3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-03 13:07:53 +00:00

Merge branch 'unstable' of https://github.com/Z3Prover/z3 into unstable

This commit is contained in:
Nikolaj Bjorner 2015-06-21 09:39:32 -07:00
commit 6f0d76a62e
172 changed files with 5110 additions and 22752 deletions

View file

@ -1,4 +1,10 @@
/*++
Copyright (c) 2015 Microsoft Corporation
--*/
#include"arith_bounds_tactic.h"
#include"arith_decl_plugin.h"

View file

@ -485,10 +485,9 @@ public:
return;
}
unsigned size = g->size();
expr_ref new_f1(m), new_f2(m);
proof_ref new_pr1(m), new_pr2(m);
for (unsigned idx = 0; idx < size; idx++) {
for (unsigned idx = 0; !g->inconsistent() && idx < g->size(); idx++) {
m_rw1(g->form(idx), new_f1, new_pr1);
TRACE("card2bv", tout << "Rewriting " << mk_ismt2_pp(new_f1.get(), m) << std::endl;);
m_rw2.rewrite(new_f1, new_f2);

View file

@ -854,7 +854,7 @@ private:
m_temporary_ints(m),
m_used_dependencies(m),
m_rw(*this) {
updt_params(p);
updt_params(p);
m_b_rw.set_flat(false); // no flattening otherwise will blowup the memory
m_b_rw.set_elim_and(true);
}
@ -871,12 +871,17 @@ private:
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
m_all_clauses_limit = p.get_uint("pb2bv_all_clauses_limit", 8);
m_cardinality_limit = p.get_uint("pb2bv_cardinality_limit", UINT_MAX);
m_b_rw.updt_params(p);
}
void collect_param_descrs(param_descrs & r) {
insert_max_memory(r);
insert_max_memory(r);
r.insert("pb2bv_all_clauses_limit", CPK_UINT, "(default: 8) maximum number of literals for using equivalent CNF encoding of PB constraint.");
r.insert("pb2bv_cardinality_limit", CPK_UINT, "(default: inf) limit for using arc-consistent cardinality constraint encoding.");
m_b_rw.get_param_descrs(r);
r.erase("flat");
r.erase("elim_and");
}
void set_cancel(bool f) {

View file

@ -0,0 +1,150 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
const_intro_rewriter.h
Abstract:
Rewriter for converting FPA to BV
Author:
Christoph (cwinter) 2012-02-09
Notes:
--*/
#ifndef _CONST_INTRO_REWRITER_H_
#define _CONST_INTRO_REWRITER_H_
#include"cooperate.h"
#include"bv_decl_plugin.h"
#include"tactic_exception.h"
#include"fpa2bv_converter_prec.h"
struct const_intro_rewriter_cfg : public default_rewriter_cfg {
ast_manager & m_manager;
expr * m_exp;
func_decl_ref_vector m_introduced_consts;
obj_map<func_decl, app*> m_const2term_map;
unsigned long long m_max_memory;
unsigned m_max_steps;
fpa_util m_float_util;
ast_manager & m() const { return m_manager; }
const_intro_rewriter_cfg(ast_manager & m, params_ref const & p):
m_manager(m),
m_introduced_consts(m),
m_float_util(m) {
updt_params(p);
// We need to make sure that the mananger has the BV plugin loaded.
symbol s_bv("bv");
if (!m_manager.has_plugin(s_bv))
m_manager.register_plugin(s_bv, alloc(bv_decl_plugin));
}
~const_intro_rewriter_cfg() {
for (obj_map<func_decl, app*>::iterator it = m_const2term_map.begin();
it != m_const2term_map.end();
it++)
{
m().dec_ref(it->m_key);
m().dec_ref(it->m_value);
}
}
void cleanup_buffers() {
}
void updt_params(params_ref const & p) {
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
m_max_steps = p.get_uint("max_steps", UINT_MAX);
}
bool max_steps_exceeded(unsigned num_steps) const {
cooperate("fpa2bv");
if (memory::get_allocation_size() > m_max_memory)
throw tactic_exception(TACTIC_MAX_MEMORY_MSG);
return num_steps > m_max_steps;
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
TRACE("fpa2bv_rw", tout << "APP: " << f->get_name() << std::endl; );
if (num == 0 && f->get_family_id() == null_family_id && m_float_util.is_float(f->get_range())) {
app * f_cnst = m_manager.mk_const(f);
if (!m_introduced_consts.contains(f))
m_introduced_consts.push_back(f);
result = f_cnst;
return BR_DONE;
}
if (f->get_family_id() == m_float_util.get_family_id()) {
switch (f->get_decl_kind()) {
case OP_FPA_ADD:
case OP_FPA_SUB:
case OP_FPA_NEG:
case OP_FPA_MUL:
case OP_FPA_DIV:
case OP_FPA_REM:
case OP_FPA_ABS:
case OP_FPA_MIN:
case OP_FPA_MAX:
case OP_FPA_FMA:
case OP_FPA_SQRT:
case OP_FPA_TO_FP:
case OP_FPA_ROUND_TO_INTEGRAL:
{
app * f_app = m_manager.mk_app(f, num, args);
result = m_manager.mk_fresh_const(NULL, f->get_range());
func_decl * fd = to_app(result)->get_decl();
m_introduced_consts.push_back(fd);
m_const2term_map.insert_if_not_there(fd, f_app);
m().inc_ref(fd);
m().inc_ref(f_app);
return BR_DONE;
}
default:
return BR_FAILED;
}
}
return BR_FAILED;
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
return false;
}
bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr) {
return false;
}
bool pre_visit(expr * t){
return true;
}
};
template class rewriter_tpl<const_intro_rewriter_cfg>;
struct const_intro_rewriter : public rewriter_tpl<const_intro_rewriter_cfg> {
const_intro_rewriter_cfg m_cfg;
const_intro_rewriter(ast_manager & m, params_ref const & p):
rewriter_tpl<const_intro_rewriter_cfg>(m, m.proofs_enabled(), m_cfg),
m_cfg(m, p) {
}
};
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,33 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
fpa2bv_lazy_tactic.h
Abstract:
Tactic that converts floating points to bit-vectors lazily
Author:
Aleksander Zeljic 2012-11-15
Notes:
--*/
#ifndef _FPA2BV_APPROX_TACTIC_
#define _FPA2BV_APPROX_TACTIC_
#include"params.h"
class ast_manager;
class tactic;
tactic * mk_fpa2bv_approx_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("fpa2bv_approx", "An iterative approximation based bit-blasting decision procedure for FPA.", "mk_fpa2bv_approx_tactic(m, p)")
*/
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,103 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
fpa2bv_converter_prec.h
Abstract:
Conversion routines for Floating Point -> Bit-Vector
Author:
Christoph (cwinter) 2012-02-09
Notes:
--*/
#ifndef _FPA2BV_CONVERTER_PREC
#define _FPA2BV_CONVERTER_PREC
#include"ast.h"
#include"obj_hashtable.h"
#include"ref_util.h"
#include"fpa_decl_plugin.h"
#include"bv_decl_plugin.h"
#include"model_converter.h"
#include"basic_simplifier_plugin.h"
#include"fpa2bv_converter.h"
#define MAX_PRECISION 100
#define MIN_PRECISION 0
class fpa2bv_prec_model_converter;
enum fpa_approximation_mode {
FPAA_PRECISE, // Always use precise encoding
FPAA_FIXBITS, // Approximate by fixing some bits of the encoding
FPAA_SMALL_FLOATS // Approximate by using smaller floats
};
#define FPAA_DEFAULT_MODE FPAA_SMALL_FLOATS
class fpa2bv_converter_prec : public fpa2bv_converter {
fpa_approximation_mode m_mode;
void fix_bits(unsigned prec, expr_ref rounded, unsigned sbits, unsigned ebits);//expr_ref& fixed,
void mk_small_op(func_decl * f, unsigned prec, unsigned num, expr * const * args, func_decl_ref & small_op, expr_ref_vector & cast_args);
void mk_small_op(func_decl * f, unsigned new_ebits, unsigned new_sbits, unsigned num, expr * const * args, func_decl_ref & small_op, expr_ref_vector & cast_args);
void mk_cast_small_to_big(func_decl * big_fd, expr * arg, expr_ref & result);
void mk_cast_small_to_big(unsigned sbits, unsigned ebits, expr * arg, expr_ref & result);
void match_sorts(expr * a, expr * b, expr_ref & n_a, expr_ref & n_b);
void establish_sort(unsigned num, expr * const * args, unsigned & ebits, unsigned & sbits);
public:
fpa2bv_converter_prec(ast_manager & m, fpa_approximation_mode mode);
void mk_const(func_decl * f, unsigned prec, expr_ref & result);
void mk_eq(expr * a, expr * b, expr_ref & result);
void mk_ite(expr * c, expr * t, expr * f, expr_ref & result);
void mk_add(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_sub(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_uminus(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_mul(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_div(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_remainder(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_abs(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_min(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_max(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_fusedma(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_sqrt(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_round_to_integral(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_float_eq(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_lt(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_gt(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_le(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
void mk_float_ge(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
/*
void mk_is_zero(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_nzero(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_pzero(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_sign_minus(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_nan(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_inf(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_normal(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
void mk_is_subnormal(func_decl * f, unsigned prec, unsigned num, expr * const * args, expr_ref & result);
*/
void reset() {
dec_ref_map_key_values(m, m_const2bv);
dec_ref_map_key_values(m, m_rm_const2bv);
}
};
#endif

View file

@ -0,0 +1,261 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
fpa2bv_rewriter.h
Abstract:
Rewriter for converting FPA to BV
Author:
Christoph (cwinter) 2012-02-09
Notes:
--*/
#ifndef _FPA2BV_REWRITER_H_
#define _FPA2BV_REWRITER_H_
#include"cooperate.h"
#include"rewriter_def.h"
#include"bv_decl_plugin.h"
#include"fpa2bv_converter_prec.h"
#include"tactic_exception.h"
#include <vector>
struct fpa2bv_rewriter_prec_cfg : public default_rewriter_cfg {
ast_manager & m_manager;
expr_ref_vector m_out;
fpa2bv_converter_prec & m_conv;
obj_map<func_decl,unsigned> * cnst2prec_map;
unsigned precision;
unsigned long long m_max_memory;
unsigned m_max_steps;
ast_manager & m() const { return m_manager; }
fpa2bv_rewriter_prec_cfg(ast_manager & m, fpa2bv_converter_prec & c, params_ref const & p):
m_manager(m),
m_out(m),
m_conv(c) {
updt_params(p);
// We need to make sure that the mananger has the BV plugin loaded.
symbol s_bv("bv");
if (!m_manager.has_plugin(s_bv))
m_manager.register_plugin(s_bv, alloc(bv_decl_plugin));
}
~fpa2bv_rewriter_prec_cfg() {
}
void cleanup_buffers() {
m_out.finalize();
}
unsigned get_precision(func_decl * f){
if(cnst2prec_map->contains(f))
return cnst2prec_map->find(f);
else return precision;
}
void set_precision(unsigned p) { precision=p; }
void set_mappings(obj_map<func_decl,unsigned> * o2p)
{
this->cnst2prec_map=o2p;
}
void updt_params(params_ref const & p) {
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
m_max_steps = p.get_uint("max_steps", UINT_MAX);
}
bool max_steps_exceeded(unsigned num_steps) const {
cooperate("fpa2bv");
return num_steps > m_max_steps;
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
TRACE("fpa2bv_rw", tout << "APP: " << f->get_name() << std::endl; );
if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_float(f->get_range())) {
m_conv.mk_const(f, get_precision(f), result);
return BR_DONE;
}
if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_rm(f->get_range())) {
m_conv.mk_rm_const(f, result);
return BR_DONE;
}
if (m().is_eq(f)) {
SASSERT(num == 2);
//SASSERT(m().get_sort(args[0]) == m().get_sort(args[1]));
sort * ds = f->get_domain()[0];
if (m_conv.is_float(ds)) {
m_conv.mk_eq(args[0], args[1], result);
return BR_DONE;
}
else if (m_conv.is_rm(ds)) {
result = m().mk_eq(args[0], args[1]);
return BR_DONE;
}
return BR_FAILED;
}
if (m().is_ite(f)) {
SASSERT(num == 3);
if (m_conv.is_float(args[1])) {
m_conv.mk_ite(args[0], args[1], args[2], result);
return BR_DONE;
}
return BR_FAILED;
}
expr_ref newAssertion(m_manager);
if (m_conv.is_float_family(f))
{
switch (f->get_decl_kind())
{
case OP_FPA_RM_NEAREST_TIES_TO_AWAY:
case OP_FPA_RM_NEAREST_TIES_TO_EVEN:
case OP_FPA_RM_TOWARD_NEGATIVE:
case OP_FPA_RM_TOWARD_POSITIVE:
case OP_FPA_RM_TOWARD_ZERO: m_conv.mk_rounding_mode(f, result); return BR_DONE;
case OP_FPA_NUM: m_conv.mk_numeral(f, num, args, result); return BR_DONE;
case OP_FPA_PLUS_INF: m_conv.mk_pinf(f, result); return BR_DONE;
case OP_FPA_MINUS_INF: m_conv.mk_ninf(f, result); return BR_DONE;
case OP_FPA_PLUS_ZERO: m_conv.mk_pzero(f, result); return BR_DONE;
case OP_FPA_MINUS_ZERO: m_conv.mk_nzero(f, result); return BR_DONE;
case OP_FPA_NAN: m_conv.mk_nan(f, result); return BR_DONE;
case OP_FPA_ADD:
m_conv.mk_add(f,get_precision(f), num, args, result);return BR_DONE;
case OP_FPA_SUB:
m_conv.mk_sub(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_NEG:
m_conv.mk_uminus(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_MUL:
m_conv.mk_mul(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_DIV:
m_conv.mk_div(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_REM:
m_conv.mk_remainder(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_ABS: m_conv.mk_abs(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_MIN: m_conv.mk_min(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_MAX: m_conv.mk_max(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_FMA:
m_conv.mk_fusedma(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_SQRT:
m_conv.mk_sqrt(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_ROUND_TO_INTEGRAL: m_conv.mk_round_to_integral(f, get_precision(f), num, args, result); return BR_DONE;
case OP_FPA_EQ: m_conv.mk_float_eq(f, num, args, result); return BR_DONE;
case OP_FPA_LT: m_conv.mk_float_lt(f, num, args, result); return BR_DONE;
case OP_FPA_GT: m_conv.mk_float_gt(f, num, args, result); return BR_DONE;
case OP_FPA_LE: m_conv.mk_float_le(f, num, args, result); return BR_DONE;
case OP_FPA_GE: m_conv.mk_float_ge(f, num, args, result); return BR_DONE;
case OP_FPA_IS_ZERO: m_conv.mk_is_zero(f, num, args, result); return BR_DONE;
case OP_FPA_IS_NAN: m_conv.mk_is_nan(f, num, args, result); return BR_DONE;
case OP_FPA_IS_INF: m_conv.mk_is_inf(f, num, args, result); return BR_DONE;
case OP_FPA_IS_NORMAL: m_conv.mk_is_normal(f, num, args, result); return BR_DONE;
case OP_FPA_IS_SUBNORMAL: m_conv.mk_is_subnormal(f, num, args, result); return BR_DONE;
case OP_FPA_IS_POSITIVE: m_conv.mk_is_positive(f, num, args, result); return BR_DONE;
case OP_FPA_IS_NEGATIVE: m_conv.mk_is_negative(f, num, args, result); return BR_DONE;
case OP_FPA_TO_FP: m_conv.mk_to_fp(f, num, args, result); return BR_DONE;
case OP_FPA_TO_FP_UNSIGNED: m_conv.mk_to_fp_unsigned(f, num, args, result); return BR_DONE;
case OP_FPA_FP: m_conv.mk_fp(f, num, args, result); return BR_DONE;
case OP_FPA_TO_UBV: m_conv.mk_to_ubv(f, num, args, result); return BR_DONE;
case OP_FPA_TO_SBV: m_conv.mk_to_sbv(f, num, args, result); return BR_DONE;
case OP_FPA_TO_REAL: m_conv.mk_to_real(f, num, args, result); return BR_DONE;
case OP_FPA_TO_IEEE_BV: m_conv.mk_to_ieee_bv(f, num, args, result); return BR_DONE;
case OP_FPA_INTERNAL_BVWRAP:
case OP_FPA_INTERNAL_BVUNWRAP:
case OP_FPA_INTERNAL_TO_REAL_UNSPECIFIED:
case OP_FPA_INTERNAL_TO_UBV_UNSPECIFIED:
case OP_FPA_INTERNAL_TO_SBV_UNSPECIFIED: return BR_FAILED;
default:
TRACE("fpa2bv", tout << "unsupported operator: " << f->get_name() << "\n";
for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << std::endl;);
NOT_IMPLEMENTED_YET();
}
}
if (f->get_family_id() == null_family_id)
{
bool is_float_uf = m_conv.is_float(f->get_range());
unsigned i = 0;
while (!is_float_uf && i < num)
{
is_float_uf = m_conv.is_float(f->get_domain()[i]);
i++;
}
if (is_float_uf)
{
m_conv.mk_uninterpreted_function(f, num, args, result);
return BR_DONE;
}
}
return BR_FAILED;
}
bool pre_visit(expr * t)
{
TRACE("pre_visit_prec", tout << mk_ismt2_pp(t, m()) << std::endl;);
if(t->get_kind() == AST_APP && is_app_of(t, to_app(t)->get_family_id(), OP_EQ)) {
//Equation over non-boolean expressions, it should be of form constantI = subexprI
app * a = to_app(t);
if (a->get_num_args() == 2) {
expr * a0 = a->get_arg(0);
expr * a1 = a->get_arg(1);
func_decl * cnst = 0;
if (a0->get_kind() == AST_APP && cnst2prec_map->contains(to_app(a0)->get_decl()))
cnst = to_app(a0)->get_decl();
else if (a1->get_kind() == AST_APP && cnst2prec_map->contains(to_app(a1)->get_decl()))
cnst = to_app(a1)->get_decl();
if (cnst == 0) {
// For all equalities that were in the original problem, we don't
// have any precision tracking, so those simply get 100% precision.
set_precision(100);
}
else
set_precision(cnst2prec_map->find(cnst));
TRACE("pre_visit_prec", tout << "Precision = " << get_precision(NULL) << std::endl;);
}
}
return true;
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
return false;
}
bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr) {
return false;
}
};
template class rewriter_tpl<fpa2bv_rewriter_prec_cfg>;
struct fpa2bv_rewriter_prec : public rewriter_tpl<fpa2bv_rewriter_prec_cfg> {
fpa2bv_rewriter_prec_cfg m_cfg;
fpa2bv_rewriter_prec(ast_manager & m, fpa2bv_converter_prec & c, params_ref const & p):
rewriter_tpl<fpa2bv_rewriter_prec_cfg>(m, m.proofs_enabled(), m_cfg),
m_cfg(m, c, p) {
}
};
#endif

View file

@ -45,7 +45,7 @@ struct has_fp_to_real_predicate {
void operator()(app * n) {
sort * s = get_sort(n);
if (au.is_real(s) && n->get_family_id() == fu.get_family_id() &&
is_app(n) && to_app(n)->get_kind() == OP_FPA_TO_REAL)
is_app(n) && to_app(n)->get_decl_kind() == OP_FPA_TO_REAL)
throw found();
}
};
@ -53,7 +53,7 @@ struct has_fp_to_real_predicate {
class has_fp_to_real_probe : public probe {
public:
virtual result operator()(goal const & g) {
return !test<has_fp_to_real_predicate>(g);
return test<has_fp_to_real_predicate>(g);
}
virtual ~has_fp_to_real_probe() {}

View file

@ -56,7 +56,7 @@ struct quasi_pb_probe : public probe {
}
};
probe * mk_quasi_pb_probe() {
probe * mk_is_quasi_pb_probe() {
return mk_and(mk_not(mk_is_unbounded_probe()),
alloc(quasi_pb_probe));
}
@ -100,9 +100,11 @@ static tactic * mk_bv2sat_tactic(ast_manager & m) {
#define SMALL_SIZE 80000
static tactic * mk_pb_tactic(ast_manager & m) {
params_ref pb2bv_p;
pb2bv_p.set_bool("ite_extra", true);
params_ref pb2bv_p;
pb2bv_p.set_uint("pb2bv_all_clauses_limit", 8);
params_ref bv2sat_p;
bv2sat_p.set_bool("ite_extra", true);
return and_then(fail_if_not(mk_is_pb_probe()),
fail_if(mk_produce_proofs_probe()),
@ -113,14 +115,16 @@ static tactic * mk_pb_tactic(ast_manager & m) {
mk_fail_if_undecided_tactic()),
and_then(using_params(mk_pb2bv_tactic(m), pb2bv_p),
fail_if_not(mk_is_qfbv_probe()),
mk_bv2sat_tactic(m))));
using_params(mk_bv2sat_tactic(m), bv2sat_p))));
}
static tactic * mk_lia2sat_tactic(ast_manager & m) {
params_ref pb2bv_p;
pb2bv_p.set_bool("ite_extra", true);
pb2bv_p.set_uint("pb2bv_all_clauses_limit", 8);
params_ref bv2sat_p;
bv2sat_p.set_bool("ite_extra", true);
return and_then(fail_if(mk_is_unbounded_probe()),
fail_if(mk_produce_proofs_probe()),
@ -130,7 +134,7 @@ static tactic * mk_lia2sat_tactic(ast_manager & m) {
mk_lia2pb_tactic(m),
using_params(mk_pb2bv_tactic(m), pb2bv_p),
fail_if_not(mk_is_qfbv_probe()),
mk_bv2sat_tactic(m));
using_params(mk_bv2sat_tactic(m), bv2sat_p));
}
// Try to find a model for an unbounded ILP problem.
@ -208,7 +212,7 @@ tactic * mk_qflia_tactic(ast_manager & m, params_ref const & p) {
tactic * st = using_params(and_then(preamble_st,
or_else(mk_ilp_model_finder_tactic(m),
mk_pb_tactic(m),
and_then(fail_if_not(mk_quasi_pb_probe()),
and_then(fail_if_not(mk_is_quasi_pb_probe()),
using_params(mk_lia2sat_tactic(m), quasi_pb_p),
mk_fail_if_undecided_tactic()),
mk_bounded_tactic(m),

View file

@ -28,4 +28,11 @@ tactic * mk_qflia_tactic(ast_manager & m, params_ref const & p = params_ref());
ADD_TACTIC("qflia", "builtin strategy for solving QF_LIA problems.", "mk_qflia_tactic(m, p)")
*/
probe * mk_is_quasi_pb_probe();
/*
ADD_PROBE("is-quasi-pb", "true if the goal is quasi-pb.", "mk_is_quasi_pb_probe()")
*/
#endif