3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-09 09:21:56 +00:00

outline for adding monomials

This commit is contained in:
Nikolaj Bjorner 2025-09-26 12:03:26 +03:00
parent a6ea667776
commit 6adb234673
14 changed files with 242 additions and 140 deletions

View file

@ -10,7 +10,11 @@
Check if the system with new constraints is LP feasible.
If it is not, then produce a lemma that explains the infeasibility.
The lemma is in terms of the original constraints and bounds.
Strategy 1: The lemma is in terms of the original constraints and bounds.
Strategy 2: Attempt to eliminate new monomials from the lemma by relying on Farkas multipliers.
If it succeeds to eliminate new monomials we have a lemma that is a linear
combination of existing variables.
Strategy 3: The lemma uses the new constraints.
--*/
@ -21,78 +25,144 @@
namespace nla {
mul_saturate::mul_saturate(core* core) :
common(core),
lra(m_core.lra) {}
common(core) {}
lbool mul_saturate::saturate() {
lra.push();
for (auto j : c().m_to_refine) {
auto& m = c().emons()[j];
for (auto& con : lra.constraints().active()) {
for (auto v : m.vars()) {
for (auto [coeff, u] : con.coeffs()) {
if (u == v)
// multiply by remaining vars
multiply_constraint(con, m, v);
// add new constraint
}
}
}
}
// record new monomials that are created and recursively down-saturate with respect to these.
auto st = lra.solve();
lbool r = l_undef;
if (st == lp::lp_status::INFEASIBLE) {
// now we need to filter new constraints into bounds and old constraints.
r = l_false;
}
if (st == lp::lp_status::OPTIMAL || st == lp::lp_status::FEASIBLE) {
// TODO: check model just in case it got lucky.
}
lra.pop(1);
lp::explanation ex;
init_solver();
add_multiply_constraints();
lbool r = solve(ex);
if (r == l_false)
add_lemma(ex);
return r;
}
void mul_saturate::init_solver() {
local_solver = alloc(lp::lar_solver);
}
void mul_saturate::add_lemma(lp::explanation const& ex1) {
lp::explanation ex2;
for (auto p : ex1) {
lp::constraint_index src_ci;
if (m_new_mul_constraints.find(p.ci(), src_ci))
ex2.add_pair(src_ci, mpq(1));
else
ex2.add_pair(p.ci(), p.coeff());
}
lemma_builder new_lemma(c(), "stellensatz");
new_lemma &= ex2;
for (auto [v, sign] : m_var_signs) {
if (sign)
new_lemma.explain_existing_upper_bound(v);
else
new_lemma.explain_existing_lower_bound(v);
}
IF_VERBOSE(1, verbose_stream() << "unsat \n" << new_lemma << "\n");
}
lbool mul_saturate::solve(lp::explanation& ex) {
for (auto const& [new_ci, old_ci] : m_new_mul_constraints)
local_solver->activate(new_ci);
auto st = local_solver->solve();
lbool r = l_undef;
if (st == lp::lp_status::INFEASIBLE) {
local_solver->get_infeasibility_explanation(ex);
IF_VERBOSE(0, c().print_explanation(ex, verbose_stream()) << "\n";);
r = l_false;
}
if (st == lp::lp_status::OPTIMAL || st == lp::lp_status::FEASIBLE) {
// TODO: check model just in case it got lucky.
IF_VERBOSE(1, verbose_stream() << "saturation is LP feasible, maybe it is a model of the NLA problem\n");
}
IF_VERBOSE(0, local_solver->display(verbose_stream()); c().display(verbose_stream()));
return r;
}
// record new monomials that are created and recursively down-saturate with respect to these.
void mul_saturate::add_multiply_constraints() {
m_new_mul_constraints.reset();
m_seen_vars.reset();
m_var_signs.reset();
for (auto j : c().m_to_refine) {
for (auto con_id : local_solver->constraints().indices()) {
unsigned num_vars = c().emon(j).vars().size();
for (unsigned i = 0; i < num_vars; ++i) {
auto v = c().emon(j).vars()[i];
for (auto [coeff, u] : local_solver->constraints()[con_id].coeffs())
if (u == v)
add_multiply_constraint(con_id, j, v);
}
}
}
}
// multiply by remaining vars
void mul_saturate::multiply_constraint(lp::lar_base_constraint const& con, monic const& m, lpvar x) {
void mul_saturate::add_multiply_constraint(lp::constraint_index old_ci, lp::lpvar mi, lpvar x) {
lp::lar_base_constraint const& con = local_solver->constraints()[old_ci];
auto const& lhs = con.coeffs();
auto const& rhs = con.rhs();
auto k = con.kind();
auto k = con.kind();
if (k == lp::lconstraint_kind::NE || k == lp::lconstraint_kind::EQ)
return; // not supported
auto sign = false;
svector<lpvar> vars;
bool first = true;
for (auto v : m.vars()) {
if (v != x || !first)
vars.push_back(v);
for (auto v : c().emon(mi).vars()) {
if (v != x || !first)
vars.push_back(v);
else
first = false;
}
vector<std::pair<rational, lpvar>> new_lhs;
// compute sign of vars
for (auto v : vars) {
if (m_seen_vars.contains(v))
continue;
// retrieve bounds of v
// if v has non-negative lower bound add as positive
// if v has non-positive upper bound add as negative
// otherwise, fail
if (local_solver->column_has_lower_bound(v) && !local_solver->get_lower_bound(v).is_neg()) {
m_var_signs.push_back({v, false});
m_seen_vars.insert(v);
}
else if (local_solver->column_has_upper_bound(v) && !local_solver->get_upper_bound(v).is_pos()) {
m_var_signs.push_back({v, true});
m_seen_vars.insert(v);
sign = !sign;
}
else
return;
}
lp::lar_term new_lhs;
rational new_rhs(rhs);
for (auto [coeff, v] : lhs) {
#if 0
vars.push_back(v);
auto new_m = c().emons().find_canonical(vars);
if (!new_m) {
bool is_int = lra.var_is_int(x); // assume all vars in monic have the same type, can be changed for MIP
lpvar new_monic_var = 0; // lra.add_var(is_int);
c().emons().add(new_monic_var, vars);
new_m = c().emons().find_canonical(vars);
SASSERT(new_m);
}
new_lhs.push_back({coeff, new_m->var()});
lpvar new_monic_var = c().m_add_monomial(vars);
auto const& new_m = c().emons()[new_monic_var];
verbose_stream() << vars << " v " << new_m.var() << " coeff " << coeff << "\n";
new_lhs.add_monomial(coeff, new_m.var());
vars.pop_back();
#endif
}
if (rhs != 0) {
new_lhs.push_back({-rhs, m.var()});
if (vars.size() == 1) {
new_lhs.add_monomial(-rhs, vars[0]);
verbose_stream() << "rhs mul " << -rhs << " * j" << vars[0] << "\n";
}
else {
#if 0
lpvar new_monic_var = c().m_add_monomial(vars);
auto const& new_m = c().emons()[new_monic_var];
verbose_stream() << vars << " v " << new_m.var() << " coeff " << coeff << "\n";
new_lhs.add_monomial(-rhs, new_m.var());
verbose_stream() << "rhs mul " << -rhs << " * j" << new_m.var() << "\n";
#endif
}
new_rhs = 0;
}
// compute sign of vars
for (auto v : vars)
if (c().val(v).is_neg())
sign = !sign;
if (sign) {
switch (k) {
case lp::lconstraint_kind::LE: k = lp::lconstraint_kind::GE; break;
@ -101,7 +171,11 @@ namespace nla {
case lp::lconstraint_kind::GT: k = lp::lconstraint_kind::LT; break;
default: break;
}
}
// instead of adding a constraint here, add row to tableau based on the new_lhs, new_rhs, k.
}
c().display_constraint(verbose_stream(), old_ci) << " -> ";
c().display_constraint(verbose_stream(), new_lhs, k, new_rhs) << "\n";
// TODO:
// auto new_ci = lra.m_add_constraint(new_lhs, k, new_rhs);
// m_new_mul_constraints.insert(new_ci, old_ci);
}
}