3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-31 11:42:28 +00:00

draft attempt at optimizing cube tree with resolvents. have not tested/ran yet

This commit is contained in:
Ilana Shapiro 2025-09-30 11:35:00 -07:00
parent 6173a0d025
commit 6da167ec09

View file

@ -41,6 +41,7 @@ namespace search_tree {
literal m_literal;
node* m_left = nullptr, * m_right = nullptr, * m_parent = nullptr;
status m_status;
vector<literal> m_core;
public:
node(literal const& l, node* parent) :
m_literal(l), m_parent(parent), m_status(status::open) {}
@ -96,6 +97,14 @@ namespace search_tree {
if (m_right)
m_right->display(out, indent + 2);
}
bool has_core() const { return !m_core.empty(); }
void set_core(vector<literal> const &core) {
m_core = core; // just copy the Z3 vector
// no sort, no deduplication
}
vector<literal> const & get_core() const { return m_core; }
void clear_core() { m_core.clear(); }
};
template<typename Config>
@ -154,6 +163,80 @@ namespace search_tree {
}
}
vector<literal> compute_resolvent(node<Config>* left, node<Config>* right) {
vector<literal> res;
if (!left->has_core() || !right->has_core()) return res;
bool are_sibling_complements = left->parent() == right->parent();
if (!are_sibling_complements)
return res;
auto &core_l = left->get_core();
auto &core_r = right->get_core();
// Helper to check if a literal is already in the vector
auto contains = [](vector<literal> const &v, literal const &l) {
for (unsigned i = 0; i < v.size(); ++i)
if (v[i] == l) return true;
return false;
};
auto lit_l = left->get_literal();
auto lit_r = right->get_literal();
// Add literals from left core, skipping lit_l
for (unsigned i = 0; i < core_l.size(); ++i) {
if (core_l[i] != lit_l && !contains(res, core_l[i]))
res.push_back(core_l[i]);
}
// Add literals from right core, skipping lit_r
for (unsigned i = 0; i < core_r.size(); ++i) {
if (core_r[i] != lit_r && !contains(res, core_r[i]))
res.push_back(core_r[i]);
}
return res;
}
void try_resolve_upwards(node<Config>* p) {
while (p) {
auto left = p->left();
auto right = p->right();
if (!left || !right) return;
// only attempt when both children are closed and at least one has a core
if (left->get_status() != status::closed || right->get_status() != status::closed) return;
if (!left->has_core() || !right->has_core()) return;
// compute resolvent
auto resolvent = compute_resolvent(left, right);
if (resolvent.empty()) {
// resolvent empty => unsat at root-subtree under p
p->set_core(resolvent); // empty core
close_node(p);
// mark root closed if p == m_root?
if (p == m_root.get()) {
m_root->set_status(status::closed);
}
// continue upward in case parent's sibling can now resolve
p = p->parent();
continue;
}
// If resolvent is identical to existing core at p we are done.
if (p->has_core()) {
// if new core doesn't strengthen, stop.
if (resolvent == p->get_core()) return;
// if new core subsumes old, replace; else maybe keep both (choose policy).
}
// attach resolvent to parent p and close p
p->set_core(resolvent);
close_node(p);
// continue upward to see if parent can further resolve
p = p->parent();
}
}
public:
tree(literal const& null_literal) : m_null_literal(null_literal) {
@ -181,6 +264,10 @@ namespace search_tree {
if (conflict.empty()) {
close_node(m_root.get());
m_root->set_status(status::closed);
// store empty core at root to signal global unsat if you like
m_root->set_core(vector<literal>()); // optional
return;
}
SASSERT(n != m_root.get());
@ -199,12 +286,19 @@ namespace search_tree {
SASSERT(all_of(conflict, [&](auto const& a) { return on_path(a); }));
);
while (n) {
if (any_of(conflict, [&](auto const& a) { return a == n->get_literal(); })) {
close_node(n);
// find the node on the path whose literal is in conflict
node<Config>* target = n;
while (target) {
if (any_of(conflict, [&](auto const& a) { return a == target->get_literal(); })) {
// store the conflict on the node that closes
target->set_core(conflict);
// close the subtree under target (preserves core on target)
close_node(target);
// now attempt to resolve upwards (recursive collapse)
try_resolve_upwards(target->parent());
return;
}
n = n->parent();
target = target->parent();
}
UNREACHABLE();
}