3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-18 22:59:02 +00:00

Merge branch 'opt' of https://git01.codeplex.com/z3 into opt

This commit is contained in:
Nikolaj Bjorner 2013-10-31 21:32:18 -07:00
commit 6ca0c7c6c7
12 changed files with 256 additions and 126 deletions

View file

@ -175,7 +175,8 @@ namespace opt {
return expr_ref(m.mk_true(), m);
}
else {
return expr_ref(get_optimizer().block_lower_bound(m_objective_vars[var], val.get_numeral()), m);
inf_rational n = val.get_numeral();
return expr_ref(get_optimizer().block_lower_bound(m_objective_vars[var], n), m);
}
}

View file

@ -91,7 +91,6 @@ namespace opt {
smt::context& get_context() { return m_context.get_context(); } // used by weighted maxsat.
private:
smt::theory_opt& get_optimizer();
};
}

View file

@ -66,24 +66,16 @@ namespace opt {
*/
lbool optimize_objectives::basic_opt(app_ref_vector& objectives) {
arith_util autil(m);
s->reset_objectives();
m_lower.reset();
m_upper.reset();
// First check_sat call to initialize theories
lbool is_sat = s->check_sat(0, 0);
if (is_sat != l_true) {
return is_sat;
}
opt_solver::scoped_push _push(*s);
opt_solver::toggle_objective _t(*s, true);
for (unsigned i = 0; i < objectives.size(); ++i) {
s->add_objective(objectives[i].get());
m_lower.push_back(inf_eps(rational(-1),inf_rational(0)));
m_upper.push_back(inf_eps(rational(1), inf_rational(0)));
m_vars.push_back(s->add_objective(objectives[i].get()));
}
lbool is_sat = l_true;
// ready to test: is_sat = update_upper();
while (is_sat == l_true && !m_cancel) {
is_sat = update_lower();
}
@ -117,8 +109,31 @@ namespace opt {
}
lbool optimize_objectives::update_upper() {
NOT_IMPLEMENTED_YET();
return l_undef;
smt::theory_opt& opt = s->get_optimizer();
if (typeid(smt::theory_inf_arith) != typeid(opt)) {
return l_true;
}
smt::theory_inf_arith& th = dynamic_cast<smt::theory_inf_arith&>(opt);
expr_ref bound(m);
lbool is_sat = l_true;
for (unsigned i = 0; i < m_lower.size(); ++i) {
if (m_lower[i] < m_upper[i]) {
opt_solver::scoped_push _push(*s);
smt::theory_var v = m_vars[i];
bound = th.block_upper_bound(v, m_upper[i]);
expr* bounds[1] = { bound };
is_sat = s->check_sat(1, bounds);
if (is_sat) {
IF_VERBOSE(1, verbose_stream() << "Setting lower bound for " << v << " to " << m_upper[i] << "\n";);
m_lower[i] = m_upper[i];
}
// else: TBD extract Farkas coefficients.
}
}
return l_true;
}
/**
@ -127,10 +142,22 @@ namespace opt {
*/
lbool optimize_objectives::operator()(opt_solver& solver, app_ref_vector& objectives, vector<inf_eps>& values) {
s = &solver;
lbool result = basic_opt(objectives);
values.reset();
values.append(m_lower);
return result;
s->reset_objectives();
m_lower.reset();
m_upper.reset();
for (unsigned i = 0; i < objectives.size(); ++i) {
m_lower.push_back(inf_eps(rational(-1),inf_rational(0)));
m_upper.push_back(inf_eps(rational(1), inf_rational(0)));
}
// First check_sat call to initialize theories
lbool is_sat = s->check_sat(0, 0);
if (is_sat == l_true) {
is_sat = basic_opt(objectives);
values.reset();
values.append(m_lower);
}
return is_sat;
}
}

View file

@ -33,6 +33,7 @@ namespace opt {
volatile bool m_cancel;
vector<inf_eps> m_lower;
vector<inf_eps> m_upper;
svector<smt::theory_var> m_vars;
public:
optimize_objectives(ast_manager& m): m(m), s(0), m_cancel(false) {}

View file

@ -933,7 +933,7 @@ public:
return found;
}
// Return true if there is an edge source --> target.
// Return true if there is an edge source --> target (also counting disabled edges).
// If there is such edge, return its edge_id in parameter id.
bool get_edge_id(dl_var source, dl_var target, edge_id & id) {
edge_id_vector & edges = m_out_edges[source];
@ -942,7 +942,7 @@ public:
for (; it != end; ++it) {
id = *it;
edge & e = m_edges[id];
if (e.is_enabled() && e.get_target() == target) {
if (e.get_target() == target) {
return true;
}
}

View file

@ -42,8 +42,9 @@ namespace smt {
template<typename Ext>
class network_flow : private Ext {
enum edge_state {
NON_BASIS = 0,
BASIS = 1
LOWER = 1,
BASIS = 0,
UPPER = -1
};
typedef dl_var node;
typedef dl_edge<Ext> edge;
@ -66,14 +67,15 @@ namespace smt {
svector<edge_state> m_states;
// An element is true if the corresponding edge points upwards (compared to the root node)
// m_upwards[i] is true if the corresponding edge
// (i, m_pred[i]) points upwards (pointing toward the root node)
svector<bool> m_upwards;
// Store the parent of a node i in the spanning tree
svector<node> m_pred;
// Store the number of edge on the path from node i to the root
svector<int> m_depth;
// Store the pointer from node i to the next node in depth first search ordering
// Store the pointer from node i to the next node in depth-first search order
svector<node> m_thread;
// Reverse orders of m_thread
svector<node> m_rev_thread;
@ -83,7 +85,8 @@ namespace smt {
edge_id m_entering_edge;
edge_id m_leaving_edge;
node m_join_node;
numeral m_delta;
optional<numeral> m_delta;
bool m_in_edge_dir;
unsigned m_step;
@ -109,6 +112,8 @@ namespace smt {
std::string display_spanning_tree();
bool check_well_formed();
public:
network_flow(graph & g, vector<fin_numeral> const & balances);

View file

@ -45,8 +45,20 @@ namespace smt {
template<typename Ext>
network_flow<Ext>::network_flow(graph & g, vector<fin_numeral> const & balances) :
m_graph(g),
m_balances(balances) {
// Network flow graph has the edges in the reversed order compared to constraint graph
// We only take enabled edges from the original graph
for (unsigned i = 0; i < g.get_num_nodes(); ++i) {
m_graph.init_var(i);
}
vector<edge> const & es = g.get_all_edges();
for (unsigned i = 0; i < es.size(); ++i) {
edge const & e = es[i];
if (e.is_enabled()) {
m_graph.add_edge(e.get_target(), e.get_source(), e.get_weight(), explanation());
}
}
unsigned num_nodes = m_graph.get_num_nodes() + 1;
unsigned num_edges = m_graph.get_num_edges();
@ -87,9 +99,9 @@ namespace smt {
m_flows.resize(num_nodes + num_edges);
m_states.resize(num_nodes + num_edges);
m_states.fill(NON_BASIS);
m_states.fill(LOWER);
// Create artificial edges and initialize the spanning tree
// Create artificial edges from/to root node to/from other nodes and initialize the spanning tree
for (unsigned i = 0; i < num_nodes; ++i) {
m_upwards[i] = !m_balances[i].is_neg();
m_pred[i] = root;
@ -101,12 +113,13 @@ namespace smt {
node src = m_upwards[i] ? i : root;
node tgt = m_upwards[i] ? root : i;
m_flows[num_edges + i] = m_upwards[i] ? m_balances[i] : -m_balances[i];
m_graph.enable_edge(m_graph.add_edge(src, tgt, numeral::one(), explanation()));
m_graph.add_edge(src, tgt, numeral::one(), explanation());
}
// Compute initial potentials
node u = m_thread[root];
while (u != root) {
bool direction = m_upwards[u];
node v = m_pred[u];
edge_id e_id = get_edge_id(u, v);
m_potentials[u] = m_potentials[v] + (m_upwards[u] ? - m_graph.get_weight(e_id) : m_graph.get_weight(e_id));
@ -120,6 +133,7 @@ namespace smt {
tout << pp_vector("Potentials", m_potentials) << pp_vector("Flows", m_flows);
});
TRACE("network_flow", tout << "Spanning tree:\n" << display_spanning_tree(););
SASSERT(check_well_formed());
}
template<typename Ext>
@ -136,7 +150,7 @@ namespace smt {
node src = m_graph.get_source(m_entering_edge);
node tgt = m_graph.get_target(m_entering_edge);
numeral cost = m_graph.get_weight(m_entering_edge);
numeral change = m_upwards[src] ? (-cost + m_potentials[src] - m_potentials[tgt]) : (cost - m_potentials[src] + m_potentials[tgt]);
numeral change = m_upwards[src] ? (-cost - m_potentials[src] + m_potentials[tgt]) : (cost + m_potentials[src] - m_potentials[tgt]);
node last = m_thread[m_final[src]];
for (node u = src; u != last; u = m_thread[u]) {
m_potentials[u] += change;
@ -147,7 +161,7 @@ namespace smt {
template<typename Ext>
void network_flow<Ext>::update_flows() {
TRACE("network_flow", tout << "update_flows...\n";);
numeral val = m_states[m_entering_edge] == BASIS ? numeral::zero() : m_delta;
numeral val = fin_numeral(m_states[m_entering_edge]) * (*m_delta);
m_flows[m_entering_edge] += val;
node source = m_graph.get_source(m_entering_edge);
for (unsigned u = source; u != m_join_node; u = m_pred[u]) {
@ -166,20 +180,18 @@ namespace smt {
bool network_flow<Ext>::choose_entering_edge() {
TRACE("network_flow", tout << "choose_entering_edge...\n";);
vector<edge> const & es = m_graph.get_all_edges();
for (unsigned int i = 0; i < es.size(); ++i) {
edge const & e = es[i];
edge_id e_id;
node source = e.get_source();
node target = e.get_target();
if (e.is_enabled() && m_graph.get_edge_id(source, target, e_id) && m_states[e_id] == NON_BASIS) {
numeral cost = e.get_weight() - m_potentials[source] + m_potentials[target];
for (unsigned i = 0; i < es.size(); ++i) {
node src = m_graph.get_source(i);
node tgt = m_graph.get_target(i);
if (m_states[i] != BASIS) {
numeral change = fin_numeral(m_states[i]) * (m_graph.get_weight(i) + m_potentials[src] - m_potentials[tgt]);
// Choose the first negative-cost edge to be the violating edge
// TODO: add multiple pivoting strategies
if (cost.is_neg()) {
m_entering_edge = e_id;
if (change.is_neg()) {
m_entering_edge = i;
TRACE("network_flow", {
tout << "Found entering edge " << e_id << " between node ";
tout << source << " and node " << target << "...\n";
tout << "Found entering edge " << i << " between node ";
tout << src << " and node " << tgt << "...\n";
});
return true;
}
@ -194,6 +206,11 @@ namespace smt {
TRACE("network_flow", tout << "choose_leaving_edge...\n";);
node source = m_graph.get_source(m_entering_edge);
node target = m_graph.get_target(m_entering_edge);
if (m_states[m_entering_edge] == UPPER) {
node temp = source;
source = target;
target = temp;
}
node u = source, v = target;
while (u != v) {
if (m_depth[u] > m_depth[v])
@ -207,34 +224,32 @@ namespace smt {
}
// Found first common ancestor of source and target
m_join_node = u;
TRACE("network_flow", tout << "Found join node " << m_join_node << std::endl;);
// FIXME: need to get truly infinite value
numeral infty = numeral(INT_MAX);
m_delta = infty;
TRACE("network_flow", tout << "Found join node " << m_join_node << std::endl;);
m_delta.set_invalid();
node src, tgt;
// Send flows along the path from source to the ancestor
for (unsigned u = source; u != m_join_node; u = m_pred[u]) {
edge_id e_id = get_edge_id(u, m_pred[u]);
numeral d = m_upwards[u] ? infty : m_flows[e_id];
if (d < m_delta) {
m_delta = d;
edge_id e_id = get_edge_id(u, m_pred[u]);
if (m_upwards[u] && (!m_delta || m_flows[e_id] < *m_delta)) {
m_delta = m_flows[e_id];
src = u;
tgt = m_pred[u];
m_in_edge_dir = true;
}
}
// Send flows along the path from target to the ancestor
for (unsigned u = target; u != m_join_node; u = m_pred[u]) {
edge_id e_id = get_edge_id(u, m_pred[u]);
numeral d = m_upwards[u] ? m_flows[e_id] : infty;
if (d <= m_delta) {
m_delta = d;
if (!m_upwards[u] && (!m_delta || m_flows[e_id] <= *m_delta)) {
m_delta = m_flows[e_id];
src = u;
tgt = m_pred[u];
m_in_edge_dir = false;
}
}
if (m_delta < infty) {
if (m_delta) {
m_leaving_edge = get_edge_id(src, tgt);
TRACE("network_flow", {
tout << "Found leaving edge " << m_leaving_edge;
@ -249,9 +264,21 @@ namespace smt {
template<typename Ext>
void network_flow<Ext>::update_spanning_tree() {
node p = m_graph.get_source(m_entering_edge);
node q = m_graph.get_target(m_entering_edge);
node q = m_graph.get_target(m_entering_edge);
node u = m_graph.get_source(m_leaving_edge);
node v = m_graph.get_target(m_leaving_edge);
// v is parent of u so T_u does not contain root node
if (m_pred[u] == v) {
node temp = u;
u = v;
v = temp;
}
if ((m_states[m_entering_edge] == UPPER) == m_in_edge_dir) {
// q should be in T_v so swap p and q
node temp = p;
p = q;
q = temp;
}
TRACE("network_flow", {
tout << "update_spanning_tree: (" << p << ", " << q << ") enters, (";
@ -265,14 +292,14 @@ namespace smt {
// Update m_pred (for nodes in the stem from q to v)
node n = q;
node last = m_pred[v];
node parent = p;
while (n != last) {
node prev = p;
while (n != last && n != -1) {
node next = m_pred[n];
m_pred[n] = parent;
m_upwards[n] = !m_upwards[n];
parent = n;
m_pred[n] = prev;
m_upwards[n] = !m_upwards[prev];
prev = n;
n = next;
}
}
TRACE("network_flow", tout << "Graft T_q and T_r'\n";);
@ -289,7 +316,7 @@ namespace smt {
node gamma = m_thread[m_final[p]];
n = p;
last = m_pred[gamma];
while (n != last) {
while (n != last && n != -1) {
m_final[n] = z;
n = m_pred[n];
}
@ -299,33 +326,33 @@ namespace smt {
// Update T_r'
node phi = m_rev_thread[v];
node theta = m_thread[m_final[v]];
m_thread[phi] = theta;
gamma = m_thread[m_final[v]];
// REVIEW: check f(n) is not in T_v
// Check that f(u) is not in T_v
node delta = m_final[u] != m_final[v] ? m_final[u] : phi;
n = u;
last = m_pred[gamma];
while (n != last) {
while (n != last && n != -1) {
m_final[n] = delta;
n = m_pred[n];
}
m_thread[phi] = theta;
// Reroot T_v at q
if (u != q) {
if (v != q) {
TRACE("network_flow", tout << "Reroot T_v at q\n";);
node n = m_pred[q];
m_thread[m_final[q]] = n;
last = v;
node n = v;
last = q;
node alpha1, alpha2;
unsigned count = 0;
while (n != last) {
node prev = q;
while (n != last && n != -1) {
// Find all immediate successors of n
node t1 = m_thread[n];
node t2 = m_thread[m_final[t1]];
node t3 = m_thread[m_final[t2]];
if (t1 = m_pred[n]) {
if (t1 == m_pred[n]) {
alpha1 = t2;
alpha2 = t3;
}
@ -338,19 +365,23 @@ namespace smt {
alpha2 = t2;
}
m_thread[n] = alpha1;
m_thread[m_final[alpha1]] = alpha2;
n = m_pred[n];
m_thread[m_final[alpha2]] = n;
// Decrease depth of all children in the subtree
++count;
int d = m_depth[n] - count;
for (node m = m_thread[n]; m != m_final[n]; m = m_thread[m]) {
m_depth[m] -= d;
}
m_thread[m_final[alpha1]] = alpha2;
m_thread[m_final[alpha2]] = prev;
prev = n;
n = m_pred[n];
}
m_thread[m_final[alpha2]] = v;
m_thread[m_final[q]] = prev;
}
for (node n = m_thread[v]; m_pred[n] != -1; n = m_pred[n]) {
m_depth[n] = m_depth[m_pred[n]] + 1;
}
for (unsigned i = 0; i < m_thread.size(); ++i) {
m_rev_thread[m_thread[i]] = i;
}
SASSERT(check_well_formed());
TRACE("network_flow", {
tout << pp_vector("Predecessors", m_pred, true) << pp_vector("Threads", m_thread);
tout << pp_vector("Reverse Threads", m_rev_thread) << pp_vector("Last Successors", m_final);
@ -376,14 +407,12 @@ namespace smt {
vector<edge> const & es = m_graph.get_all_edges();
for (unsigned i = 0; i < es.size(); ++i) {
edge const & e = es[i];
if (e.is_enabled()) {
oss << prefix << e.get_source() << " -> " << prefix << e.get_target();
if (m_states[i] == BASIS) {
oss << "[color=red,penwidth=3.0,label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
}
else {
oss << "[label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
}
oss << prefix << e.get_source() << " -> " << prefix << e.get_target();
if (m_states[i] == BASIS) {
oss << "[color=red,penwidth=3.0,label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
}
else {
oss << "[label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
}
}
oss << std::endl;
@ -396,15 +425,19 @@ namespace smt {
bool network_flow<Ext>::min_cost() {
initialize();
while (choose_entering_edge()) {
SASSERT(check_well_formed());
bool bounded = choose_leaving_edge();
if (!bounded) return false;
update_flows();
if (m_entering_edge != m_leaving_edge) {
m_states[m_entering_edge] = BASIS;
m_states[m_leaving_edge] = NON_BASIS;
m_states[m_leaving_edge] = (m_flows[m_leaving_edge].is_zero()) ? LOWER : UPPER;
update_spanning_tree();
update_potentials();
TRACE("network_flow", tout << "Spanning tree:\n" << display_spanning_tree(););
}
else {
m_states[m_leaving_edge] = m_states[m_leaving_edge] == LOWER ? UPPER : LOWER;
}
}
TRACE("network_flow", tout << "Found optimal solution.\n";);
@ -418,7 +451,7 @@ namespace smt {
vector<edge> const & es = m_graph.get_all_edges();
for (unsigned i = 0; i < es.size(); ++i) {
edge const & e = es[i];
if (e.is_enabled() && m_states[i] == BASIS) {
if (m_states[i] == BASIS) {
m_objective_value += e.get_weight().get_rational() * m_flows[i];
}
}
@ -431,6 +464,70 @@ namespace smt {
}
return m_objective_value;
}
static unsigned find(svector<int>& roots, unsigned x) {
unsigned old_x = x;
while (roots[x] >= 0) {
x = roots[x];
}
roots[old_x] = x;
return x;
}
static void merge(svector<int>& roots, unsigned x, unsigned y) {
x = find(roots, x);
y = find(roots, y);
SASSERT(roots[x] < 0 && roots[y] < 0);
if (x == y) {
return;
}
if (roots[x] > roots[y]) {
std::swap(x, y);
}
SASSERT(roots[x] <= roots[y]);
roots[y] = x;
roots[x] += roots[y];
}
template<typename Ext>
bool network_flow<Ext>::check_well_formed() {
// m_thread is depth-first stack
// m_pred is predecessor link
// m_depth depth counting from a root note.
// m_graph
node root = m_pred.size()-1;
for (unsigned i = 0; i < m_upwards.size(); ++i) {
if (m_upwards[i]) {
node p = m_pred[i];
edge_id e = get_edge_id(i, p);
// we are either the root or the predecessor points up.
SASSERT(p == root || m_upwards[p]);
}
}
// m_thread forms a spanning tree over [0..root]
// union-find structure:
svector<int> roots(root+1, -1);
#if 0
for (unsigned i = 0; i < m_thread.size(); ++i) {
if (m_states[i] == BASIS) {
node x = m_thread[i];
node y = i;
// we are now going to check the edge between x and y:
SASSERT(find(roots, x) != find(roots, y));
merge(roots, x, y);
}
else {
// ? LOWER, UPPER
}
}
#endif
return true;
}
}
#endif

View file

@ -273,14 +273,14 @@ namespace smt {
class atom : public bound {
protected:
bool_var m_bvar;
numeral m_k;
inf_numeral m_k;
unsigned m_atom_kind:2; // atom kind
unsigned m_is_true:1; // cache: true if the atom was assigned to true.
public:
atom(bool_var bv, theory_var v, numeral const & k, atom_kind kind);
atom(bool_var bv, theory_var v, inf_numeral const & k, atom_kind kind);
atom_kind get_atom_kind() const { return static_cast<atom_kind>(m_atom_kind); }
virtual ~atom() {}
numeral const & get_k() const { return m_k; }
inf_numeral const & get_k() const { return m_k; }
bool_var get_bool_var() const { return m_bvar; }
bool is_true() const { return m_is_true; }
void assign_eh(bool is_true, inf_numeral const & epsilon);
@ -999,7 +999,7 @@ namespace smt {
virtual theory_var add_objective(app* term);
virtual inf_eps_rational<inf_rational> get_objective_value(theory_var v);
virtual expr* block_lower_bound(theory_var v, inf_rational const& val);
virtual expr* block_upper_bound(theory_var v, inf_numeral const& val);
// -----------------------------------
//
// Pretty Printing

View file

@ -367,7 +367,7 @@ namespace smt {
// -----------------------------------
template<typename Ext>
theory_arith<Ext>::atom::atom(bool_var bv, theory_var v, numeral const & k, atom_kind kind):
theory_arith<Ext>::atom::atom(bool_var bv, theory_var v, inf_numeral const & k, atom_kind kind):
bound(v, inf_numeral::zero(), B_LOWER, true),
m_bvar(bv),
m_k(k),
@ -997,6 +997,22 @@ namespace smt {
}
}
template<typename Ext>
expr* theory_arith<Ext>::block_upper_bound(theory_var v, inf_numeral const& val) {
ast_manager& m = get_manager();
context& ctx = get_context();
std::ostringstream strm;
strm << val << " <= " << v;
expr* b = m.mk_fresh_const(strm.str().c_str(), m.mk_bool_sort());
bool_var bv = ctx.mk_bool_var(b);
atom* a = alloc(atom, bv, v, val, A_LOWER);
m_unassigned_atoms[v]++;
m_var_occs[v].push_back(a);
m_atoms.push_back(a);
insert_bv2a(bv, a);
return b;
}
template<typename Ext>
inf_eps_rational<inf_rational> theory_arith<Ext>::get_objective_value(theory_var v) {
return m_objective_value;
@ -1117,15 +1133,6 @@ namespace smt {
);
pivot<true>(x_i, x_j, a_ij, false);
TRACE("maximize", tout << "max: " << max << ", x_i: v" << x_i << ", x_j: v" << x_j << ", a_ij: " << a_ij << ", coeff: " << coeff << "\n";
if (upper(x_i)) tout << "upper x_i: " << upper_bound(x_i) << " ";
if (lower(x_i)) tout << "lower x_i: " << lower_bound(x_i) << " ";
tout << "value x_i: " << get_value(x_i) << "\n";
if (upper(x_j)) tout << "upper x_j: " << upper_bound(x_j) << " ";
if (lower(x_j)) tout << "lower x_j: " << lower_bound(x_j) << " ";
tout << "value x_j: " << get_value(x_j) << "\n";
);
SASSERT(is_non_base(x_i));
SASSERT(is_base(x_j));
@ -1137,15 +1144,6 @@ namespace smt {
move_xi_to_lower = a_ij.is_neg();
move_to_bound(x_i, move_xi_to_lower);
TRACE("maximize", tout << "max: " << max << ", x_i: v" << x_i << ", x_j: v" << x_j << ", a_ij: " << a_ij << ", coeff: " << coeff << "\n";
if (upper(x_i)) tout << "upper x_i: " << upper_bound(x_i) << " ";
if (lower(x_i)) tout << "lower x_i: " << lower_bound(x_i) << " ";
tout << "value x_i: " << get_value(x_i) << "\n";
if (upper(x_j)) tout << "upper x_j: " << upper_bound(x_j) << " ";
if (lower(x_j)) tout << "lower x_j: " << lower_bound(x_j) << " ";
tout << "value x_j: " << get_value(x_j) << "\n";
);
row & r2 = m_rows[get_var_row(x_j)];
coeff.neg();
add_tmp_row(r, coeff, r2);

View file

@ -801,7 +801,7 @@ namespace smt {
void theory_arith<Ext>::mk_bound_axioms(atom * a1) {
theory_var v = a1->get_var();
literal l1(a1->get_bool_var());
numeral const & k1(a1->get_k());
inf_numeral const & k1(a1->get_k());
atom_kind kind1 = a1->get_atom_kind();
TRACE("mk_bound_axioms", tout << "making bound axioms for v" << v << " " << kind1 << " " << k1 << "\n";);
atoms & occs = m_var_occs[v];
@ -810,7 +810,7 @@ namespace smt {
for (; it != end; ++it) {
atom * a2 = *it;
literal l2(a2->get_bool_var());
numeral const & k2 = a2->get_k();
inf_numeral const & k2 = a2->get_k();
atom_kind kind2 = a2->get_atom_kind();
SASSERT(k1 != k2 || kind1 != kind2);
SASSERT(a2->get_var() == v);
@ -880,7 +880,7 @@ namespace smt {
ctx.set_var_theory(bv, get_id());
rational _k;
m_util.is_numeral(rhs, _k);
numeral k(_k);
inf_numeral k(_k);
atom * a = alloc(atom, bv, v, k, kind);
mk_bound_axioms(a);
m_unassigned_atoms[v]++;
@ -2475,7 +2475,7 @@ namespace smt {
bool_var bv = a->get_bool_var();
literal l(bv);
if (get_context().get_assignment(bv) == l_undef) {
numeral const & k2 = a->get_k();
inf_numeral const & k2 = a->get_k();
delta.reset();
if (a->get_atom_kind() == A_LOWER) {
// v >= k k >= k2 |- v >= k2

View file

@ -428,7 +428,7 @@ namespace smt {
template<typename Ext>
void theory_arith<Ext>::display_atom(std::ostream & out, atom * a, bool show_sign) const {
theory_var v = a->get_var();
numeral const & k = a->get_k();
inf_numeral const & k = a->get_k();
enode * e = get_enode(v);
if (show_sign) {
if (!a->is_true())

View file

@ -27,14 +27,16 @@ Notes:
namespace smt {
class theory_opt {
public:
typedef inf_eps_rational<inf_rational> inf_eps;
virtual bool maximize(theory_var v) { UNREACHABLE(); return false; };
virtual theory_var add_objective(app* term) { UNREACHABLE(); return null_theory_var; }
virtual inf_eps_rational<inf_rational> get_objective_value(theory_var v) {
virtual inf_eps get_objective_value(theory_var v) {
UNREACHABLE();
inf_eps_rational<inf_rational> r(rational(1), inf_rational(0));
return r;
return inf_eps(rational(1), inf_rational(0));
}
virtual expr* block_lower_bound(theory_var v, inf_rational const& val) { return 0; }
};
}