mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
nla review (#4321)
* simplify the nla_solver interface Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * more simplifications Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * init m_use_nra_model Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * work on NSB comments Signed-off-by: Lev Nachmanson <levnach@hotmail.com> * work on NSB comments Signed-off-by: Lev Nachmanson <levnach@hotmail.com> Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
16aec328f1
commit
6b28973799
|
@ -346,10 +346,7 @@ public:
|
||||||
if (some_int_columns)
|
if (some_int_columns)
|
||||||
adjust_term_and_k_for_some_ints_case_gomory();
|
adjust_term_and_k_for_some_ints_case_gomory();
|
||||||
TRACE("gomory_cut_detail", dump_cut_and_constraints_as_smt_lemma(tout););
|
TRACE("gomory_cut_detail", dump_cut_and_constraints_as_smt_lemma(tout););
|
||||||
lp_assert(lia.current_solution_is_inf_on_cut());
|
lp_assert(lia.current_solution_is_inf_on_cut()); // checks that indices are columns
|
||||||
// NSB code review: this is also used in nla_core.
|
|
||||||
// but it isn't consistent: when theory_lra accesses lar_solver::get_term, the term that is returned uses
|
|
||||||
// column indices, not terms.
|
|
||||||
TRACE("gomory_cut", print_linear_combination_of_column_indices_only(m_t.coeffs_as_vector(), tout << "gomory cut:"); tout << " <= " << m_k << std::endl;);
|
TRACE("gomory_cut", print_linear_combination_of_column_indices_only(m_t.coeffs_as_vector(), tout << "gomory cut:"); tout << " <= " << m_k << std::endl;);
|
||||||
return lia_move::cut;
|
return lia_move::cut;
|
||||||
}
|
}
|
||||||
|
|
|
@ -189,7 +189,16 @@ std::ostream& int_solver::display_inf_rows(std::ostream& out) const {
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool int_solver::cut_indices_are_columns() const {
|
||||||
|
for (const auto & p: m_t) {
|
||||||
|
if (p.column().index() >= lra.A_r().column_count())
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
bool int_solver::current_solution_is_inf_on_cut() const {
|
bool int_solver::current_solution_is_inf_on_cut() const {
|
||||||
|
SASSERT(cut_indices_are_columns());
|
||||||
const auto & x = lrac.m_r_x;
|
const auto & x = lrac.m_r_x;
|
||||||
impq v = m_t.apply(x);
|
impq v = m_t.apply(x);
|
||||||
mpq sign = m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
|
mpq sign = m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
|
||||||
|
|
|
@ -109,8 +109,8 @@ private:
|
||||||
bool has_upper(unsigned j) const;
|
bool has_upper(unsigned j) const;
|
||||||
unsigned row_of_basic_column(unsigned j) const;
|
unsigned row_of_basic_column(unsigned j) const;
|
||||||
bool non_basic_columns_are_at_bounds() const;
|
bool non_basic_columns_are_at_bounds() const;
|
||||||
|
bool cut_indices_are_columns() const;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
std::ostream& display_column(std::ostream & out, unsigned j) const;
|
std::ostream& display_column(std::ostream & out, unsigned j) const;
|
||||||
constraint_index column_upper_bound_constraint(unsigned j) const;
|
constraint_index column_upper_bound_constraint(unsigned j) const;
|
||||||
|
|
|
@ -220,10 +220,11 @@ void basics::negate_strict_sign(new_lemma& lemma, lpvar j) {
|
||||||
// here we use the fact
|
// here we use the fact
|
||||||
// xy = 0 -> x = 0 or y = 0
|
// xy = 0 -> x = 0 or y = 0
|
||||||
bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
|
bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
|
||||||
// NSB review: how is the code-path calling this function disabled?
|
// it seems this code is never exercised
|
||||||
NOT_IMPLEMENTED_YET();
|
for (auto j : f) {
|
||||||
return true;
|
if (val(j).is_zero())
|
||||||
#if 0
|
return false;
|
||||||
|
}
|
||||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||||
new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0");
|
new_lemma lemma(c(), "xy = 0 -> x = 0 or y = 0");
|
||||||
lemma.explain_fixed(var(rm));
|
lemma.explain_fixed(var(rm));
|
||||||
|
@ -235,7 +236,6 @@ bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
|
||||||
lemma &= rm;
|
lemma &= rm;
|
||||||
lemma &= f;
|
lemma &= f;
|
||||||
return true;
|
return true;
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// use basic multiplication properties to create a lemma
|
// use basic multiplication properties to create a lemma
|
||||||
|
@ -285,8 +285,6 @@ bool basics::basic_lemma_for_mon_derived(const monic& rm) {
|
||||||
return true;
|
return true;
|
||||||
if (basic_lemma_for_mon_neutral_derived(rm, factorization))
|
if (basic_lemma_for_mon_neutral_derived(rm, factorization))
|
||||||
return true;
|
return true;
|
||||||
if (proportion_lemma_derived(rm, factorization))
|
|
||||||
return true;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
|
@ -375,65 +373,36 @@ void basics::proportion_lemma_model_based(const monic& rm, const factorization&
|
||||||
factor_index++;
|
factor_index++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// x != 0 or y = 0 => |xy| >= |y|
|
|
||||||
bool basics::proportion_lemma_derived(const monic& rm, const factorization& factorization) {
|
|
||||||
// NSB review: why return false?
|
|
||||||
return false;
|
|
||||||
if (c().has_real(factorization))
|
|
||||||
return false;
|
|
||||||
rational rmv = abs(var_val(rm));
|
|
||||||
if (rmv.is_zero()) {
|
|
||||||
SASSERT(c().has_zero_factor(factorization));
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
int factor_index = 0;
|
|
||||||
for (factor f : factorization) {
|
|
||||||
if (abs(val(f)) > rmv) {
|
|
||||||
generate_pl(rm, factorization, factor_index);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
factor_index++;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
if there are no zero factors then |m| >= |m[factor_index]|
|
|
||||||
|
|
||||||
m := f_1*...*f_n
|
m := f_1*...*f_n
|
||||||
|
|
||||||
sign_m*m < 0 or f_j = 0 or \/_{i != j} sign_j*f_j < 0 or sign_m*m >= sign_j*f_j
|
k is the index of such that |m| < |val(m[k]|
|
||||||
|
|
||||||
|
If for all 1 <= j <= n, j != k we have f_j != 0 then |m| >= |f_k|
|
||||||
|
|
||||||
|
The lemma looks like
|
||||||
|
sign_m*m < 0 or \/_{i != k} f_i = 0 or sign_m*m >= sign_k*f_k
|
||||||
|
|
||||||
NSB review:
|
|
||||||
|
|
||||||
- This rule cannot be applied for reals
|
|
||||||
For example 1/4 = 1/2*1/2 and each factor is bigger than product.
|
|
||||||
|
|
||||||
- Stronger rule is possible for integers:
|
|
||||||
|
|
||||||
sign_m*m < 0 or f_j = 0 or \/_{i != j} sign_m*m >= sign_i*f_i
|
|
||||||
|
|
||||||
*/
|
*/
|
||||||
void basics::generate_pl_on_mon(const monic& m, unsigned factor_index) {
|
void basics::generate_pl_on_mon(const monic& m, unsigned k) {
|
||||||
SASSERT(!c().has_real(m));
|
SASSERT(!c().has_real(m));
|
||||||
new_lemma lemma(c(), "generate_pl_on_mon");
|
new_lemma lemma(c(), "generate_pl_on_mon");
|
||||||
unsigned mon_var = m.var();
|
unsigned mon_var = m.var();
|
||||||
rational mv = val(mon_var);
|
rational mv = val(mon_var);
|
||||||
|
SASSERT(abs(mv) < abs(val(m.vars()[k])));
|
||||||
rational sm = rational(nla::rat_sign(mv));
|
rational sm = rational(nla::rat_sign(mv));
|
||||||
lemma |= ineq(term(sm, mon_var), llc::LT, 0);
|
lemma |= ineq(term(sm, mon_var), llc::LT, 0);
|
||||||
for (unsigned fi = 0; fi < m.size(); fi ++) {
|
for (unsigned fi = 0; fi < m.size(); fi ++) {
|
||||||
lpvar j = m.vars()[fi];
|
lpvar j = m.vars()[fi];
|
||||||
if (fi != factor_index) {
|
if (fi != k) {
|
||||||
lemma |= ineq(j, llc::EQ, 0);
|
lemma |= ineq(j, llc::EQ, 0);
|
||||||
} else {
|
} else {
|
||||||
rational jv = val(j);
|
rational sj = rational(nla::rat_sign(val(j)));
|
||||||
rational sj = rational(nla::rat_sign(jv));
|
|
||||||
// NSB review: what is the justification for this assert: SASSERT(sm*mv < sj*jv);
|
|
||||||
// NSB review: removed c().mk_ineq(sj, j, llc::LT);
|
|
||||||
lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0);
|
lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
lemma &= m;
|
// lemma &= m; // no need to "explain" monomial m here
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -467,13 +436,11 @@ void basics::generate_pl(const monic& m, const factorization& fc, int factor_ind
|
||||||
lpvar j = var(f);
|
lpvar j = var(f);
|
||||||
rational jv = val(j);
|
rational jv = val(j);
|
||||||
rational sj = rational(nla::rat_sign(jv));
|
rational sj = rational(nla::rat_sign(jv));
|
||||||
// NSB review: removed SASSERT(sm*mv < sj*jv);
|
|
||||||
// NSB review: removed lemma |= ineq(term(sj, j), llc::LT, 0);
|
|
||||||
lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0);
|
lemma |= ineq(term(sm, mon_var, -sj, j), llc::GE, 0);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
lemma &= fc;
|
lemma &= fc;
|
||||||
lemma &= m;
|
lemma &= m;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool basics::is_separated_from_zero(const factorization& f) const {
|
bool basics::is_separated_from_zero(const factorization& f) const {
|
||||||
|
@ -539,37 +506,10 @@ void basics::basic_lemma_for_mon_model_based(const monic& rm) {
|
||||||
or
|
or
|
||||||
- /\_j f_j = val(f_j) => m = sign
|
- /\_j f_j = val(f_j) => m = sign
|
||||||
*/
|
*/
|
||||||
// NSB code review: can't we just use basic_lemma_for_mon_neutral_from_factors_to_model_based?
|
|
||||||
// then the factorization is the same as the monomial.
|
|
||||||
// then the only difference is to omit adding some explanations.
|
|
||||||
|
|
||||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m) {
|
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m) {
|
||||||
lpvar not_one = null_lpvar;
|
lpvar not_one; rational sign;
|
||||||
rational sign(1);
|
if (!can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(m, m, not_one, sign))
|
||||||
TRACE("nla_solver_bl", tout << "m = "; c().print_monic(m, tout););
|
|
||||||
for (auto j : m.vars()) {
|
|
||||||
auto v = val(j);
|
|
||||||
if (v == rational(1)) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (v == -rational(1)) {
|
|
||||||
sign = -sign;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (not_one == null_lpvar) {
|
|
||||||
not_one = j;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
// if we are here then there are at least two factors with values different from one and minus one: cannot create the lemma
|
|
||||||
return false;
|
return false;
|
||||||
}
|
|
||||||
|
|
||||||
if (not_one != null_lpvar) { // we found the only not_one
|
|
||||||
if (var_val(m) == val(not_one) * sign) {
|
|
||||||
TRACE("nla_solver", tout << "the whole equal to the factor" << std::endl;);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
new_lemma lemma(c(), __FUNCTION__);
|
new_lemma lemma(c(), __FUNCTION__);
|
||||||
for (auto j : m.vars()) {
|
for (auto j : m.vars()) {
|
||||||
|
@ -621,7 +561,8 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic
|
||||||
lemma |= ineq(term(u, rational(val(u) == -val(mon_var) ? 1 : -1), mon_var), llc::NE, 0);
|
lemma |= ineq(term(u, rational(val(u) == -val(mon_var) ? 1 : -1), mon_var), llc::NE, 0);
|
||||||
lemma |= ineq(v, llc::EQ, 1);
|
lemma |= ineq(v, llc::EQ, 1);
|
||||||
lemma |= ineq(v, llc::EQ, -1);
|
lemma |= ineq(v, llc::EQ, -1);
|
||||||
lemma &= rm; // NSB review: is this dependency required?
|
lemma &= rm; // NSB review: is this dependency required? - it does because it explains how monomial is equivalent
|
||||||
|
// to the rooted monomial
|
||||||
lemma &= f;
|
lemma &= f;
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
|
@ -637,24 +578,11 @@ void basics::basic_lemma_for_mon_neutral_model_based(const monic& rm, const fact
|
||||||
basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(rm, f);
|
basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(rm, f);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
template <typename T>
|
||||||
/**
|
bool basics::can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const T& f, lpvar ¬_one, rational& sign) {
|
||||||
- m := f1*f2*..
|
sign = rational(1);
|
||||||
- f_i are factors of m
|
// TRACE("nla_solver_bl", tout << pp_mon_with_vars(_(), m) <<"\nf = " << c().pp(f) << "sign = " << sign << '\n';);
|
||||||
- at most one variable among f_i evaluates to something else than -1, +1.
|
not_one = null_lpvar;
|
||||||
- m = sign * f_i
|
|
||||||
- sign = sign of f_1 * .. * f_{i-1} * f_{i+1} ... = +/- 1
|
|
||||||
- lemma:
|
|
||||||
/\_{j != i} f_j = val(f_j) => m = sign * f_i
|
|
||||||
or
|
|
||||||
/\ f_j = val(f_j) => m = sign if all factors evaluate to +/- 1
|
|
||||||
|
|
||||||
*/
|
|
||||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const factorization& f) {
|
|
||||||
rational sign(1);
|
|
||||||
SASSERT(m.rsign() == canonize_sign(f));
|
|
||||||
TRACE("nla_solver_bl", tout << pp_mon_with_vars(_(), m) <<"\nf = " << c().pp(f) << "sign = " << sign << '\n';);
|
|
||||||
lpvar not_one = null_lpvar;
|
|
||||||
for (auto j : f) {
|
for (auto j : f) {
|
||||||
TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout););
|
TRACE("nla_solver_bl", tout << "j = "; c().print_factor_with_vars(j, tout););
|
||||||
auto v = val(j);
|
auto v = val(j);
|
||||||
|
@ -685,6 +613,25 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
- m := f1*f2*..
|
||||||
|
- f_i are factors of m
|
||||||
|
- at most one variable among f_i evaluates to something else than -1, +1.
|
||||||
|
- m = sign * f_i
|
||||||
|
- sign = sign of f_1 * .. * f_{i-1} * f_{i+1} ... = +/- 1
|
||||||
|
- lemma:
|
||||||
|
/\_{j != i} f_j = val(f_j) => m = sign * f_i
|
||||||
|
or
|
||||||
|
/\ f_j = val(f_j) => m = sign if all factors evaluate to +/- 1
|
||||||
|
|
||||||
|
*/
|
||||||
|
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const factorization& f) {
|
||||||
|
lpvar not_one; rational sign;
|
||||||
|
if (!can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(m, f, not_one, sign))
|
||||||
|
return false;
|
||||||
TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";);
|
TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";);
|
||||||
|
|
||||||
new_lemma lemma(c(), __FUNCTION__);
|
new_lemma lemma(c(), __FUNCTION__);
|
||||||
|
|
|
@ -48,6 +48,10 @@ struct basics: common {
|
||||||
// bool basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const monic& m);
|
// bool basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const monic& m);
|
||||||
bool basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm, const factorization& f);
|
bool basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm, const factorization& f);
|
||||||
|
|
||||||
|
// use the fact
|
||||||
|
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||||
|
template <typename T>
|
||||||
|
bool can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& rm, const T&, lpvar&, rational&);
|
||||||
// use the fact
|
// use the fact
|
||||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||||
bool basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& rm, const factorization& f);
|
bool basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& rm, const factorization& f);
|
||||||
|
@ -83,8 +87,6 @@ struct basics: common {
|
||||||
void negate_strict_sign(new_lemma& lemma, lpvar j);
|
void negate_strict_sign(new_lemma& lemma, lpvar j);
|
||||||
// x != 0 or y = 0 => |xy| >= |y|
|
// x != 0 or y = 0 => |xy| >= |y|
|
||||||
void proportion_lemma_model_based(const monic& rm, const factorization& factorization);
|
void proportion_lemma_model_based(const monic& rm, const factorization& factorization);
|
||||||
// x != 0 or y = 0 => |xy| >= |y|
|
|
||||||
bool proportion_lemma_derived(const monic& rm, const factorization& factorization);
|
|
||||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||||
void generate_pl_on_mon(const monic& m, unsigned factor_index);
|
void generate_pl_on_mon(const monic& m, unsigned factor_index);
|
||||||
|
|
||||||
|
|
|
@ -49,6 +49,9 @@ struct common {
|
||||||
rational var_val(monic const& m) const; // value obtained from variable representing monomial
|
rational var_val(monic const& m) const; // value obtained from variable representing monomial
|
||||||
rational mul_val(monic const& m) const; // value obtained from multiplying variables of monomial
|
rational mul_val(monic const& m) const; // value obtained from multiplying variables of monomial
|
||||||
template <typename T> lpvar var(T const& t) const;
|
template <typename T> lpvar var(T const& t) const;
|
||||||
|
// this needed in can_create_lemma_for_mon_neutral_from_factors_to_monic_model_based when iterating
|
||||||
|
// over a monic
|
||||||
|
lpvar var(lpvar j) const { return j; }
|
||||||
bool done() const;
|
bool done() const;
|
||||||
template <typename T> bool canonize_sign(const T&) const;
|
template <typename T> bool canonize_sign(const T&) const;
|
||||||
|
|
||||||
|
|
|
@ -1476,21 +1476,16 @@ lbool core::check(vector<lemma>& l_vec) {
|
||||||
patch_monomials_with_real_vars();
|
patch_monomials_with_real_vars();
|
||||||
if (m_to_refine.is_empty()) { return l_true; }
|
if (m_to_refine.is_empty()) { return l_true; }
|
||||||
init_search();
|
init_search();
|
||||||
|
|
||||||
set_use_nra_model(false);
|
set_use_nra_model(false);
|
||||||
|
|
||||||
if (need_to_call_algebraic_methods() && m_horner.horner_lemmas())
|
|
||||||
goto finish_up;
|
|
||||||
|
|
||||||
|
if (need_to_call_algebraic_methods()) {
|
||||||
if (!done()) {
|
if (!m_horner.horner_lemmas() && m_nla_settings.run_grobner() && !done()) {
|
||||||
clear_and_resize_active_var_set(); // NSB code review: why is this independent of whether Grobner is run?
|
clear_and_resize_active_var_set();
|
||||||
if (m_nla_settings.run_grobner()) {
|
|
||||||
find_nl_cluster();
|
find_nl_cluster();
|
||||||
run_grobner();
|
run_grobner();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
TRACE("nla_solver_details", print_terms(tout); tout << m_lar_solver.constraints(););
|
TRACE("nla_solver_details", print_terms(tout); tout << m_lar_solver.constraints(););
|
||||||
if (!done())
|
if (!done())
|
||||||
m_basics.basic_lemma(true);
|
m_basics.basic_lemma(true);
|
||||||
|
@ -1511,6 +1506,7 @@ lbool core::check(vector<lemma>& l_vec) {
|
||||||
m_tangents.tangent_lemma();
|
m_tangents.tangent_lemma();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if (!m_reslim.inc())
|
if (!m_reslim.inc())
|
||||||
return l_undef;
|
return l_undef;
|
||||||
|
|
||||||
|
|
|
@ -404,7 +404,6 @@ public:
|
||||||
bool rm_check(const monic&) const;
|
bool rm_check(const monic&) const;
|
||||||
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity();
|
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity();
|
||||||
|
|
||||||
// NSB code review: these could be methods on new_lemma
|
|
||||||
void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp);
|
void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp);
|
||||||
void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp, rational const& bound);
|
void add_abs_bound(new_lemma& lemma, lpvar v, llc cmp, rational const& bound);
|
||||||
void negate_relation(new_lemma& lemma, unsigned j, const rational& a);
|
void negate_relation(new_lemma& lemma, unsigned j, const rational& a);
|
||||||
|
|
|
@ -28,7 +28,6 @@ bool solver::is_monic_var(lpvar v) const {
|
||||||
|
|
||||||
bool solver::need_check() { return true; }
|
bool solver::need_check() { return true; }
|
||||||
|
|
||||||
|
|
||||||
lbool solver::check(vector<lemma>& l) {
|
lbool solver::check(vector<lemma>& l) {
|
||||||
return m_core->check(l);
|
return m_core->check(l);
|
||||||
}
|
}
|
||||||
|
|
|
@ -2158,6 +2158,7 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
lbool check_nla_continue() {
|
lbool check_nla_continue() {
|
||||||
|
m_a1 = nullptr; m_a2 = nullptr;
|
||||||
lbool r = m_nla->check(m_nla_lemma_vector);
|
lbool r = m_nla->check(m_nla_lemma_vector);
|
||||||
if (use_nra_model()) m_stats.m_nra_calls ++;
|
if (use_nra_model()) m_stats.m_nra_calls ++;
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue