Labeled literals for the SMT-LIB format.
The Simplify format has supported labeled formulas
to simplify displaying counter-examples.
Section \ref smtlib_labels explains how labels are now
supported in the SMT-LIB format.
- Preliminary support for SMT-LIB2
It fixes the following bugs:
- Bug in non-linear arithmetic routines.
- Crash observed a class of modular integer arithmetic formulas.
- Incomplete saturation leading to incorrectly sat labeling.
- Crash in the bit-vector procedure when using int2bv and bv2int.
Thanks to Michal Moskal, Sascha Boehme and Ethan Jackson.
Version 2.3
===========
This release introduces the following features:
- F# Quotation utilities. The release contains a new directory 'utils'.
It contains utilities built on top of Z3. The main one is support for
translating F# quoted expressions into Z3 formulas.
- QUANT_ARITH configuration.
Complete quantifier-elimination simplification for linear real and linear integer
arithmetic. QUANT_ARITH=1 uses Ferrante/Rackhoff for reals and Cooper's method for integers.
QUANT_ARITH=2 uses Fourier-Motzkin for reals and the Omega test for integers.
It fixes the following bugs:
- Incorrect simplification of map over store in the extendted array theory. Reported by Catalin Hritcu.
- Incomplete handling of equality propagation with constant arrays. Reported by Catalin Hritcu.
- Crash in bit-vector theory.
- Incorrectness in proof reconstruction for quantifier manipulation.
Thanks to Catalin Hritcu, Nikolai Tillmann and Sascha Boehme.
Version 2.2
===========
This release fixes minor bugs.
It introduces some additional features in the SMT-LIB front-end
to make it easier to parse new operators in the theory of arrays.
These are described in \ref smtlibext.
Version 2.1
===========
This is a bug fix release.
Many thanks to Robert Brummayer, Carine Pascal, François Remy,
Rajesh K Karmani, Roberto Lublinerman and numerous others for their
feedback and bug reports.
Version 2.0
===========
- <a href="http://research.microsoft.com/en-us/um/people/leonardo/parallel_z3.pdf">Parallel Z3</a>.
Thanks to Christoph Wintersteiger there is a binary
supporting running multiple instances of Z3 from different threads,
but more interestingly, also making use of multiple cores for
a single formula.
- Check Assumptions.
The binary API exposes a new call #Z3_check_assumptions, which
allows passing in additional assumptions while checking for
consistency of the already asserted formulas.
The API function returns a subset of the assumptions that were
used in an unsatisfiable core. It also returns an optional
proof object.
- Proof Objects.
The #Z3_check_assumptions retuns a proof object if
the configuration flag PROOF_MODE is set to 1 or 2.
- Partial support for non-linear arithmetic.
The support uses support for computing Groebner bases.
It allows solving some, but far from all, formulas using
polynomials over the reals. Uses should be aware that the
support for non-linear arithmetic (over the reals) is not complete in Z3.
- Recursive data-types.
The theory of well-founded recursive data-types is supported
over the binary APIs. It supports ground satisfiability checking
for tuples, enumeration types (scalars),
lists and mututally recursive data-types.

View file

@ -14,10 +14,11 @@ example.exe can find z3.dll.
2) Using gcc
You must install Z3 before running this example.
To install Z3, execute the following command in the Z3 root directory.
sudo make install
Use 'build.sh' to build the test application using g++.
The script 'exec.sh' adds the bin directory to the path. So,
example.exe can find z3.dll.
Remark: the scripts 'build.sh' and 'exec.sh' assumes you are in a
Cygwin or Mingw shell.
It generates the executable 'example'.

View file

@ -1 +0,0 @@
g++ -fopenmp -o example -I ../../include example.cpp -L ../../lib -lz3

View file

@ -1 +0,0 @@
g++ -fopenmp -o example -I ../../include example.cpp -L ../../lib -lz3

View file

@ -1 +0,0 @@
g++ -fopenmp -o example.exe -I ../../include ../../bin/z3.dll example.cpp

View file

@ -1,2 +0,0 @@
export LD_LIBRARY_PATH=../../lib:$LD_LIBRARY_PATH
./example

View file

@ -1,2 +0,0 @@
export DYLD_LIBRARY_PATH=../../lib:$DYLD_LIBRARY_PATH
./example

View file

@ -1,2 +0,0 @@
export PATH=../../bin:$PATH
./example.exe

View file

@ -11,6 +11,17 @@ AS_IF([test "$use_gmp" = "yes"],[
])
AC_SUBST(EXTRA_LIB_SRCS)
AC_ARG_WITH(python,
[AS_HELP_STRING([--with-python=PYTHON_PATH],
[specify the location of the python 2.x executable.])])
PYTHON="python"
if test "x$with_python" != x; then
PYTHON="$with_python"
fi
AC_SUBST(PYTHON)
AC_PATH_PROG([D2U], [dos2unix], [no], [~/bin$PATH_SEPARATOR$PATH])
AS_IF([test "$D2U" = "no"], [AC_MSG_ERROR(dos2unix not found)])
AC_SUBST(D2U)
@ -45,6 +56,36 @@ AC_SUBST(SLIBFLAGS)
AC_SUBST(COMP_VERSIONS)
AC_SUBST(STATIC_FLAGS)
cat > tst_python.py <<EOF
from sys import version
if version >= "3":
exit(1)
exit(0)
EOF
if $PYTHON tst_python.py; then
HAS_PYTHON="1"
HAS_PYTHON_MSG="yes"
cat > get_py_dir.py << EOF
import distutils.sysconfig
print distutils.sysconfig.get_python_lib()
EOF
if $PYTHON get_py_dir.py > dir.txt; then
PYTHON_PACKAGE_DIR=`cat dir.txt`
else
HAS_PYTHON="0"
HAS_PYTHON_MSG="no"
fi
rm -f dir.txt
rm -f get_py_dir.py
else
HAS_PYTHON="0"
HAS_PYTHON_MSG="no"
fi
AC_SUBST(PYTHON_PACKAGE_DIR)
AC_SUBST(HAS_PYTHON)
rm -f tst_python.py
cat > tst64.c <<EOF
int main() {
return sizeof(unsigned) == sizeof(void*);
@ -106,8 +147,12 @@ AC_OUTPUT(Makefile)
cat <<EOF
Z3 was configured with success.
Host platform: $PLATFORM
Arithmetic: $ARITH
Host platform: $PLATFORM
Arithmetic: $ARITH
Python Support: $HAS_PYTHON_MSG
Pyyhon: $PYTHON
Type 'make' to compile Z3.
Type 'sudo make install' to install Z3.
Type 'sudo make install-python' to install Z3 Python bindings.
EOF

View file

@ -964,7 +964,7 @@ extern "C" {
case PR_CNF_STAR: return Z3_OP_PR_CNF_STAR;
case PR_MODUS_PONENS_OEQ: return Z3_OP_PR_MODUS_PONENS_OEQ;
case PR_TH_LEMMA: return Z3_OP_PR_TH_LEMMA;
case PR_HYPER_RESOLVE: return Z3_OP_PR_HYPER_RESOLVE;
default:
UNREACHABLE();
return Z3_OP_UNINTERPRETED;

View file

@ -646,7 +646,8 @@ basic_decl_plugin::basic_decl_plugin():
m_def_intro_decl(0),
m_iff_oeq_decl(0),
m_skolemize_decl(0),
m_mp_oeq_decl(0) {
m_mp_oeq_decl(0),
m_hyper_res_decl0(0) {
}
bool basic_decl_plugin::check_proof_sorts(basic_op_kind k, unsigned arity, sort * const * domain) const {
@ -751,6 +752,9 @@ func_decl * basic_decl_plugin::mk_proof_decl(basic_op_kind k, unsigned num_param
SASSERT(num_parents == 0);
return mk_proof_decl("quant-inst", k, num_parameters, params, num_parents);
}
case PR_HYPER_RESOLVE: {
return mk_proof_decl("hyper-res", k, num_parameters, params, num_parents);
}
default:
UNREACHABLE();
return 0;
@ -813,6 +817,7 @@ func_decl * basic_decl_plugin::mk_proof_decl(basic_op_kind k, unsigned num_paren
case PR_SKOLEMIZE: return mk_proof_decl("sk", k, 0, m_skolemize_decl);
case PR_MODUS_PONENS_OEQ: return mk_proof_decl("mp~", k, 2, m_mp_oeq_decl);
case PR_TH_LEMMA: return mk_proof_decl("th-lemma", k, num_parents, m_th_lemma_decls);
case PR_HYPER_RESOLVE: return mk_proof_decl("hyper-res", k, num_parents, m_hyper_res_decl0);
default:
UNREACHABLE();
return 0;
@ -934,6 +939,7 @@ void basic_decl_plugin::finalize() {
DEC_ARRAY_REF(m_cnf_star_decls);
DEC_ARRAY_REF(m_th_lemma_decls);
DEC_REF(m_hyper_res_decl0);
}
@ -2830,6 +2836,82 @@ proof * ast_manager::mk_th_lemma(
return mk_app(m_basic_family_id, PR_TH_LEMMA, num_params+1, parameters.c_ptr(), args.size(), args.c_ptr());
}
proof* ast_manager::mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,
svector<std::pair<unsigned, unsigned> > const& positions,
vector<expr_ref_vector> const& substs) {
ptr_vector<expr> fmls;
SASSERT(positions.size() + 1 == substs.size());
for (unsigned i = 0; i < num_premises; ++i) {
TRACE("dl", tout << mk_pp(premises[i], *this) << "\n";);
fmls.push_back(get_fact(premises[i]));
}
SASSERT(is_bool(concl));
vector<parameter> params;
for (unsigned i = 0; i < substs.size(); ++i) {
expr_ref_vector const& vec = substs[i];
for (unsigned j = 0; j < vec.size(); ++j) {
params.push_back(parameter(vec[j]));
}
if (i + 1 < substs.size()) {
params.push_back(parameter(positions[i].first));
params.push_back(parameter(positions[i].second));
}
}
ptr_vector<sort> sorts;
ptr_vector<expr> args;
for (unsigned i = 0; i < num_premises; ++i) {
sorts.push_back(mk_proof_sort());
args.push_back(premises[i]);
}
sorts.push_back(mk_bool_sort());
args.push_back(concl);
app* result = mk_app(m_basic_family_id, PR_HYPER_RESOLVE, params.size(), params.c_ptr(), args.size(), args.c_ptr());
SASSERT(result->get_family_id() == m_basic_family_id);
SASSERT(result->get_decl_kind() == PR_HYPER_RESOLVE);
return result;
}
bool ast_manager::is_hyper_resolve(
proof* p,
proof_ref_vector& premises,
expr_ref& conclusion,
svector<std::pair<unsigned, unsigned> > & positions,
vector<expr_ref_vector> & substs) {
if (!is_hyper_resolve(p)) {
return false;
}
unsigned sz = p->get_num_args();
SASSERT(sz > 0);
for (unsigned i = 0; i + 1 < sz; ++i) {
premises.push_back(to_app(p->get_arg(i)));
}
conclusion = p->get_arg(sz-1);
func_decl* d = p->get_decl();
unsigned num_p = d->get_num_parameters();
parameter const* params = d->get_parameters();
substs.push_back(expr_ref_vector(*this));
for (unsigned i = 0; i < num_p; ++i) {
if (params[i].is_int()) {
SASSERT(i + 1 < num_p);
SASSERT(params[i+1].is_int());
unsigned x = static_cast<unsigned>(params[i].get_int());
unsigned y = static_cast<unsigned>(params[i+1].get_int());
positions.push_back(std::make_pair(x, y));
substs.push_back(expr_ref_vector(*this));
++i;
}
else {
SASSERT(params[i].is_ast());
ast* a = params[i].get_ast();
SASSERT(is_expr(a));
substs.back().push_back(to_expr(a));
}
}
return true;
}
// -----------------------------------
//

View file

@ -972,7 +972,7 @@ enum basic_op_kind {
PR_HYPOTHESIS, PR_LEMMA, PR_UNIT_RESOLUTION, PR_IFF_TRUE, PR_IFF_FALSE, PR_COMMUTATIVITY, PR_DEF_AXIOM,
PR_DEF_INTRO, PR_APPLY_DEF, PR_IFF_OEQ, PR_NNF_POS, PR_NNF_NEG, PR_NNF_STAR, PR_SKOLEMIZE, PR_CNF_STAR,
PR_MODUS_PONENS_OEQ, PR_TH_LEMMA, LAST_BASIC_PR
PR_MODUS_PONENS_OEQ, PR_TH_LEMMA, PR_HYPER_RESOLVE, LAST_BASIC_PR
};
class basic_decl_plugin : public decl_plugin {
@ -1034,6 +1034,7 @@ protected:
ptr_vector<func_decl> m_cnf_star_decls;
ptr_vector<func_decl> m_th_lemma_decls;
func_decl * m_hyper_res_decl0;
static bool is_proof(decl_kind k) { return k > LAST_BASIC_OP; }
bool check_proof_sorts(basic_op_kind k, unsigned arity, sort * const * domain) const;
@ -1928,6 +1929,11 @@ public:
bool is_proof(expr const * n) const { return is_app(n) && to_app(n)->get_decl()->get_range() == m_proof_sort; }
proof* mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,
svector<std::pair<unsigned, unsigned> > const& positions,
vector<ref_vector<expr, ast_manager> > const& substs);
bool is_undef_proof(expr const * e) const { return e == m_undef_proof; }
bool is_asserted(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_ASSERTED); }
bool is_goal(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_GOAL); }
@ -1947,6 +1953,12 @@ public:
bool is_lemma(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_LEMMA); }
bool is_quant_inst(expr const* e, expr*& not_q_or_i, ptr_vector<expr>& binding) const;
bool is_rewrite(expr const* e, expr*& r1, expr*& r2) const;
bool is_hyper_resolve(proof* p) const { return is_app_of(p, m_basic_family_id, PR_HYPER_RESOLVE); }
bool is_hyper_resolve(proof* p,
ref_vector<proof, ast_manager>& premises,
obj_ref<expr, ast_manager>& conclusion,
svector<std::pair<unsigned, unsigned> > & positions,
vector<ref_vector<expr, ast_manager> >& substs);
bool is_def_intro(expr const * e) const { return is_app_of(e, m_basic_family_id, PR_DEF_INTRO); }

View file

@ -97,9 +97,9 @@ namespace datalog {
return check_linear();
}
else {
check_nonlinear();
IF_VERBOSE(1, verbose_stream() << "non-linear BMC is not supported\n";);
return l_undef;
return check_nonlinear();
}
}
@ -179,7 +179,7 @@ namespace datalog {
substs.push_back(sub1);
substs.push_back(sub);
pr = util.mk_hyper_resolve(2, premises, concl, positions, substs);
pr = m.mk_hyper_resolve(2, premises, concl, positions, substs);
r0 = r1;
}
else {
@ -191,7 +191,7 @@ namespace datalog {
}
else {
substs.push_back(sub);
pr = util.mk_hyper_resolve(1, &p, concl, positions, substs);
pr = m.mk_hyper_resolve(1, &p, concl, positions, substs);
}
r0 = r2;
}
@ -465,7 +465,7 @@ namespace datalog {
path_arg = path_var.get();
}
else {
path_arg = m.mk_app(succs[j-1], path_var.get());
path_arg = m.mk_app(succs[j], path_var.get());
}
for (unsigned k = 0; k < q->get_arity(); ++k) {
expr* arg = r.get_tail(j)->get_arg(k);
@ -496,7 +496,7 @@ namespace datalog {
path_arg = path_var.get();
}
else {
path_arg = m.mk_app(succs[j-1], path_var.get());
path_arg = m.mk_app(succs[j], path_var.get());
}
func_decl* q = r.get_decl(j);
for (unsigned k = 0; k < q->get_arity(); ++k) {
@ -512,7 +512,6 @@ namespace datalog {
conjs.push_back(tmp);
}
bool_rewriter(m).mk_and(conjs.size(), conjs.c_ptr(), rule_body);
expr* rule_pred = m.mk_app(rule_pred_i, trace_arg.get(), path_var.get());
ptr_vector<sort> q_sorts;
vector<symbol> names;
for (unsigned i = 0; i < vars.size(); ++i) {
@ -526,23 +525,22 @@ namespace datalog {
SASSERT(vars.size() == names.size());
symbol qid = r.name(), skid;
patterns.reset();
patterns.push_back(m.mk_pattern(to_app(rule_pred)));
//patterns.reset();
//patterns.push_back(m.mk_pattern(to_app(rule_pred)));
//
//fml = m.mk_implies(rule_pred, rule_body);
//fml = m.mk_forall(vars.size(), q_sorts.c_ptr(), names.c_ptr(), fml, 1, qid, skid, 1, patterns.c_ptr());
//assert_expr(fml);
expr_ref fml(m);
fml = m.mk_implies(rule_pred, rule_body);
fml = m.mk_forall(vars.size(), q_sorts.c_ptr(), names.c_ptr(), fml, 1, qid, skid, 1, patterns.c_ptr());
std::cout << mk_pp(fml, m) << "\n";
tmp = m.mk_app(mk_predicate(p), trace_arg.get(), path_var.get());
patterns.reset();
patterns.push_back(m.mk_pattern(to_app(tmp)));
fml = m.mk_implies(tmp, rule_body);
fml = m.mk_forall(vars.size(), sorts.c_ptr(), names.c_ptr(), fml, 1, qid, skid, 1, patterns.c_ptr());
assert_expr(fml);
}
bool_rewriter(m).mk_or(rules.size(), rules.c_ptr(), tmp);
symbol names[2] = { symbol("Trace"), symbol("Path") };
symbol qid = p->get_name(), skid;
patterns.reset();
patterns.push_back(m.mk_pattern(to_app(pred)));
expr_ref fml(m);
fml = m.mk_implies(pred, tmp);
fml = m.mk_forall(2, sorts, names, fml, 1, qid, skid, 1, patterns.c_ptr());
assert_expr(fml);
}
}
@ -640,14 +638,19 @@ namespace datalog {
lbool bmc::check_query() {
sort* trace_sort = m_pred2sort.find(m_query_pred);
func_decl_ref q = mk_predicate(m_query_pred);
assert_expr(m.mk_app(q, m.mk_const(symbol("trace"), trace_sort), m.mk_const(symbol("path"),m_path_sort)));
expr_ref trace(m), path(m);
trace = m.mk_const(symbol("trace"), trace_sort);
path = m.mk_const(symbol("path"),m_path_sort);
assert_expr(m.mk_app(q, trace, path));
lbool is_sat = m_solver.check();
if (is_sat == l_undef) {
model_ref md;
proof_ref pr(m);
m_solver.get_model(md);
IF_VERBOSE(2, model_smt2_pp(verbose_stream(), m, *md, 0););
md->eval(trace, trace);
IF_VERBOSE(2, verbose_stream() << mk_pp(trace, m) << "\n";);
IF_VERBOSE(2, m_solver.display(verbose_stream()););
}
return is_sat;
}

View file

@ -48,6 +48,7 @@ namespace datalog {
table_base const* check_table_plugin::tocheck(table_base const* r) { return r?(get(*r).m_tocheck):0; }
table_base * check_table_plugin::mk_empty(const table_signature & s) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
table_base* checker = m_checker.mk_empty(s);
table_base* tocheck = m_tocheck.mk_empty(s);
return alloc(check_table, *this, s, tocheck, checker);
@ -65,9 +66,11 @@ namespace datalog {
}
virtual table_base* operator()(const table_base & t1, const table_base & t2) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
table_base* ttocheck = (*m_tocheck)(tocheck(t1), tocheck(t2));
table_base* tchecker = (*m_checker)(checker(t1), checker(t2));
return alloc(check_table, get(t1).get_plugin(), ttocheck->get_signature(), ttocheck, tchecker);
check_table* result = alloc(check_table, get(t1).get_plugin(), ttocheck->get_signature(), ttocheck, tchecker);
return result;
}
};
@ -89,9 +92,10 @@ namespace datalog {
}
virtual void operator()(table_base& tgt, const table_base& src, table_base* delta) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
(*m_tocheck)(tocheck(tgt), tocheck(src), tocheck(delta));
(*m_checker)(checker(tgt), checker(src), checker(delta));
SASSERT(get(tgt).well_formed());
get(tgt).well_formed();
}
};
@ -113,9 +117,11 @@ namespace datalog {
}
table_base* operator()(table_base const& src) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
table_base* tchecker = (*m_checker)(checker(src));
table_base* ttocheck = (*m_tocheck)(tocheck(src));
return alloc(check_table, get(src).get_plugin(), tchecker->get_signature(), ttocheck, tchecker);
check_table* result = alloc(check_table, get(src).get_plugin(), tchecker->get_signature(), ttocheck, tchecker);
return result;
}
};
@ -136,9 +142,11 @@ namespace datalog {
}
table_base* operator()(table_base const& src) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
table_base* tchecker = (*m_checker)(checker(src));
table_base* ttocheck = (*m_tocheck)(tocheck(src));
return alloc(check_table, get(src).get_plugin(), ttocheck->get_signature(), ttocheck, tchecker);
check_table* result = alloc(check_table, get(src).get_plugin(), ttocheck->get_signature(), ttocheck, tchecker);
return result;
}
};
@ -162,7 +170,7 @@ namespace datalog {
void operator()(table_base & t) {
(*m_checker)(checker(t));
(*m_tocheck)(tocheck(t));
SASSERT(get(t).well_formed());
get(t).well_formed();
}
};
@ -187,7 +195,7 @@ namespace datalog {
virtual void operator()(table_base& src) {
(*m_checker)(checker(src));
(*m_tocheck)(tocheck(src));
SASSERT(get(src).well_formed());
get(src).well_formed();
}
};
@ -211,7 +219,7 @@ namespace datalog {
virtual void operator()(table_base& src) {
(*m_checker)(checker(src));
(*m_tocheck)(tocheck(src));
SASSERT(get(src).well_formed());
get(src).well_formed();
}
};
@ -236,9 +244,10 @@ namespace datalog {
}
virtual void operator()(table_base& src, table_base const& negated_obj) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
(*m_checker)(checker(src), checker(negated_obj));
(*m_tocheck)(tocheck(src), tocheck(negated_obj));
SASSERT(get(src).well_formed());
get(src).well_formed();
}
};
@ -258,14 +267,14 @@ namespace datalog {
check_table::check_table(check_table_plugin & p, const table_signature & sig):
table_base(p, sig) {
SASSERT(well_formed());
(well_formed());
}
check_table::check_table(check_table_plugin & p, const table_signature & sig, table_base* tocheck, table_base* checker):
table_base(p, sig),
m_checker(checker),
m_tocheck(tocheck) {
SASSERT(well_formed());
well_formed();
}
check_table::~check_table() {
@ -274,6 +283,10 @@ namespace datalog {
}
bool check_table::well_formed() const {
get_plugin().m_count++;
if (get_plugin().m_count == 497) {
std::cout << "here\n";
}
iterator it = m_tocheck->begin(), end = m_tocheck->end();
for (; it != end; ++it) {
table_fact fact;
@ -281,7 +294,9 @@ namespace datalog {
if (!m_checker->contains_fact(fact)) {
m_tocheck->display(verbose_stream());
m_checker->display(verbose_stream());
verbose_stream() << get_plugin().m_count << "\n";
UNREACHABLE();
fatal_error(0);
return false;
}
}
@ -292,7 +307,9 @@ namespace datalog {
if (!m_tocheck->contains_fact(fact)) {
m_tocheck->display(verbose_stream());
m_checker->display(verbose_stream());
verbose_stream() << get_plugin().m_count << "\n";
UNREACHABLE();
fatal_error(0);
return false;
}
}
@ -300,20 +317,28 @@ namespace datalog {
}
bool check_table::empty() const {
if (m_tocheck->empty() != m_checker->empty()) {
m_tocheck->display(verbose_stream());
m_checker->display(verbose_stream());
verbose_stream() << get_plugin().m_count << "\n";
fatal_error(0);
}
return m_tocheck->empty();
}
void check_table::add_fact(const table_fact & f) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
m_tocheck->add_fact(f);
m_checker->add_fact(f);
SASSERT(well_formed());
well_formed();
}
void check_table::remove_fact(const table_element* f) {
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
m_tocheck->remove_fact(f);
m_checker->remove_fact(f);
SASSERT(well_formed());
well_formed();
}
bool check_table::contains_fact(const table_fact & f) const {
@ -321,11 +346,14 @@ namespace datalog {
}
table_base * check_table::clone() const {
return alloc(check_table, get_plugin(), get_signature(), m_tocheck->clone(), m_checker->clone());
IF_VERBOSE(1, verbose_stream() << __FUNCTION__ << "\n";);
check_table* result = alloc(check_table, get_plugin(), get_signature(), m_tocheck->clone(), m_checker->clone());
return result;
}
table_base * check_table::complement(func_decl* p) const {
return alloc(check_table, get_plugin(), get_signature(), m_tocheck->complement(p), m_checker->complement(p));
check_table* result = alloc(check_table, get_plugin(), get_signature(), m_tocheck->complement(p), m_checker->complement(p));
return result;
}
};

View file

@ -32,6 +32,7 @@ namespace datalog {
friend class check_table;
table_plugin& m_checker;
table_plugin& m_tocheck;
unsigned m_count;
protected:
class join_fn;
class union_fn;
@ -47,7 +48,7 @@ namespace datalog {
check_table_plugin(relation_manager & manager, symbol const& checker, symbol const& tocheck)
: table_plugin(symbol("check"), manager),
m_checker(*manager.get_table_plugin(checker)),
m_tocheck(*manager.get_table_plugin(tocheck)) {}
m_tocheck(*manager.get_table_plugin(tocheck)), m_count(0) {}
virtual table_base * mk_empty(const table_signature & s);

View file

@ -54,6 +54,7 @@ Revision History:
#include"expr_functors.h"
#include"dl_mk_partial_equiv.h"
#include"dl_mk_bit_blast.h"
#include"datatype_decl_plugin.h"
namespace datalog {
@ -1118,10 +1119,11 @@ namespace datalog {
class context::engine_type_proc {
ast_manager& m;
arith_util a;
datatype_util dt;
DL_ENGINE m_engine;
public:
engine_type_proc(ast_manager& m): m(m), a(m), m_engine(DATALOG_ENGINE) {}
engine_type_proc(ast_manager& m): m(m), a(m), dt(m), m_engine(DATALOG_ENGINE) {}
DL_ENGINE get_engine() const { return m_engine; }
void operator()(expr* e) {
@ -1134,6 +1136,9 @@ namespace datalog {
else if (is_var(e) && m.is_bool(e)) {
m_engine = PDR_ENGINE;
}
else if (dt.is_datatype(m.get_sort(e))) {
m_engine = PDR_ENGINE;
}
}
};
@ -1209,9 +1214,8 @@ namespace datalog {
lbool context::pdr_query(expr* query) {
ensure_pdr();
lbool result = m_pdr->query(query);
m_last_answer = m_pdr->get_answer();
return result;
m_last_answer = 0;
return m_pdr->query(query);
}
void context::ensure_bmc() {
@ -1222,9 +1226,8 @@ namespace datalog {
lbool context::bmc_query(expr* query) {
ensure_bmc();
lbool result = m_bmc->query(query);
m_last_answer = m_bmc->get_answer();
return result;
m_last_answer = 0;
return m_bmc->query(query);
}
#define BEGIN_QUERY() \
@ -1437,6 +1440,23 @@ namespace datalog {
}
expr* context::get_answer_as_formula() {
if (m_last_answer) {
return m_last_answer.get();
}
switch(get_engine()) {
case PDR_ENGINE:
case QPDR_ENGINE:
ensure_pdr();
m_last_answer = m_pdr->get_answer();
return m_last_answer.get();
case BMC_ENGINE:
ensure_bmc();
m_last_answer = m_bmc->get_answer();
return m_last_answer.get();
default:
UNREACHABLE();
}
m_last_answer = m.mk_false();
return m_last_answer.get();
}

View file

@ -489,12 +489,6 @@ namespace datalog {
return m_manager->mk_func_decl(m_clone_sym, 1, &s, s, info);
}
func_decl * dl_decl_plugin::mk_hyper_res(unsigned num_params, parameter const* params, unsigned arity, sort *const* domain) {
ast_manager& m = *m_manager;
func_decl_info info(m_family_id, OP_DL_HYPER_RESOLVE, num_params, params);
return m_manager->mk_func_decl(m_hyper_resolve_sym, arity, domain, m_manager->mk_proof_sort(), info);
}
func_decl * dl_decl_plugin::mk_func_decl(
decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range) {
@ -606,10 +600,6 @@ namespace datalog {
result = mk_compare(OP_DL_LT, m_lt_sym, domain);
break;
case OP_DL_HYPER_RESOLVE:
result = mk_hyper_res(num_parameters, parameters, arity, domain);
break;
default:
m_manager->raise_exception("operator not recognized");
return 0;
@ -752,80 +742,4 @@ namespace datalog {
return m.mk_app(f, num_args, args);
}
proof* dl_decl_util::mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,
svector<std::pair<unsigned, unsigned> > const& positions,
vector<expr_ref_vector> const& substs) {
ptr_vector<expr> fmls;
SASSERT(positions.size() + 1 == substs.size());
for (unsigned i = 0; i < num_premises; ++i) {
TRACE("dl", tout << mk_pp(premises[i], m) << "\n";);
fmls.push_back(m.get_fact(premises[i]));
}
SASSERT(m.is_bool(concl));
vector<parameter> params;
for (unsigned i = 0; i < substs.size(); ++i) {
expr_ref_vector const& vec = substs[i];
for (unsigned j = 0; j < vec.size(); ++j) {
params.push_back(parameter(vec[j]));
}
if (i + 1 < substs.size()) {
params.push_back(parameter(positions[i].first));
params.push_back(parameter(positions[i].second));
}
}
ptr_vector<sort> sorts;
ptr_vector<expr> args;
for (unsigned i = 0; i < num_premises; ++i) {
sorts.push_back(m.mk_proof_sort());
args.push_back(premises[i]);
}
sorts.push_back(m.mk_bool_sort());
args.push_back(concl);
app* result = m.mk_app(m_fid, OP_DL_HYPER_RESOLVE, params.size(), params.c_ptr(), args.size(), args.c_ptr());
SASSERT(result->get_family_id() == m_fid);
SASSERT(result->get_decl_kind() == OP_DL_HYPER_RESOLVE);
return result;
}
bool dl_decl_util::is_hyper_resolve(
proof* p,
proof_ref_vector& premises,
expr_ref& conclusion,
svector<std::pair<unsigned, unsigned> > & positions,
vector<expr_ref_vector> & substs) const {
if (!is_hyper_resolve(p)) {
return false;
}
unsigned sz = p->get_num_args();
SASSERT(sz > 0);
for (unsigned i = 0; i + 1 < sz; ++i) {
premises.push_back(to_app(p->get_arg(i)));
}
conclusion = p->get_arg(sz-1);
func_decl* d = p->get_decl();
unsigned num_p = d->get_num_parameters();
parameter const* params = d->get_parameters();
substs.push_back(expr_ref_vector(m));
for (unsigned i = 0; i < num_p; ++i) {
if (params[i].is_int()) {
SASSERT(i + 1 < num_p);
SASSERT(params[i+1].is_int());
unsigned x = static_cast<unsigned>(params[i].get_int());
unsigned y = static_cast<unsigned>(params[i+1].get_int());
positions.push_back(std::make_pair(x, y));
substs.push_back(expr_ref_vector(m));
++i;
}
else {
SASSERT(params[i].is_ast());
ast* a = params[i].get_ast();
SASSERT(is_expr(a));
substs.back().push_back(to_expr(a));
}
}
return true;
}
};

View file

@ -48,7 +48,6 @@ namespace datalog {
OP_RA_CLONE,
OP_DL_CONSTANT,
OP_DL_LT,
OP_DL_HYPER_RESOLVE,
LAST_RA_OP
};
@ -211,48 +210,6 @@ namespace datalog {
family_id get_family_id() const { return m_fid; }
/**
\brief Hyper-resolution rule that works for Horn clauses (implication)
Somewhat related to unit resolution and resolution rule from SPC, but
a general sledgehammer rule.
The clause/implication from the first premise is the main clause.
One of the literals in each of the other premises is resolved with the main clause.
The facts in the premises are closed formulas. Substitutions required for unification
are passed in.
positions is a vector of pairs of positions in the main clause and the side clause.
For clauses that are disjunctions the positions are indexed from 0 starting with the first
literal.
We use the following (Prolog style) convention for Horn implications:
The head of a Horn implication is position 0,
the first conjunct in the body of an implication is position 1
the second conjunct in the body of an implication is position 2
For general implications where the head is a disjunction, the
first n positions correspond to the n disjuncts in the head.
The next m positions correspond to the m conjuncts in the body.
*/
proof* mk_hyper_resolve(unsigned num_premises, proof* const* premises, expr* concl,
svector<std::pair<unsigned, unsigned> > const& positions,
vector<expr_ref_vector> const& substs);
bool is_hyper_resolve(proof* p) const { return is_app_of(p, m_fid, OP_DL_HYPER_RESOLVE); }
/**
\brief extract components of a hyper-resolution proof rule.
*/
bool is_hyper_resolve(proof* p,
proof_ref_vector& premises,
expr_ref& conclusion,
svector<std::pair<unsigned, unsigned> > & positions,
vector<expr_ref_vector>& substs) const;
};
};

View file

@ -735,7 +735,7 @@ namespace datalog {
}
m_subst.reset();
m_subst.reserve_vars(max_var+1);
m_subst.reserve_offsets(std::max(m_tail_index.get_approx_num_regs(), m_head_index.get_approx_num_regs()));
m_subst.reserve_offsets(std::max(m_tail_index.get_approx_num_regs(), 2+m_head_index.get_approx_num_regs()));
svector<bool> valid;
valid.reset();

View file

@ -181,7 +181,7 @@ namespace datalog {
proof_ref_vector premises0(m);
vector<expr_ref_vector> substs, substs0;
if (!util.is_hyper_resolve(p, premises0, slice_concl, positions, substs0)) {
if (!m.is_hyper_resolve(p, premises0, slice_concl, positions, substs0)) {
return false;
}
unsigned num_args = p->get_num_args();
@ -240,7 +240,7 @@ namespace datalog {
r1 = r3;
}
r1->to_formula(concl);
proof* new_p = util.mk_hyper_resolve(premises.size(), premises.c_ptr(), concl, positions, substs);
proof* new_p = m.mk_hyper_resolve(premises.size(), premises.c_ptr(), concl, positions, substs);
m_pinned_exprs.push_back(new_p);
m_pinned_rules.push_back(r1.get());
m_sliceform2rule.insert(slice_concl, r1.get());

View file

@ -215,7 +215,9 @@ namespace datalog {
col2 = m_cycle[0];
swap2(n, col1, col2);
}
return alloc(skip_table, s.get_plugin(), get_result_signature(), n);
skip_table* res = alloc(skip_table, s.get_plugin(), get_result_signature(), n);
TRACE("skip",res->display(tout););
return res;
}
};

View file

@ -605,6 +605,12 @@ namespace datalog {
body.push_back(r.get_tail(i));
}
}
TRACE("dl_dr",
tout << r.get_decl()->get_name() << "\n";
for (unsigned i = 0; i < body.size(); ++i) {
tout << mk_pp(body[i].get(), m) << "\n";
});
mc->insert(r.get_head(), body.size(), body.c_ptr());
}
}
@ -634,7 +640,7 @@ namespace datalog {
tout << premises[0]->get_id() << " " << mk_pp(premises[0].get(), m) << "\n";
tout << premises[1]->get_id() << " " << mk_pp(premises[1].get(), m) << "\n";);
pr = util.mk_hyper_resolve(2, premises.c_ptr(), fml3, positions, substs);
pr = m.mk_hyper_resolve(2, premises.c_ptr(), fml3, positions, substs);
pc->insert(pr);
}

View file

@ -284,6 +284,30 @@ void goal::display_with_dependencies(cmd_context & ctx, std::ostream & out) cons
out << "\n :precision " << prec() << " :depth " << depth() << ")" << std::endl;
}
void goal::display_with_dependencies(std::ostream & out) const {
ptr_vector<expr> deps;
out << "(goal";
unsigned sz = size();
for (unsigned i = 0; i < sz; i++) {
out << "\n |-";
deps.reset();
m().linearize(dep(i), deps);
ptr_vector<expr>::iterator it = deps.begin();
ptr_vector<expr>::iterator end = deps.end();
for (; it != end; ++it) {
expr * d = *it;
if (is_uninterp_const(d)) {
out << " " << mk_ismt2_pp(d, m());
}
else {
out << " #" << d->get_id();
}
}
out << "\n " << mk_ismt2_pp(form(i), m(), 2);
}
out << "\n :precision " << prec() << " :depth " << depth() << ")" << std::endl;
}
void goal::display(cmd_context & ctx) const {
display(ctx, ctx.regular_stream());
}
@ -473,7 +497,7 @@ void goal::elim_redundancies() {
proof * prs[2] = { pr(get_idx(atom)), pr(i) };
p = m().mk_unit_resolution(2, prs);
}
expr_dependency * d = 0;
expr_dependency_ref d(m());
if (unsat_core_enabled())
d = m().mk_join(dep(get_idx(atom)), dep(i));
push_back(m().mk_false(), p, d);
@ -490,7 +514,7 @@ void goal::elim_redundancies() {
proof * prs[2] = { pr(get_not_idx(f)), pr(i) };
p = m().mk_unit_resolution(2, prs);
}
expr_dependency * d = 0;
expr_dependency_ref d(m());
if (unsat_core_enabled())
d = m().mk_join(dep(get_not_idx(f)), dep(i));
push_back(m().mk_false(), p, d);

View file

@ -180,6 +180,7 @@ public:
void display_dimacs(std::ostream & out) const;
void display_with_dependencies(cmd_context & ctx, std::ostream & out) const;
void display_with_dependencies(cmd_context & ctx) const;
void display_with_dependencies(std::ostream & out) const;
bool sat_preserved() const {
return prec() == PRECISE || prec() == UNDER;

View file

@ -23,6 +23,7 @@ Revision History:
#include "ast_pp.h"
#include "model_smt2_pp.h"
#include "bool_rewriter.h"
#include "th_rewriter.h"
void horn_subsume_model_converter::insert(app* head, expr* body) {
func_decl_ref pred(m);
@ -174,19 +175,49 @@ bool horn_subsume_model_converter::mk_horn(
}
}
void horn_subsume_model_converter::add_default_proc::operator()(app* n) {
//
// predicates that have not been assigned values
// in the Horn model are assumed false.
//
if (m.is_bool(n) &&
!m_md->has_interpretation(n->get_decl()) &&
(n->get_family_id() == null_family_id)) {
TRACE("dl_mc", tout << "adding: " << n->get_decl()->get_name() << "\n";);
if (n->get_decl()->get_arity() == 0) {
m_md->register_decl(n->get_decl(), m.mk_false());
}
else {
func_interp* fi = alloc(func_interp, m, n->get_decl()->get_arity());
fi->set_else(m.mk_false());
m_md->register_decl(n->get_decl(), fi);
}
}
}
void horn_subsume_model_converter::add_default_false_interpretation(expr* e, model_ref& md) {
add_default_proc proc(m, md);
for_each_expr(proc, e);
}
void horn_subsume_model_converter::operator()(model_ref& mr) {
TRACE("dl_mc", model_smt2_pp(tout, m, *mr, 0););
for (unsigned i = m_funcs.size(); i > 0; ) {
--i;
func_decl* h = m_funcs[i].get();
expr_ref body(m_bodies[i].get(), m);
unsigned arity = h->get_arity();
add_default_false_interpretation(body, mr);
TRACE("dl_mc", tout << "eval: " << h->get_name() << "\n" << mk_pp(body, m) << "\n";);
expr_ref tmp(body);
mr->eval(tmp, body);
TRACE("dl", tout << "eval: " << mk_pp(tmp, m) << "\nto:\n" << mk_pp(body, m) << "\n";);
TRACE("dl", model_smt2_pp(tout, m, *mr, 0););
th_rewriter rw(m);
rw(body);
TRACE("dl_mc", tout << "to:\n" << mk_pp(body, m) << "\n";);
if (arity == 0) {
expr* e = mr->get_const_interp(h);
if (e) {

View file

@ -42,6 +42,16 @@ class horn_subsume_model_converter : public model_converter {
func_decl_ref_vector m_funcs;
expr_ref_vector m_bodies;
void add_default_false_interpretation(expr* e, model_ref& md);
struct add_default_proc {
ast_manager& m;
model_ref& m_md;
add_default_proc(ast_manager& m, model_ref& md): m(m), m_md(md) {}
void operator()(app* n);
void operator()(expr* n) {}
};
public:
horn_subsume_model_converter(ast_manager& m): m(m), m_funcs(m), m_bodies(m) {}

View file

@ -255,6 +255,7 @@ void imdd_manager::mark_as_dead(imdd * d) {
void imdd_manager::deallocate_imdd(imdd * d) {
SASSERT(d->is_dead());
memset(d, 0, sizeof(*d));
m_alloc.deallocate(sizeof(imdd), d);
}
@ -724,7 +725,7 @@ imdd * imdd_manager::mk_union_core(imdd * d1, imdd * d2, bool destructive, bool
if (head1 < head2) {
it1.move_to(head2);
head1 = it1 != end1 ? it1->begin_key() : UINT_MAX;
head1 = it1 != end1 ? (it1->begin_key() < head2?head2:it1->begin_key()): UINT_MAX;
}
else if (head1 > head2) {
copy_upto(head2, it2, end2, head1, to_insert);
@ -1635,7 +1636,8 @@ imdd* imdd_manager::filter_identical_loop3(imdd * d, unsigned v1, bool del1, uns
}
void imdd_manager::merge_intervals(svector<interval>& dst, svector<interval> const& src) {
svector<interval> tmp;
svector<interval>& tmp = m_i_nodes_tmp;
tmp.reset();
// invariant: intervals are sorted.
for (unsigned i = 0, j = 0; i < src.size() || j < dst.size();) {
SASSERT(!(i + 1 < src.size()) || src[i].m_hi < src[i+1].m_lo);
@ -1685,8 +1687,8 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
// For each level up to 'v' create a list of nodes visited
// insert to a map the set of intervals that visit the node.
//
filter_id_map nodes;
filter_id_map::obj_map_entry* e;
m_nodes.reset();
filter_id_map& nodes = m_nodes;
imdd* d1, *d2, *d3;
vector<ptr_vector<imdd> > levels;
levels.push_back(ptr_vector<imdd>());
@ -1696,24 +1698,23 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
imdd* curr_child;
for (; it != end; ++it) {
curr_child = it->val();
e = nodes.insert_if_not_there2(curr_child, svector<interval>());
if (e->get_data().m_value.empty()) {
svector<interval>& iv = nodes.init(curr_child);
if (iv.empty()) {
levels.back().push_back(curr_child);
}
e->get_data().m_value.push_back(interval(it->begin_key(), it->end_key()));
iv.push_back(interval(it->begin_key(), it->end_key()));
}
for (unsigned j = 0; j+1 < v; ++j) {
levels.push_back(ptr_vector<imdd>());
for (unsigned i = 0; i < levels[j].size(); ++i) {
d1 = levels[j][i];
svector<interval> i_nodes = nodes.find(d1);
svector<interval>& i_nodes = nodes.init(d1);
it = d1->begin_children();
end = d1->end_children();
for(; it != end; ++it) {
imdd* curr_child = it->val();
e = nodes.insert_if_not_there2(curr_child, svector<interval>());
svector<interval>& i_nodes2 = e->get_data().m_value;
svector<interval>& i_nodes2 = nodes.init(curr_child);
if (i_nodes2.empty()) {
levels[j+1].push_back(curr_child);
i_nodes2.append(i_nodes);
@ -1730,7 +1731,7 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
tout << "Level: " << i << "\n";
for (unsigned j = 0; j < levels[i].size(); ++j) {
tout << levels[i][j]->get_id() << " ";
svector<interval> const& i_nodes = nodes.find(levels[i][j]);
svector<interval> const& i_nodes = nodes.init(levels[i][j]);
for (unsigned k = 0; k < i_nodes.size(); ++k) {
tout << i_nodes[k].m_lo << ":" << i_nodes[k].m_hi << " ";
}
@ -1749,15 +1750,16 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
// => del1 & !del2: d |-> [I |-> d'[I:ch]] // intersections of intervals.
//
filter_idd_map nodes_dd;
m_nodes_dd.reset();
filter_idd_map& nodes_dd = m_nodes_dd;
SASSERT(levels.size() == v);
for (unsigned i = 0; i < levels[v-1].size(); ++i) {
d1 = levels[v-1][i];
svector<interval> const & i_nodes = nodes.find(d1);
svector<interval> const & i_nodes = nodes.init(d1);
it = d1->begin_children();
end = d1->end_children();
unsigned j = 0;
svector<interval_dd> i_nodes_dd;
svector<interval_dd>& i_nodes_dd = nodes_dd.init(d1);
while (it != end && j < i_nodes.size()) {
unsigned lo1 = it->begin_key();
unsigned hi1 = it->end_key();
@ -1816,7 +1818,6 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
i_nodes_dd[k].m_dd = d2;
}
}
nodes_dd.insert(d1, i_nodes_dd);
}
TRACE("imdd", print_filter_idd(tout, nodes_dd););
@ -1841,15 +1842,21 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
--i;
for (unsigned j = 0; j < levels[i].size(); ++j) {
d1 = levels[i][j];
svector<interval_dd> i_nodes_dd;
svector<interval> i_nodes = nodes.find(d1);
m_i_nodes_dd.reset();
svector<interval> i_nodes = nodes.init(d1);
svector<interval_dd>& i_nodes_dd = nodes_dd.init(d1);
it = d1->begin_children();
end = d1->end_children();
unsigned_vector offsets;
unsigned num_children = 0;
for( ; it != end; ++it, ++num_children);
m_offsets.reset();
unsigned_vector& offsets = m_offsets;
offsets.resize(num_children);
it = d1->begin_children();
for( ; it != end; ++it) {
curr_child = it->val();
refine_intervals(i_nodes, nodes_dd.find(curr_child));
offsets.push_back(0);
refine_intervals(i_nodes, nodes_dd.init(curr_child));
}
for (unsigned k = 0; k < i_nodes.size(); ++k) {
@ -1858,7 +1865,7 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
it = d1->begin_children();
for(unsigned child_id = 0; it != end; ++it, ++child_id) {
curr_child = it->val();
svector<interval_dd> const& ch_nodes_dd = nodes_dd.find(curr_child);
svector<interval_dd> const& ch_nodes_dd = nodes_dd.init(curr_child);
unsigned offset = offsets[child_id];
TRACE("imdd_verbose", tout << intv.m_lo << ":" << intv.m_hi << "\n";
for (unsigned l = offset; l < ch_nodes_dd.size(); ++l) {
@ -1899,7 +1906,7 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
}
}
TRACE("imdd", tout << d1->get_id() << ": "; print_interval_dd(tout, i_nodes_dd););
nodes_dd.insert(d1, i_nodes_dd);
}
}
@ -1919,11 +1926,14 @@ imdd* imdd_manager::filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bo
it = d->begin_children();
end = d->end_children();
d1 = _mk_empty(d->get_arity()-del1-del2);
svector<interval_dd> i_nodes_dd, i_nodes_tmp;
m_i_nodes_dd.reset();
m_i_nodes_tmp.reset();
svector<interval_dd>& i_nodes_dd = m_i_nodes_dd;
svector<interval_dd>& i_nodes_tmp = m_i_nodes_dd_tmp;
for (; it != end; ++it) {
curr_child = it->val();
i_nodes_tmp.reset();
svector<interval_dd> const& i_nodes_dd1 = nodes_dd.find(curr_child);
svector<interval_dd> const& i_nodes_dd1 = nodes_dd.init(curr_child);
for (unsigned i = 0, j = 0; i < i_nodes_dd.size() || j < i_nodes_dd1.size(); ) {
if (i < i_nodes_dd.size() && j < i_nodes_dd1.size()) {
interval_dd const& iv1 = i_nodes_dd[i];
@ -1986,9 +1996,9 @@ void imdd_manager::print_interval_dd(std::ostream& out, svector<interval_dd> con
void imdd_manager::print_filter_idd(std::ostream& out, filter_idd_map const& m) {
filter_idd_map::iterator it = m.begin(), end = m.end();
for (; it != end; ++it) {
out << it->m_key->get_id() << ": ";
print_interval_dd(out, it->m_value);
for (unsigned i = 0; it != end; ++it, ++i) {
out << i << ": ";
print_interval_dd(out, *it);
}
}
@ -1999,12 +2009,16 @@ void imdd_manager::print_filter_idd(std::ostream& out, filter_idd_map const& m)
*/
void imdd_manager::refine_intervals(svector<interval>& i_nodes, svector<interval_dd> const& i_nodes_dd) {
svector<interval> result;
for (unsigned i = 0, j = 0; i < i_nodes.size(); ++i) {
result.push_back(i_nodes[i]);
unsigned lo = result.back().m_lo;
unsigned hi = result.back().m_hi;
for (; j < i_nodes_dd.size(); ++j) {
m_i_nodes.reset();
svector<interval>& result = m_i_nodes;
unsigned sz1 = i_nodes.size();
unsigned sz2 = i_nodes_dd.size();
for (unsigned i = 0, j = 0; i < sz1; ++i) {
interval& iv = i_nodes[i];
result.push_back(iv);
unsigned lo = iv.m_lo;
unsigned hi = iv.m_hi;
for (; j < sz2; ++j) {
unsigned lo1 = i_nodes_dd[j].m_lo;
unsigned hi1 = i_nodes_dd[j].m_hi;
SASSERT(lo <= hi);
@ -2402,6 +2416,7 @@ void imdd_manager::mk_swap_acc1_dupdt(imdd_ref & d, unsigned lower, unsigned upp
if (lower <= upper) {
add_child(d, lower, upper, grandchild);
}
TRACE("mk_swap_bug", tout << "after mk_swap_acc1_dupt\n" << mk_ll_pp(d, *this) << "\n";);
}
void imdd_manager::mk_swap_acc1(imdd * d, imdd_ref & r, unsigned lower, unsigned upper, imdd * grandchild, bool memoize_res) {
@ -2437,6 +2452,7 @@ void imdd_manager::mk_swap_acc1(imdd * d, imdd_ref & r, unsigned lower, unsigned
if (lower <= upper) {
add_child(r, lower, upper, grandchild);
}
TRACE("mk_swap_bug", tout << "after mk_swap_acc1\n" << mk_ll_pp(r, *this) << "\n";);
}
/**
@ -2456,6 +2472,7 @@ void imdd_manager::mk_swap_acc2(imdd_ref & r, unsigned lower1, unsigned upper1,
imdd_children::ext_iterator it;
imdd_children::ext_iterator end;
r->m_children.move_geq(it, lower1);
SASSERT(m_swap_new_child == 0);
while(it != end && lower1 <= upper1) {
imdd_children::entry const & curr_entry = *it;
@ -2463,6 +2480,7 @@ void imdd_manager::mk_swap_acc2(imdd_ref & r, unsigned lower1, unsigned upper1,
unsigned curr_entry_end_key = curr_entry.end_key();
imdd * curr_entry_val = curr_entry.val();
bool move_head = true;
TRACE("mk_swap_bug", tout << lower1 << " " << upper1 << " " << curr_entry_begin_key << "\n";);
if (upper1 < curr_entry_begin_key)
break;
if (lower1 < curr_entry_begin_key) {
@ -2509,6 +2527,10 @@ void imdd_manager::mk_swap_acc2(imdd_ref & r, unsigned lower1, unsigned upper1,
imdd * new_child = mk_swap_new_child(lower2, upper2, grandchild);
add_child(r, lower1, upper1, new_child);
}
if (m_swap_new_child != 0) {
dec_ref(m_swap_new_child);
m_swap_new_child = 0;
}
TRACE("mk_swap_bug", tout << "after mk_swap_acc2\n" << mk_ll_pp(r, *this) << "\n";);
}
@ -2562,10 +2584,7 @@ void imdd_manager::mk_swap_top_vars(imdd * d, imdd_ref & r, bool memoize_res) {
imdd * grandchild = it2->val();
mk_swap_acc2(r, it2->begin_key(), it2->end_key(), it->begin_key(), it->end_key(), grandchild, memoize_res);
}
if (m_swap_new_child != 0) {
dec_ref(m_swap_new_child);
m_swap_new_child = 0;
}
SASSERT(m_swap_new_child == 0);
}
if (memoize_res && m_swap_granchildren_memoized) {

View file

@ -394,8 +394,87 @@ class imdd_manager {
imdd* m_dd;
interval_dd(unsigned lo, unsigned hi, imdd* d): interval(lo, hi), m_dd(d) {}
};
typedef obj_map<imdd, svector<interval> > filter_id_map;
typedef obj_map<imdd, svector<interval_dd> > filter_idd_map;
template<typename I>
class id_map {
unsigned m_T;
unsigned_vector m_Ts;
svector<svector<I>*> m_vecs;
unsigned_vector m_alloc;
unsigned m_first_free;
void hard_reset() {
std::for_each(m_vecs.begin(), m_vecs.end(), delete_proc<svector<I> >());
m_alloc.reset();
m_first_free = 0;
m_vecs.reset();
m_Ts.reset();
m_T = 0;
}
void allocate_entry(unsigned id) {
if (m_vecs[id]) {
return;
}
while (m_first_free < m_alloc.size()) {
if (m_vecs[m_first_free] && m_Ts[m_first_free] < m_T) {
svector<I>* v = m_vecs[m_first_free];
m_vecs[m_first_free] = 0;
m_vecs[id] = v;
++m_first_free;
return;
}
++m_first_free;
}
m_vecs[id] = alloc(svector<I>);
m_alloc.push_back(id);
}
public:
id_map():m_T(0) {}
~id_map() { hard_reset(); }
void reset() { ++m_T; m_first_free = 0; if (m_T == UINT_MAX) hard_reset(); }
svector<I>& init(imdd* d) {
unsigned id = d->get_id();
if (id >= m_vecs.size()) {
m_vecs.resize(id+1);
m_Ts.resize(id+1);
}
if (m_Ts[id] < m_T) {
allocate_entry(id);
m_vecs[id]->reset();
m_Ts[id] = m_T;
}
return *m_vecs[id];
}
typedef svector<I> data;
struct iterator {
unsigned m_offset;
id_map const& m;
iterator(unsigned o, id_map const& m):m_offset(o),m(m) {}
data const & operator*() const { return *m.m_vecs[m_offset]; }
data const * operator->() const { return &(operator*()); }
data * operator->() { return &(operator*()); }
iterator & operator++() { ++m_offset; return move_to_used(); }
iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; }
bool operator==(iterator const & it) const { return m_offset == it.m_offset; }
bool operator!=(iterator const & it) const { return m_offset != it.m_offset; }
iterator & move_to_used() {
while (m_offset < m.m_vecs.size() &&
m.m_Ts[m_offset] < m.m_T) {
++m_offset;
}
return *this;
}
};
iterator begin() const { return iterator(0, *this).move_to_used(); }
iterator end() const { return iterator(m_vecs.size(), *this); }
};
typedef id_map<interval > filter_id_map;
typedef id_map<interval_dd > filter_idd_map;
filter_id_map m_nodes;
filter_idd_map m_nodes_dd;
svector<interval_dd> m_i_nodes_dd, m_i_nodes_dd_tmp;
svector<interval> m_i_nodes, m_i_nodes_tmp;
unsigned_vector m_offsets;
void filter_identical_main3(imdd * d, imdd_ref& r, unsigned num_vars, unsigned * vars, bool destructive, bool memoize_res);
void filter_identical_main3(imdd * d, imdd_ref& r, unsigned v1, bool del1, unsigned v2, bool del2, bool memoize_res);
imdd* filter_identical_loop3(imdd * d, unsigned v1, bool del1, unsigned v2, bool del2, bool memoize_res);

View file

@ -1093,7 +1093,7 @@ namespace pdr {
}
expr_ref fml_concl(m);
reduced_rule->to_formula(fml_concl);
p1 = util.mk_hyper_resolve(pfs.size(), pfs.c_ptr(), fml_concl, positions, substs);
p1 = m.mk_hyper_resolve(pfs.size(), pfs.c_ptr(), fml_concl, positions, substs);
}
cache.insert(n->state(), p1);
rules.insert(n->state(), reduced_rule);

View file

@ -60,6 +60,11 @@ namespace pdr {
return a.mk_add(e1, e2);
}
app* mk_mul(expr* e1, expr* e2) {
mk_coerce(e1, e2);
return a.mk_mul(e1, e2);
}
app* mk_le(expr* e1, expr* e2) {
mk_coerce(e1, e2);
return a.mk_le(e1, e2);
@ -86,7 +91,7 @@ namespace pdr {
tmp = e;
}
else {
tmp = a.mk_mul(a.mk_numeral(c, a.is_int(e)), e);
tmp = mk_mul(a.mk_numeral(c, c.is_int() && a.is_int(e)), e);
}
res = mk_add(res, tmp);
}

View file

@ -37,9 +37,9 @@ void rewriter_tpl<Config>::process_var(var * v) {
unsigned idx = v->get_idx();
if (idx < m_bindings.size()) {
expr * r = m_bindings[m_bindings.size() - idx - 1];
TRACE("process_var", tout << "idx: " << idx << " --> " << mk_ismt2_pp(r, m()) << "\n";
TRACE("process_var", if (r) tout << "idx: " << idx << " --> " << mk_ismt2_pp(r, m()) << "\n";
tout << "bindings:\n";
for (unsigned i = 0; i < m_bindings.size(); i++) tout << i << ": " << mk_ismt2_pp(m_bindings[i], m()) << "\n";);
for (unsigned i = 0; i < m_bindings.size(); i++) if (m_bindings[i]) tout << i << ": " << mk_ismt2_pp(m_bindings[i], m()) << "\n";);
if (r != 0) {
if (m_num_qvars == 0 || is_ground(r)) {
result_stack().push_back(r);

View file

@ -67,6 +67,7 @@ struct simplify_tactic::imp {
TRACE("after_simplifier_bug", g.display(tout););
g.elim_redundancies();
TRACE("after_simplifier", g.display(tout););
TRACE("after_simplifier_detail", g.display_with_dependencies(tout););
SASSERT(g.is_well_sorted());
}

View file

@ -479,8 +479,8 @@ namespace smt {
return;
}
expr* to_r = m_util.mk_to_real(n);
expr* lo = m_util.mk_le(to_r, x);
expr* hi = m_util.mk_lt(x, m_util.mk_add(to_r, m_util.mk_numeral(rational(1), false)));
expr_ref lo(m_util.mk_le(to_r, x), m);
expr_ref hi(m_util.mk_lt(x, m_util.mk_add(to_r, m_util.mk_numeral(rational(1), false))), m);
mk_axiom(m.mk_false(), lo);
mk_axiom(m.mk_false(), hi);
}

View file

@ -761,6 +761,47 @@ typedef enum
- gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
- Z3_OP_PR_HYPER_RESOLVE: Hyper-resolution rule.
The premises of the rules is a sequence of clauses.
The first clause argument is the main clause of the rule.
One literal from the second, third, .. clause is resolved
with a literal from the first (main) clause.
Premises of the rules are of the form
\nicebox{
(or l0 l1 l2 .. ln)
}
or
\nicebox{
(=> (and ln+1 ln+2 .. ln+m) l0)
}
or in the most general (ground) form:
\nicebox{
(=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln-1))
}
In other words we use the following (Prolog style) convention for Horn
implications:
The head of a Horn implication is position 0,
the first conjunct in the body of an implication is position 1
the second conjunct in the body of an implication is position 2
For general implications where the head is a disjunction, the
first n positions correspond to the n disjuncts in the head.
The next m positions correspond to the m conjuncts in the body.
The premises can be universally quantified so that the most
general non-ground form is:
\nicebox{
(forall (vars) (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln-1)))
}
The hyper-resolution rule takes a sequence of parameters.
The parameters are substitutions of bound variables separated by pairs
of literal positions from the main clause and side clause.
- Z3_OP_RA_STORE: Insert a record into a relation.
The function takes \c n+1 arguments, where the first argument is the relation and the remaining \c n elements
correspond to the \c n columns of the relation.
@ -982,6 +1023,7 @@ typedef enum {
Z3_OP_PR_SKOLEMIZE,
Z3_OP_PR_MODUS_PONENS_OEQ,
Z3_OP_PR_TH_LEMMA,
Z3_OP_PR_HYPER_RESOLVE,
// Sequences
Z3_OP_RA_STORE = 0x600,
@ -5039,7 +5081,7 @@ END_MLAPI_EXCLUDE
/**
\brief Backtrack one backtracking point.
\sa Z3_fixedpoing_push
\sa Z3_fixedpoint_push
\pre The number of calls to pop cannot exceed calls to push.
*/

View file

@ -1,12 +1,12 @@
WARNING: this example still uses the old Z3 (version 3.x) C API. The current version is backward compatible.
WARNING: this example still uses the old Z3 (version 3.x) C API.
The current version is backward compatible.
This directory contains scripts to build the MaxSAT application using
Microsoft C compiler, or gcc.
1) Using Microsoft C compiler
1) Using Microsoft C compiler (with binary release)
Use 'build.cmd' to build the MaxSAT application using Microsoft C
compiler.
Use 'build.cmd' to build the MaxSAT application using Microsoft C compiler.
Remark: The Microsoft C compiler (cl) must be in your path,
or you can use the Visual Studio Command Prompt.
@ -14,12 +14,3 @@ or you can use the Visual Studio Command Prompt.
The script 'exec.cmd' adds the bin directory to the path. So,
maxsat.exe can find z3.dll.
2) Using gcc
Use 'build.sh' to build the MaxSAT application using gcc.
The script 'exec.sh' adds the bin directory to the path. So,
maxsat.exe can find z3.dll.
Remark: the scripts 'build.sh' and 'exec.sh' assumes you are in a
Cygwin or Mingw shell.

View file

@ -1,8 +0,0 @@
WARNING: this example still uses the old Z3 (version 3.x) C API. The current version is backward compatible.
This directory contains scripts to build the MaxSAT application using gcc.
Use 'build.sh' to build the MaxSAT application using gcc.
The script 'exec.sh' adds the lib directory to the path. So,
maxsat can find libz3.so.

View file

@ -1,8 +0,0 @@
WARNING: this example still uses the old Z3 (version 3.x) C API. The current version is backward compatible.
This directory contains scripts to build the MaxSAT application using gcc.
Use 'build.sh' to build the MaxSAT application using gcc.
The script 'exec.sh' adds the lib directory to the path. So,
maxsat can find libz3.dylib.

21
maxsat/README.txt Normal file
View file

@ -0,0 +1,21 @@
WARNING: this example still uses the old Z3 (version 3.x) C API.
The current version is backward compatible.
This directory contains scripts to build the MaxSAT application using
Microsoft C compiler, or gcc.
1) Using Visual Studio (with Z3 source code release)
Use the maxsat.vcxproj project file.
2) Using gcc (on Linux or OSX)
Use 'build.sh' to build the MaxSAT application using gcc.
You must install Z3 before running this example.
To install Z3, execute the following command in the Z3 root directory.
sudo make install
Use 'build.sh' to build the test application using gcc.
It generates the executable 'maxsat'.

View file

@ -1 +0,0 @@
gcc -fopenmp -o maxsat maxsat.c -I ../../include -L ../../lib -lz3

View file

@ -1 +0,0 @@
gcc -fopenmp -o maxsat maxsat.c -I ../../include -L ../../lib -lz3

View file

@ -1 +0,0 @@
gcc -o maxsat.exe -I ../../include ../../bin/z3.dll maxsat.c

View file

@ -1,4 +0,0 @@
# Note: Z3 was built using C++, so libz3.a has C++ dependencies.
# You can use gcc to link the program, but you need tell it
# to link the C++ libraries
g++ -fopenmp -static -I../../include -L../../lib maxsat.c -lz3 -o maxsat

View file

@ -1,4 +0,0 @@
# Note: Z3 was built using C++, so libz3.a has C++ dependencies.
# You can use gcc to link the program, but you need tell it
# to link the C++ libraries
g++ -fopenmp -I../../include maxsat.c ../../lib/libz3.a -o maxsat

9
maxsat/build.sh Executable file
View file

@ -0,0 +1,9 @@
if gcc -fopenmp -o maxsat maxsat.c -lz3; then
echo "maxsat example was successfully compiled."
echo "To run example, execute:"
echo " ./maxsat ex.smt"
else
echo "You must install Z3 before compiling this example."
echo "To install Z3, execute the following command in the Z3 root directory."
echo " sudo make install"
fi

View file

@ -1,2 +0,0 @@
export LD_LIBRARY_PATH=../../lib:$LD_LIBRARY_PATH
./maxsat $1

View file

@ -1,2 +0,0 @@
export DYLD_LIBRARY_PATH=../../lib:$DYLD_LIBRARY_PATH
./maxsat $1

View file

@ -1,2 +0,0 @@
export PATH=../../bin:$PATH
./maxsat.exe $1

View file

@ -1,15 +1,26 @@
The script exec.sh sets PYTHONPATH, and executes 'python example.py'.
To create scripts using Z3Py, the Z3 python directory must be in your PYTHONPATH.
Z3Py searches for libz3.so in set of predefined places that includes the directory where Z3Py is stored.
You may also manually initialize Z3Py using the command z3.init(path-to-libz3.so)
In your Python application you should include:
from z3 import *
Installing the Z3 Python bindings
Option 1: Install Z3 Python bindings in your python distribution
----------------------------------------------------------------
To install the Z3 python bindings in your system, use
sudo make install-python
in the Z3 root directory.
After installing the Z3 python bindings, you can try the example application
python example.py
Option 2: Set PYTHONPATH
------------------------
You may also use Z3Py by including this directory in your PYTHONPATH.
Z3Py searches for libz3.so in set of predefined places that includes the directory where Z3Py is stored.
You may also manually initialize Z3Py using the command z3.init(path-to-libz3.so)
Learn more about Z3Py at:
http://rise4fun.com/Z3Py/tutorial/guide

View file

@ -1,12 +1,24 @@
The script exec.sh sets PYTHONPATH, and executes 'python example.py'.
To create scripts using Z3Py, the Z3 python directory must be in your PYTHONPATH.
Z3Py searches for libz3.dylib in set of predefined places that includes the directory where Z3Py is stored.
You may also manually initialize Z3Py using the command z3.init(path-to-libz3.dylib)
In your Python application you should include:
from z3 import *
Installing the Z3 Python bindings
Option 1: Install Z3 Python bindings in your python distribution
----------------------------------------------------------------
To install the Z3 python bindings in your system, use
sudo make install-python
in the Z3 root directory.
After installing the Z3 python bindings, you can try the example application
python example.py
Option 2: Set PYTHONPATH
------------------------
You may also use Z3Py by including this directory in your PYTHONPATH.
Z3Py searches for libz3.dylib in set of predefined places that includes the directory where Z3Py is stored.
You may also manually initialize Z3Py using the command z3.init(path-to-libz3.dylib)
Learn more about Z3Py at:
http://rise4fun.com/Z3Py/tutorial/guide

View file

@ -152,6 +152,7 @@ Z3_OP_RA_SELECT = 1547
Z3_OP_CONST_ARRAY = 770
Z3_OP_BSDIV = 1031
Z3_OP_OR = 262
Z3_OP_PR_HYPER_RESOLVE = 1319
Z3_OP_AGNUM = 513
Z3_OP_PR_PUSH_QUANT = 1298
Z3_OP_BSMOD = 1035

View file

@ -43,11 +43,13 @@ static datalog::execution_context * g_ectx;
static front_end_params * g_params;
datalog_params::datalog_params():
m_default_table("sparse")
m_default_table("sparse"),
m_default_table_checked(false)
{}
void datalog_params::register_params(ini_params& p) {
p.register_symbol_param("DEFAULT_TABLE", m_default_table, "Datalog engine: default table (sparse)");
p.register_bool_param("DEFAULT_TABLE_CHECKED", m_default_table_checked, "Wrap default table with a sanity checker");
}
static void display_statistics(
@ -129,6 +131,7 @@ unsigned read_datalog(char const * file, datalog_params const& dl_params, front_
params_ref params;
params.set_sym(":engine", symbol("datalog"));
params.set_sym(":default-table", dl_params.m_default_table);
params.set_bool(":default-table-checked", dl_params.m_default_table_checked);
datalog::context ctx(m, front_end_params, params);
size_t watermark = front_end_params.m_memory_high_watermark;

View file

@ -21,6 +21,7 @@ Revision History:
struct datalog_params {
symbol m_default_table;
bool m_default_table_checked;
datalog_params();
virtual void register_params(ini_params& p);
};

View file

@ -551,11 +551,37 @@ static void tst21() {
std::cout << mk_ll_pp(d2, m) << "\n";
}
static void tst22() {
std::cout << "--------------------------------\n";
std::cout << "swap\n";
imdd_manager m;
imdd_ref d2(m), d3(m), d4(m);
d2 = m.mk_empty(3);
random_gen rand;
for (unsigned i = 0; i < 130; ++i) {
unsigned a = rand(20);
unsigned b = rand(20);
unsigned c = rand(20);
add_triple(m, d2, a, a, b, b, c, c);
}
std::cout << mk_ll_pp(d2, m) << "\n";
m.mk_swap(d2, d3, 0, true);
std::cout << mk_ll_pp(d3, m) << "\n";
m.mk_swap(d3, d4, 0, true);
std::cout << mk_ll_pp(d4, m) << "\n";
SASSERT(m.is_subset(d2, d4));
SASSERT(m.is_subset(d4, d2));
}
void tst_imdd() {
// enable_trace("imdd_add_bug");
// enable_trace("add_facts_bug");
enable_trace("mk_distinct_imdd");
enable_trace("mk_union_core");
tst22();
tst0();
tst1();
tst2();
@ -578,5 +604,6 @@ void tst_imdd() {
tst18();
tst20();
tst21();
}