3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00

add direct and incremental relevancy propagator

This commit is contained in:
Nikolaj Bjorner 2021-12-27 15:10:33 -08:00
parent 42f206171d
commit 6f1be09993
3 changed files with 372 additions and 0 deletions

View file

@ -40,6 +40,7 @@ z3_add_component(sat_smt
recfun_solver.cpp
sat_dual_solver.cpp
sat_th.cpp
smt_relevancy.cpp
user_solver.cpp
COMPONENT_DEPENDENCIES
sat

View file

@ -0,0 +1,228 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
relevancy.cpp
Abstract:
Relevancy propagation
Author:
Nikolaj Bjorner (nbjorner) 2021-12-27
--*/
#include "sat/sat_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/smt_relevancy.h"
namespace smt {
relevancy::relevancy(euf::solver& ctx): ctx(ctx) {
m_enabled = ctx.relevancy_enabled();
}
void relevancy::relevant_eh(euf::enode* n) {
// callback into ctx.
}
void relevancy::relevant_eh(sat::literal lit) {
// callback into ctx.
}
void relevancy::pop(unsigned n) {
if (n <= m_num_scopes) {
m_num_scopes -= n;
return;
}
else if (m_num_scopes > 0) {
n -= m_num_scopes;
m_num_scopes = 0;
}
SASSERT(n > 0);
unsigned sz = m_lim[m_lim.size() - n];
for (unsigned i = m_trail.size(); i-- > sz; ) {
auto [u, idx] = m_trail[i];
switch (u) {
case update::relevant_expr:
m_relevant_expr_ids[idx] = false;
m_queue.pop_back();
break;
case update::relevant_var:
m_relevant_var_ids[idx] = false;
m_queue.pop_back();
break;
case update::add_clause: {
sat::clause* c = m_clauses.back();
for (sat::literal lit : *c) {
SASSERT(m_occurs[lit.index()] == m_clauses.size() - 1);
m_occurs[lit.index()].pop_back();
}
m_clauses.pop_back();
m_roots.pop_back();
m_alloc.del_clause(c);
break;
}
case update::set_root:
m_roots[idx] = false;
break;
default:
UNREACHABLE();
break;
}
}
m_trail.shrink(sz);
m_lim.shrink(m_lim.size() - n);
}
void relevancy::add_root(unsigned n, sat::literal const* lits) {
if (!m_enabled)
return;
flush();
sat::literal true_lit = sat::null_literal;
for (unsigned i = 0; i < n; ++i) {
if (ctx.s().value(lits[i]) == l_true) {
if (is_relevant(lits[i]))
return;
true_lit = lits[i];
}
}
if (true_lit != sat::null_literal) {
mark_relevant(true_lit);
return;
}
sat::clause cl = *m_alloc.mk_clause(n, lits, false);
unsigned sz = m_clauses.size();
m_clauses.push_back(&cl);
m_roots.push_back(true);
m_trail.push_back(std::make_pair(update::add_clause, 0));
for (sat::literal lit : cl)
occurs(lit).push_back(sz);
}
void relevancy::add_def(unsigned n, sat::literal const* lits) {
if (!m_enabled)
return;
flush();
for (unsigned i = 0; i < n; ++i) {
if (ctx.s().value(lits[i]) == l_false && is_relevant(lits[i])) {
add_root(n, lits);
return;
}
}
sat::clause cl = *m_alloc.mk_clause(n, lits, false);
unsigned sz = m_clauses.size();
m_clauses.push_back(&cl);
m_roots.push_back(false);
m_trail.push_back(std::make_pair(update::add_clause, 0));
for (sat::literal lit : cl)
occurs(lit).push_back(sz);
}
void relevancy::assign(sat::literal lit) {
if (!m_enabled)
return;
flush();
if (ctx.s().lvl(lit) == 0) {
mark_relevant(lit);
return;
}
for (auto idx : occurs(lit)) {
if (!m_roots[idx])
continue;
for (sat::literal lit2 : *m_clauses[idx])
if (lit2 != lit && ctx.s().value(lit2) == l_true && is_relevant(lit2))
goto next;
mark_relevant(lit);
return;
next:
;
}
}
void relevancy::propagate() {
if (!m_enabled)
return;
flush();
if (m_qhead == m_queue.size())
return;
m_trail.push_back(std::make_pair(update::set_qhead, m_qhead));
while (m_qhead < m_queue.size() && !ctx.s().inconsistent() && ctx.get_manager().inc()) {
auto [lit, n] = m_queue[m_qhead++];
SASSERT(n || lit != sat::null_literal);
SASSERT(!n || lit == sat::null_literal);
if (n)
propagate_relevant(n);
else
propagate_relevant(lit);
}
}
void relevancy::mark_relevant(euf::enode* n) {
if (!m_enabled)
return;
flush();
if (is_relevant(n))
return;
for (euf::enode* sib : euf::enode_class(n))
set_relevant(sib);
}
void relevancy::set_relevant(euf::enode* n) {
if (is_relevant(n))
return;
m_relevant_expr_ids.setx(n->get_expr_id(), true, false);
m_trail.push_back(std::make_pair(update::relevant_expr, n->get_expr_id()));
m_queue.push_back(std::make_pair(sat::null_literal, n));
}
void relevancy::mark_relevant(sat::literal lit) {
if (!m_enabled)
return;
flush();
if (is_relevant(lit))
return;
m_relevant_var_ids.setx(lit.var(), true, false);
m_trail.push_back(std::make_pair(update::relevant_var, lit.var()));
m_queue.push_back(std::make_pair(lit, nullptr));
}
void relevancy::propagate_relevant(sat::literal lit) {
relevant_eh(lit);
for (auto idx : occurs(~lit)) {
if (m_roots[idx])
continue;
sat::clause& cl = *m_clauses[idx];
sat::literal true_lit = sat::null_literal;
for (sat::literal lit2 : cl) {
if (ctx.s().value(lit2) == l_true) {
if (is_relevant(lit2))
goto next;
true_lit = lit2;
}
}
if (true_lit != sat::null_literal)
mark_relevant(true_lit);
else {
m_trail.push_back(std::make_pair(update::set_root, idx));
m_roots[idx] = true;
}
next:
;
}
}
void relevancy::propagate_relevant(euf::enode* n) {
relevant_eh(n);
for (euf::enode* arg : euf::enode_args(n))
mark_relevant(arg);
}
}

143
src/sat/smt/smt_relevancy.h Normal file
View file

@ -0,0 +1,143 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
relevancy.h
Abstract:
Relevancy propagation
Author:
Nikolaj Bjorner (nbjorner) 2021-12-27
Clauses are split into two parts:
- Roots
- Defs
The state transitions are:
- A literal lit is assigned:
lit appears positively in a Root clause R and no other literal in R are relevant.
->
lit is set relevant
lit is justified at level 0
->
lit is set relevant
- An equality n1 = n2 is assigned:
n1 is relevant
->
n2 is marked as relevant
- A lit is set relevant:
->
all clauses C in Defs where lit appears negatively are added to Roots
- When a clause R is added to Roots:
R contains a positive literal lit that is relevant
->
skip adding R to Roots
- When a clause R is added to Roots:
R contains a positive literal lit, no positive literal in R are relevant
->
lit is set relevant
- When a clause C is added to Defs:
C contains a negative literal that is relevant
->
Add C to Roots
- When an expression is set relevant:
All non-relevant children above Boolean connectives are set relevant
If nodes are treated as Boolean connectives because they are clausified
to (=> cond (= n then)) and (=> (not cond) (= n else))
Replay:
- literals that are replayed in clauses that are marked relevant are
marked relevant again.
- expressions corresponding to auxiliary clauses are added as auxiliary clauses.
- TBD: Are root clauses added under a scope discarded?
The SAT solver re-initializes clauses on its own, should we just use this mechanism?
Can a literal that is not in a root be set relevant?
- yes, if we propagate over expressions
Do we need full watch lists instead of 2-watch lists?
- probably, but unclear. The dual SAT solver only uses 2-watch lists, but has uses a large clause for tracking
roots.
--*/
#pragma once
#include "sat/sat_solver.h"
#include "sat/smt/sat_th.h"
namespace euf {
class solver;
}
namespace smt {
class relevancy {
euf::solver& ctx;
enum class update { relevant_expr, relevant_var, add_clause, set_root, set_qhead };
bool m_enabled = false;
svector<std::pair<update, unsigned>> m_trail;
unsigned_vector m_lim;
unsigned m_num_scopes = 0;
bool_vector m_relevant_expr_ids; // identifiers of relevant expressions
bool_vector m_relevant_var_ids; // identifiers of relevant Boolean variables
sat::clause_allocator m_alloc;
sat::clause_vector m_clauses; // clauses
bool_vector m_roots; // indicate if clause is a root
vector<unsigned_vector> m_occurs; // where do literals occur
unsigned m_qhead = 0; // queue head for relevancy
svector<std::pair<sat::literal, euf::enode*>> m_queue; // propagation queue for relevancy
// callbacks during propagation
void relevant_eh(euf::enode* n);
void relevant_eh(sat::literal lit);
void push_core() { m_lim.push_back(m_trail.size()); }
void flush() { for (; m_num_scopes > 0; --m_num_scopes) push_core(); }
unsigned_vector& occurs(sat::literal lit) { m_occurs.reserve(lit.index() + 1); return m_occurs[lit.index()]; }
void propagate_relevant(sat::literal lit);
void propagate_relevant(euf::enode* n);
void set_relevant(euf::enode* n);
public:
relevancy(euf::solver& ctx);
void push() { ++m_num_scopes; }
void pop(unsigned n);
void add_root(unsigned n, sat::literal const* lits);
void add_def(unsigned n, sat::literal const* lits);
void assign(sat::literal lit);
void propagate();
void mark_relevant(euf::enode* n);
void mark_relevant(sat::literal lit);
bool is_relevant(sat::literal lit) const { return !m_enabled || m_relevant_var_ids.get(lit.var(), false); }
bool is_relevant(euf::enode* n) const { return !m_enabled || m_relevant_expr_ids.get(n->get_expr_id(), false); }
bool is_relevant(expr* e) const { return !m_enabled || m_relevant_expr_ids.get(e->get_id(), false); }
};
}