3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-03 16:48:06 +00:00

Merge branch 'pure' of https://git01.codeplex.com/z3 into contrib

This commit is contained in:
Christoph M. Wintersteiger 2014-10-24 21:17:57 +01:00
commit 6a496a1bfb
560 changed files with 52025 additions and 9358 deletions

View file

@ -604,7 +604,9 @@ bool arith_eq_solver::solve_integer_equations_gcd(
}
SASSERT(g == r0[i]);
}
SASSERT(abs(r0[i]).is_one());
if (!abs(r0[i]).is_one()) {
return false;
}
live.erase(live.begin()+live_pos);
for (j = 0; j < live.size(); ++j) {
row& r = rows[live[j]];

View file

@ -820,6 +820,7 @@ public:
}
}
private:
// Update the assignment of variable v, that is,
// m_assignment[v] += inc
// This method also stores the old value of v in the assignment stack.
@ -829,6 +830,12 @@ public:
m_assignment[v] += inc;
}
public:
void inc_assignment(dl_var v, numeral const& inc) {
m_assignment[v] += inc;
}
struct every_var_proc {
bool operator()(dl_var v) const {

View file

@ -23,6 +23,7 @@ void preprocessor_params::updt_local_params(params_ref const & _p) {
smt_params_helper p(_p);
m_macro_finder = p.macro_finder();
m_pull_nested_quantifiers = p.pull_nested_quantifiers();
m_refine_inj_axiom = p.refine_inj_axioms();
}
void preprocessor_params::updt_params(params_ref const & p) {

View file

@ -27,6 +27,7 @@ void qi_params::updt_params(params_ref const & _p) {
m_mbqi_max_iterations = p.mbqi_max_iterations();
m_mbqi_trace = p.mbqi_trace();
m_mbqi_force_template = p.mbqi_force_template();
m_mbqi_id = p.mbqi_id();
m_qi_profile = p.qi_profile();
m_qi_profile_freq = p.qi_profile_freq();
m_qi_max_instances = p.qi_max_instances();

View file

@ -51,6 +51,7 @@ struct qi_params {
unsigned m_mbqi_max_iterations;
bool m_mbqi_trace;
unsigned m_mbqi_force_template;
const char * m_mbqi_id;
qi_params(params_ref const & p = params_ref()):
/*
@ -97,7 +98,9 @@ struct qi_params {
m_mbqi_max_cexs_incr(1),
m_mbqi_max_iterations(1000),
m_mbqi_trace(false),
m_mbqi_force_template(10) {
m_mbqi_force_template(10),
m_mbqi_id(0)
{
updt_params(p);
}

View file

@ -19,10 +19,11 @@ Revision History:
#include"smt_params.h"
#include"smt_params_helper.hpp"
#include"model_params.hpp"
#include"gparams.h"
void smt_params::updt_local_params(params_ref const & _p) {
smt_params_helper p(_p);
m_auto_config = p.auto_config();
m_auto_config = p.auto_config() && gparams::get_value("auto_config") == "true"; // auto-config is not scoped by smt in gparams.
m_random_seed = p.random_seed();
m_relevancy_lvl = p.relevancy();
m_ematching = p.ematching();
@ -40,6 +41,7 @@ void smt_params::updt_local_params(params_ref const & _p) {
m_arith_pivot_strategy = ARITH_PIVOT_GREATEST_ERROR;
else if (_p.get_bool("arith.least_error_pivot", false))
m_arith_pivot_strategy = ARITH_PIVOT_LEAST_ERROR;
theory_array_params::updt_params(_p);
}
void smt_params::updt_params(params_ref const & p) {
@ -47,6 +49,7 @@ void smt_params::updt_params(params_ref const & p) {
qi_params::updt_params(p);
theory_arith_params::updt_params(p);
theory_bv_params::updt_params(p);
// theory_array_params::updt_params(p);
updt_local_params(p);
}

View file

@ -14,6 +14,7 @@ def_module_params(module_name='smt',
('delay_units', BOOL, False, 'if true then z3 will not restart when a unit clause is learned'),
('delay_units_threshold', UINT, 32, 'maximum number of learned unit clauses before restarting, ingored if delay_units is false'),
('pull_nested_quantifiers', BOOL, False, 'pull nested quantifiers'),
('refine_inj_axioms', BOOL, True, 'refine injectivity axioms'),
('soft_timeout', UINT, 0, 'soft timeout (0 means no timeout)'),
('mbqi', BOOL, True, 'model based quantifier instantiation (MBQI)'),
('mbqi.max_cexs', UINT, 1, 'initial maximal number of counterexamples used in MBQI, each counterexample generates a quantifier instantiation'),
@ -21,6 +22,7 @@ def_module_params(module_name='smt',
('mbqi.max_iterations', UINT, 1000, 'maximum number of rounds of MBQI'),
('mbqi.trace', BOOL, False, 'generate tracing messages for Model Based Quantifier Instantiation (MBQI). It will display a message before every round of MBQI, and the quantifiers that were not satisfied'),
('mbqi.force_template', UINT, 10, 'some quantifiers can be used as templates for building interpretations for functions. Z3 uses heuristics to decide whether a quantifier will be used as a template or not. Quantifiers with weight >= mbqi.force_template are forced to be used as a template'),
('mbqi.id', STRING, '', 'Only use model-based instantiation for quantifiers with id\'s beginning with string'),
('qi.profile', BOOL, False, 'profile quantifier instantiation'),
('qi.profile_freq', UINT, UINT_MAX, 'how frequent results are reported by qi.profile'),
('qi.max_instances', UINT, UINT_MAX, 'maximum number of quantifier instantiations'),
@ -41,4 +43,7 @@ def_module_params(module_name='smt',
('arith.propagation_mode', UINT, 2, '0 - no propagation, 1 - propagate existing literals, 2 - refine bounds'),
('arith.branch_cut_ratio', UINT, 2, 'branch/cut ratio for linear integer arithmetic'),
('arith.int_eq_branch', BOOL, False, 'branching using derived integer equations'),
('arith.ignore_int', BOOL, False, 'treat integer variables as real')))
('arith.ignore_int', BOOL, False, 'treat integer variables as real'),
('array.weak', BOOL, False, 'weak array theory'),
('array.extensional', BOOL, True, 'extensional array theory')
))

View file

@ -22,6 +22,7 @@ Revision History:
void theory_arith_params::updt_params(params_ref const & _p) {
smt_params_helper p(_p);
m_arith_random_initial_value = p.arith_random_initial_value();
m_arith_random_seed = p.random_seed();
m_arith_mode = static_cast<arith_solver_id>(p.arith_solver());
m_nl_arith = p.arith_nl();
m_nl_arith_gb = p.arith_nl_gb();

View file

@ -27,8 +27,7 @@ enum arith_solver_id {
AS_DIFF_LOGIC,
AS_ARITH,
AS_DENSE_DIFF_LOGIC,
AS_UTVPI,
AS_HORN
AS_UTVPI
};
enum bound_prop_mode {

View file

@ -0,0 +1,28 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
theory_array_params.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-05-06.
Revision History:
--*/
#include"theory_array_params.h"
#include"smt_params_helper.hpp"
void theory_array_params::updt_params(params_ref const & _p) {
smt_params_helper p(_p);
m_array_weak = p.array_weak();
m_array_extensional = p.array_extensional();
}

View file

@ -51,6 +51,9 @@ struct theory_array_params : public array_simplifier_params {
m_array_lazy_ieq_delay(10) {
}
void updt_params(params_ref const & _p);
#if 0
void register_params(ini_params & p) {
p.register_int_param("array_solver", 0, 3, reinterpret_cast<int&>(m_array_mode), "0 - no array, 1 - simple, 2 - model based, 3 - full");

View file

@ -20,6 +20,7 @@ Revision History:
#include"proto_model.h"
#include"ast_pp.h"
#include"ast_ll_pp.h"
#include"expr_functors.h"
datatype_factory::datatype_factory(ast_manager & m, proto_model & md):
struct_factory(m, m.mk_family_id("datatype"), md),
@ -47,8 +48,10 @@ expr * datatype_factory::get_some_value(sort * s) {
*/
expr * datatype_factory::get_last_fresh_value(sort * s) {
expr * val = 0;
if (m_last_fresh_value.find(s, val))
if (m_last_fresh_value.find(s, val)) {
TRACE("datatype_factory", tout << "cached fresh value: " << mk_pp(val, m_manager) << "\n";);
return val;
}
value_set * set = get_value_set(s);
if (set->empty())
val = get_some_value(s);
@ -59,6 +62,17 @@ expr * datatype_factory::get_last_fresh_value(sort * s) {
return val;
}
bool datatype_factory::is_subterm_of_last_value(app* e) {
expr* last;
if (!m_last_fresh_value.find(m_manager.get_sort(e), last)) {
return false;
}
contains_app contains(m_manager, e);
bool result = contains(last);
TRACE("datatype_factory", tout << mk_pp(e, m_manager) << " in " << mk_pp(last, m_manager) << " " << result << "\n";);
return result;
}
/**
\brief Create an almost fresh value. If s is recursive, then the result is not 0.
It also updates m_last_fresh_value
@ -67,6 +81,7 @@ expr * datatype_factory::get_almost_fresh_value(sort * s) {
value_set * set = get_value_set(s);
if (set->empty()) {
expr * val = get_some_value(s);
SASSERT(val);
if (m_util.is_recursive(s))
m_last_fresh_value.insert(s, val);
return val;
@ -104,11 +119,18 @@ expr * datatype_factory::get_almost_fresh_value(sort * s) {
}
}
if (recursive || found_fresh_arg) {
expr * new_value = m_manager.mk_app(constructor, args.size(), args.c_ptr());
app * new_value = m_manager.mk_app(constructor, args.size(), args.c_ptr());
SASSERT(!found_fresh_arg || !set->contains(new_value));
register_value(new_value);
if (m_util.is_recursive(s))
m_last_fresh_value.insert(s, new_value);
if (m_util.is_recursive(s)) {
if (is_subterm_of_last_value(new_value)) {
new_value = static_cast<app*>(m_last_fresh_value.find(s));
}
else {
m_last_fresh_value.insert(s, new_value);
}
}
TRACE("datatype_factory", tout << "almost fresh: " << mk_pp(new_value, m_manager) << "\n";);
return new_value;
}
}
@ -169,8 +191,10 @@ expr * datatype_factory::get_fresh_value(sort * s) {
// Approach 2)
// For recursive datatypes.
// search for constructor...
unsigned num_iterations = 0;
if (m_util.is_recursive(s)) {
while(true) {
++num_iterations;
TRACE("datatype_factory", tout << mk_pp(get_last_fresh_value(s), m_manager) << "\n";);
ptr_vector<func_decl> const * constructors = m_util.get_datatype_constructors(s);
ptr_vector<func_decl>::const_iterator it = constructors->begin();
@ -180,21 +204,42 @@ expr * datatype_factory::get_fresh_value(sort * s) {
expr_ref_vector args(m_manager);
bool found_sibling = false;
unsigned num = constructor->get_arity();
TRACE("datatype_factory", tout << "checking constructor: " << constructor->get_name() << "\n";);
for (unsigned i = 0; i < num; i++) {
sort * s_arg = constructor->get_domain(i);
TRACE("datatype_factory", tout << mk_pp(s, m_manager) << " "
<< mk_pp(s_arg, m_manager) << " are_siblings "
<< m_util.are_siblings(s, s_arg) << " is_datatype "
<< m_util.is_datatype(s_arg) << " found_sibling "
<< found_sibling << "\n";);
if (!found_sibling && m_util.is_datatype(s_arg) && m_util.are_siblings(s, s_arg)) {
found_sibling = true;
expr * maybe_new_arg = get_almost_fresh_value(s_arg);
expr * maybe_new_arg = 0;
if (num_iterations <= 1) {
maybe_new_arg = get_almost_fresh_value(s_arg);
}
else {
maybe_new_arg = get_fresh_value(s_arg);
}
if (!maybe_new_arg) {
TRACE("datatype_factory",
tout << "no argument found for " << mk_pp(s_arg, m_manager) << "\n";);
maybe_new_arg = m_model.get_some_value(s_arg);
found_sibling = false;
}
SASSERT(maybe_new_arg);
args.push_back(maybe_new_arg);
}
else {
expr * some_arg = m_model.get_some_value(s_arg);
SASSERT(some_arg);
args.push_back(some_arg);
}
}
if (found_sibling) {
expr_ref new_value(m_manager);
new_value = m_manager.mk_app(constructor, args.size(), args.c_ptr());
TRACE("datatype_factory", tout << "potential new value: " << mk_pp(new_value, m_manager) << "\n";);
m_last_fresh_value.insert(s, new_value);
if (!set->contains(new_value)) {
register_value(new_value);

View file

@ -29,6 +29,8 @@ class datatype_factory : public struct_factory {
expr * get_last_fresh_value(sort * s);
expr * get_almost_fresh_value(sort * s);
bool is_subterm_of_last_value(app* e);
public:
datatype_factory(ast_manager & m, proto_model & md);
virtual ~datatype_factory() {}

View file

@ -247,6 +247,7 @@ bool proto_model::eval(expr * e, expr_ref & result, bool model_completion) {
new_t = mk_some_interp_for(f);
}
else {
TRACE("model_eval", tout << f->get_name() << " is uninterpreted\n";);
is_ok = false;
}
}
@ -294,6 +295,7 @@ bool proto_model::eval(expr * e, expr_ref & result, bool model_completion) {
// f is an uninterpreted function, there is no need to use m_simplifier.mk_app
new_t = m_manager.mk_app(f, num_args, args.c_ptr());
trail.push_back(new_t);
TRACE("model_eval", tout << f->get_name() << " is uninterpreted\n";);
is_ok = false;
}
}
@ -326,6 +328,7 @@ bool proto_model::eval(expr * e, expr_ref & result, bool model_completion) {
todo.pop_back();
break;
case AST_QUANTIFIER:
TRACE("model_eval", tout << "found quantifier\n" << mk_pp(a, m_manager) << "\n";);
is_ok = false; // evaluator does not handle quantifiers.
SASSERT(a != 0);
eval_cache.insert(a, a);

View file

@ -180,10 +180,23 @@ public:
value_set * set = get_value_set(s);
bool is_new = false;
expr * result = 0;
sort_info* s_info = s->get_info();
sort_size const* sz = s_info?&s_info->get_num_elements():0;
bool has_max = false;
Number max_size;
if (sz && sz->is_finite() && sz->size() < UINT_MAX) {
unsigned usz = static_cast<unsigned>(sz->size());
max_size = Number(usz);
has_max = true;
}
Number start = set->m_next;
Number & next = set->m_next;
while (!is_new) {
result = mk_value(next, s, is_new);
next++;
if (has_max && next > max_size + start) {
return 0;
}
}
SASSERT(result != 0);
return result;

View file

@ -759,7 +759,8 @@ namespace smt {
app * fact = to_app(m_manager.get_fact(pr));
app * n1_owner = n1->get_owner();
app * n2_owner = n2->get_owner();
if (fact->get_num_args() != 2 || (fact->get_arg(0) != n2_owner && fact->get_arg(1) != n2_owner)) {
bool is_eq = m_manager.is_eq(fact) || m_manager.is_iff(fact);
if (!is_eq || (fact->get_arg(0) != n2_owner && fact->get_arg(1) != n2_owner)) {
CTRACE("norm_eq_proof_bug", !m_ctx.is_true(n2) && !m_ctx.is_false(n2),
tout << "n1: #" << n1->get_owner_id() << ", n2: #" << n2->get_owner_id() << "\n";
if (fact->get_num_args() == 2) {

View file

@ -1615,6 +1615,8 @@ namespace smt {
unsigned qhead = m_qhead;
if (!bcp())
return false;
if (m_cancel_flag)
return true;
SASSERT(!inconsistent());
propagate_relevancy(qhead);
if (inconsistent())

View file

@ -54,7 +54,11 @@ Revision History:
// the case that each context only references a few expressions.
// Using a map instead of a vector for the literals can compress space
// consumption.
#ifdef SPARSE_MAP
#define USE_BOOL_VAR_VECTOR 0
#else
#define USE_BOOL_VAR_VECTOR 1
#endif
namespace smt {
@ -69,9 +73,10 @@ namespace smt {
std::string last_failure_as_string() const;
void set_progress_callback(progress_callback *callback);
protected:
ast_manager & m_manager;
smt_params & m_fparams;
smt_params & m_fparams;
params_ref m_params;
setup m_setup;
volatile bool m_cancel_flag;
@ -106,7 +111,7 @@ namespace smt {
// -----------------------------------
enode * m_true_enode;
enode * m_false_enode;
ptr_vector<enode> m_app2enode; // app -> enode
app2enode_t m_app2enode; // app -> enode
ptr_vector<enode> m_enodes;
plugin_manager<theory> m_theories; // mapping from theory_id -> theory
ptr_vector<theory> m_theory_set; // set of theories for fast traversal

View file

@ -24,7 +24,7 @@ namespace smt {
/**
\brief Initialize an enode in the given memory position.
*/
enode * enode::init(ast_manager & m, void * mem, ptr_vector<enode> const & app2enode, app * owner,
enode * enode::init(ast_manager & m, void * mem, app2enode_t const & app2enode, app * owner,
unsigned generation, bool suppress_args, bool merge_tf, unsigned iscope_lvl,
bool cgc_enabled, bool update_children_parent) {
SASSERT(m.is_bool(owner) || !merge_tf);
@ -60,7 +60,7 @@ namespace smt {
return n;
}
enode * enode::mk(ast_manager & m, region & r, ptr_vector<enode> const & app2enode, app * owner,
enode * enode::mk(ast_manager & m, region & r, app2enode_t const & app2enode, app * owner,
unsigned generation, bool suppress_args, bool merge_tf, unsigned iscope_lvl,
bool cgc_enabled, bool update_children_parent) {
SASSERT(m.is_bool(owner) || !merge_tf);
@ -69,7 +69,7 @@ namespace smt {
return init(m, mem, app2enode, owner, generation, suppress_args, merge_tf, iscope_lvl, cgc_enabled, update_children_parent);
}
enode * enode::mk_dummy(ast_manager & m, ptr_vector<enode> const & app2enode, app * owner) {
enode * enode::mk_dummy(ast_manager & m, app2enode_t const & app2enode, app * owner) {
unsigned sz = get_enode_size(owner->get_num_args());
void * mem = alloc_svect(char, sz);
return init(m, mem, app2enode, owner, 0, false, false, 0, true, false);

View file

@ -38,6 +38,29 @@ namespace smt {
}
};
/** \ brief Use sparse maps in SMT solver.
Define this to use hash maps rather than vectors over ast
nodes. This is useful in the case there are many solvers, each
referencing few nodes from a large ast manager. There is some
unknown performance penalty for this. */
// #define SPARSE_MAP
#ifndef SPARSE_MAP
typedef ptr_vector<enode> app2enode_t; // app -> enode
#else
class app2enode_t : public u_map<enode *> {
public:
void setx(unsigned x, enode *val, enode *def){
if(val == 0)
erase(x);
else
insert(x,val);
}
};
#endif
class tmp_enode;
/**
@ -115,7 +138,7 @@ namespace smt {
friend class tmp_enode;
static enode * init(ast_manager & m, void * mem, ptr_vector<enode> const & app2enode, app * owner,
static enode * init(ast_manager & m, void * mem, app2enode_t const & app2enode, app * owner,
unsigned generation, bool suppress_args, bool merge_tf, unsigned iscope_lvl,
bool cgc_enabled, bool update_children_parent);
public:
@ -124,11 +147,11 @@ namespace smt {
return sizeof(enode) + num_args * sizeof(enode*);
}
static enode * mk(ast_manager & m, region & r, ptr_vector<enode> const & app2enode, app * owner,
static enode * mk(ast_manager & m, region & r, app2enode_t const & app2enode, app * owner,
unsigned generation, bool suppress_args, bool merge_tf, unsigned iscope_lvl,
bool cgc_enabled, bool update_children_parent);
static enode * mk_dummy(ast_manager & m, ptr_vector<enode> const & app2enode, app * owner);
static enode * mk_dummy(ast_manager & m, app2enode_t const & app2enode, app * owner);
static void del_dummy(enode * n) { dealloc_svect(reinterpret_cast<char*>(n)); }

View file

@ -136,9 +136,8 @@ namespace smt {
if (cex == 0)
return false; // no model available.
unsigned num_decls = q->get_num_decls();
unsigned num_sks = sks.size();
// Remark: sks were created for the flat version of q.
SASSERT(num_sks >= num_decls);
SASSERT(sks.size() >= num_decls);
expr_ref_buffer bindings(m_manager);
bindings.resize(num_decls);
unsigned max_generation = 0;
@ -322,6 +321,7 @@ namespace smt {
for (; it != end; ++it) {
quantifier * q = *it;
if(!m_qm->mbqi_enabled(q)) continue;
if (m_context->is_relevant(q) && m_context->get_assignment(q) == l_true) {
if (m_params.m_mbqi_trace && q->get_qid() != symbol::null) {
verbose_stream() << "(smt.mbqi :checking " << q->get_qid() << ")\n";

View file

@ -94,7 +94,7 @@ namespace smt {
}
obj_map<expr, unsigned> const & get_elems() const { return m_elems; }
void insert(expr * n, unsigned generation) {
if (m_elems.contains(n))
return;
@ -102,6 +102,14 @@ namespace smt {
m_elems.insert(n, generation);
SASSERT(!m_manager.is_model_value(n));
}
void remove(expr * n) {
// We can only remove n if it is in m_elems, AND m_inv was not initialized yet.
SASSERT(m_elems.contains(n));
SASSERT(m_inv.empty());
m_elems.erase(n);
m_manager.dec_ref(n);
}
void display(std::ostream & out) const {
obj_map<expr, unsigned>::iterator it = m_elems.begin();
@ -388,7 +396,7 @@ namespace smt {
// Support for evaluating expressions in the current model.
proto_model * m_model;
obj_map<expr, expr *> m_eval_cache;
obj_map<expr, expr *> m_eval_cache[2];
expr_ref_vector m_eval_cache_range;
ptr_vector<node> m_root_nodes;
@ -401,7 +409,8 @@ namespace smt {
}
void reset_eval_cache() {
m_eval_cache.reset();
m_eval_cache[0].reset();
m_eval_cache[1].reset();
m_eval_cache_range.reset();
}
@ -460,6 +469,7 @@ namespace smt {
~auf_solver() {
flush_nodes();
reset_eval_cache();
}
void set_context(context * ctx) {
@ -525,6 +535,30 @@ namespace smt {
}
}
// For each instantiation_set, reemove entries that do not evaluate to values.
void cleanup_instantiation_sets() {
ptr_vector<expr> to_delete;
ptr_vector<node>::const_iterator it = m_nodes.begin();
ptr_vector<node>::const_iterator end = m_nodes.end();
for (; it != end; ++it) {
node * curr = *it;
if (curr->is_root()) {
instantiation_set * s = curr->get_instantiation_set();
to_delete.reset();
obj_map<expr, unsigned> const & elems = s->get_elems();
for (obj_map<expr, unsigned>::iterator it = elems.begin(); it != elems.end(); it++) {
expr * n = it->m_key;
expr * n_val = eval(n, true);
if (!n_val || !m_manager.is_value(n_val))
to_delete.push_back(n);
}
for (ptr_vector<expr>::iterator it = to_delete.begin(); it != to_delete.end(); it++) {
s->remove(*it);
}
}
}
}
void display_nodes(std::ostream & out) const {
display_key2node(out, m_uvars);
display_A_f_is(out);
@ -537,15 +571,19 @@ namespace smt {
virtual expr * eval(expr * n, bool model_completion) {
expr * r = 0;
if (m_eval_cache.find(n, r)) {
if (m_eval_cache[model_completion].find(n, r)) {
return r;
}
expr_ref tmp(m_manager);
if (!m_model->eval(n, tmp, model_completion))
if (!m_model->eval(n, tmp, model_completion)) {
r = 0;
else
TRACE("model_finder", tout << "eval\n" << mk_pp(n, m_manager) << "\n-----> null\n";);
}
else {
r = tmp;
m_eval_cache.insert(n, r);
TRACE("model_finder", tout << "eval\n" << mk_pp(n, m_manager) << "\n----->\n" << mk_pp(r, m_manager) << "\n";);
}
m_eval_cache[model_completion].insert(n, r);
m_eval_cache_range.push_back(r);
return r;
}
@ -942,9 +980,11 @@ namespace smt {
// Moreover, a model assigns an arbitrary intepretation to these sorts using "model_values" a model value.
// If these module values "leak" inside the logical context, they may affect satisfiability.
//
// n->insert(m_model->get_some_value(n->get_sort()), 0);
// TODO: we can use get_some_value if the sort n->get_sort() does not depend on any uninterpreted sorts.
n->insert(m_manager.mk_fresh_const("elem", n->get_sort()), 0);
sort * ns = n->get_sort();
if (m_manager.is_fully_interp(ns))
n->insert(m_model->get_some_value(ns), 0);
else
n->insert(m_manager.mk_fresh_const("elem", ns), 0);
}
}
}
@ -1047,6 +1087,7 @@ namespace smt {
public:
void fix_model(expr_ref_vector & new_constraints) {
cleanup_instantiation_sets();
m_new_constraints = &new_constraints;
func_decl_set partial_funcs;
collect_partial_funcs(partial_funcs);

View file

@ -102,6 +102,7 @@ namespace smt {
if (th && th->build_models()) {
if (r->get_th_var(th->get_id()) != null_theory_var) {
proc = th->mk_value(r, *this);
SASSERT(proc);
}
else {
TRACE("model_bug", tout << "creating fresh value for #" << r->get_owner_id() << "\n";);
@ -110,6 +111,7 @@ namespace smt {
}
else {
proc = mk_model_value(r);
SASSERT(proc);
}
}
SASSERT(proc);

View file

@ -335,6 +335,10 @@ namespace smt {
return m_imp->m_plugin->model_based();
}
bool quantifier_manager::mbqi_enabled(quantifier *q) const {
return m_imp->m_plugin->mbqi_enabled(q);
}
void quantifier_manager::adjust_model(proto_model * m) {
m_imp->m_plugin->adjust_model(m);
}
@ -434,8 +438,22 @@ namespace smt {
virtual bool model_based() const { return m_fparams->m_mbqi; }
virtual bool mbqi_enabled(quantifier *q) const {
if(!m_fparams->m_mbqi_id) return true;
const symbol &s = q->get_qid();
size_t len = strlen(m_fparams->m_mbqi_id);
if(s == symbol::null || s.is_numerical())
return len == 0;
return strncmp(s.bare_str(),m_fparams->m_mbqi_id,len) == 0;
}
/* Quantifier id's must begin with the prefix specified by
parameter mbqi.id to be instantiated with MBQI. The default
value is the empty string, so all quantifiers are
instantiated.
*/
virtual void add(quantifier * q) {
if (m_fparams->m_mbqi) {
if (m_fparams->m_mbqi && mbqi_enabled(q)) {
m_model_finder->register_quantifier(q);
}
}

View file

@ -75,6 +75,7 @@ namespace smt {
};
bool model_based() const;
bool mbqi_enabled(quantifier *q) const; // can mbqi instantiate this quantifier?
void adjust_model(proto_model * m);
check_model_result check_model(proto_model * m, obj_map<enode, app *> const & root2value);
@ -144,6 +145,11 @@ namespace smt {
*/
virtual bool model_based() const = 0;
/**
\brief Is "model based" instantiate allowed to instantiate this quantifier?
*/
virtual bool mbqi_enabled(quantifier *q) const {return true;}
/**
\brief Give a change to the plugin to adjust the interpretation of unintepreted functions.
It can basically change the "else" of each uninterpreted function.

View file

@ -22,7 +22,6 @@ Revision History:
#include"theory_arith.h"
#include"theory_dense_diff_logic.h"
#include"theory_diff_logic.h"
#include"theory_horn_ineq.h"
#include"theory_utvpi.h"
#include"theory_array.h"
#include"theory_array_full.h"
@ -725,12 +724,6 @@ namespace smt {
m_context.register_plugin(alloc(smt::theory_dense_mi, m_manager, m_params));
}
break;
case AS_HORN:
if (m_params.m_arith_int_only)
m_context.register_plugin(alloc(smt::theory_ihi, m_manager));
else
m_context.register_plugin(alloc(smt::theory_rhi, m_manager));
break;
case AS_UTVPI:
if (m_params.m_arith_int_only)
m_context.register_plugin(alloc(smt::theory_iutvpi, m_manager));

View file

@ -23,7 +23,7 @@ Notes:
#include"smt_kernel.h"
#include"ast_pp.h"
#include"mk_simplified_app.h"
#include"ast_util.h"
class ctx_solver_simplify_tactic : public tactic {
ast_manager& m;
@ -104,7 +104,7 @@ protected:
return;
ptr_vector<expr> fmls;
g.get_formulas(fmls);
fml = m.mk_and(fmls.size(), fmls.c_ptr());
fml = mk_and(m, fmls.size(), fmls.c_ptr());
m_solver.push();
reduce(fml);
m_solver.pop(1);
@ -119,7 +119,7 @@ protected:
{
m_solver.push();
expr_ref fml1(m);
fml1 = m.mk_and(fmls.size(), fmls.c_ptr());
fml1 = mk_and(m, fmls.size(), fmls.c_ptr());
fml1 = m.mk_iff(fml, fml1);
fml1 = m.mk_not(fml1);
m_solver.assert_expr(fml1);
@ -139,22 +139,32 @@ protected:
SASSERT(g.is_well_sorted());
}
struct expr_pos {
unsigned m_parent;
unsigned m_self;
unsigned m_idx;
expr* m_expr;
expr_pos(unsigned p, unsigned s, unsigned i, expr* e):
m_parent(p), m_self(s), m_idx(i), m_expr(e)
{}
expr_pos():
m_parent(0), m_self(0), m_idx(0), m_expr(0)
{}
};
void reduce(expr_ref& result){
SASSERT(m.is_bool(result));
ptr_vector<expr> todo;
ptr_vector<expr> names;
svector<bool> is_checked;
svector<unsigned> parent_ids, self_ids;
svector<expr_pos> todo;
expr_ref_vector fresh_vars(m), trail(m);
expr_ref res(m), tmp(m);
obj_map<expr,std::pair<unsigned, expr*> > cache;
unsigned id = 1;
obj_map<expr, expr_pos> cache;
unsigned id = 1, child_id = 0;
expr_ref n2(m), fml(m);
unsigned path_id = 0, self_pos = 0;
unsigned parent_pos = 0, self_pos = 0, self_idx = 0;
app * a;
unsigned sz;
std::pair<unsigned,expr*> path_r;
ptr_vector<expr> found;
expr_pos path_r;
expr_ref_vector args(m);
expr_ref n = mk_fresh(id, m.mk_bool_sort());
trail.push_back(n);
@ -163,26 +173,25 @@ protected:
tmp = m.mk_not(m.mk_iff(fml, n));
m_solver.assert_expr(tmp);
todo.push_back(fml);
todo.push_back(expr_pos(0,0,0,fml));
names.push_back(n);
is_checked.push_back(false);
parent_ids.push_back(0);
self_ids.push_back(0);
m_solver.push();
while (!todo.empty() && !m_cancel) {
expr_ref res(m);
args.reset();
expr* e = todo.back();
unsigned pos = parent_ids.back();
expr* e = todo.back().m_expr;
self_pos = todo.back().m_self;
parent_pos = todo.back().m_parent;
self_idx = todo.back().m_idx;
n = names.back();
bool checked = is_checked.back();
if (cache.contains(e)) {
goto done;
}
if (m.is_bool(e) && !checked && simplify_bool(n, res)) {
TRACE("ctx_solver_simplify_tactic", tout << "simplified: " << mk_pp(e, m) << " |-> " << mk_pp(res, m) << "\n";);
if (m.is_bool(e) && simplify_bool(n, res)) {
TRACE("ctx_solver_simplify_tactic",
tout << "simplified: " << mk_pp(e, m) << " |-> " << mk_pp(res, m) << "\n";);
goto done;
}
if (!is_app(e)) {
@ -191,49 +200,31 @@ protected:
}
a = to_app(e);
if (!is_checked.back()) {
self_ids.back() = ++path_id;
is_checked.back() = true;
}
self_pos = self_ids.back();
sz = a->get_num_args();
sz = a->get_num_args();
n2 = 0;
found.reset(); // arguments already simplified.
for (unsigned i = 0; i < sz; ++i) {
expr* arg = a->get_arg(i);
if (cache.find(arg, path_r) && !found.contains(arg)) {
if (cache.find(arg, path_r)) {
//
// This is a single traversal version of the context
// simplifier. It simplifies only the first occurrence of
// a sub-term with respect to the context.
//
found.push_back(arg);
if (path_r.first == self_pos) {
TRACE("ctx_solver_simplify_tactic", tout << "cached " << mk_pp(arg, m) << " |-> " << mk_pp(path_r.second, m) << "\n";);
args.push_back(path_r.second);
}
else if (m.is_bool(arg)) {
res = local_simplify(a, n, id, i);
TRACE("ctx_solver_simplify_tactic",
tout << "Already cached: " << path_r.first << " " << mk_pp(res, m) << "\n";);
args.push_back(res);
if (path_r.m_parent == self_pos && path_r.m_idx == i) {
args.push_back(path_r.m_expr);
}
else {
args.push_back(arg);
}
}
else if (!n2 && !found.contains(arg)) {
else if (!n2) {
n2 = mk_fresh(id, m.get_sort(arg));
trail.push_back(n2);
todo.push_back(arg);
parent_ids.push_back(self_pos);
self_ids.push_back(0);
todo.push_back(expr_pos(self_pos, child_id++, i, arg));
names.push_back(n2);
args.push_back(n2);
is_checked.push_back(false);
}
else {
args.push_back(arg);
@ -251,22 +242,16 @@ protected:
done:
if (res) {
cache.insert(e, std::make_pair(pos, res));
}
TRACE("ctx_solver_simplify_tactic",
tout << mk_pp(e, m) << " checked: " << checked << " cached: " << mk_pp(res?res.get():e, m) << "\n";);
cache.insert(e, expr_pos(parent_pos, self_pos, self_idx, res));
}
todo.pop_back();
parent_ids.pop_back();
self_ids.pop_back();
names.pop_back();
is_checked.pop_back();
m_solver.pop(1);
}
if (!m_cancel) {
VERIFY(cache.find(fml, path_r));
result = path_r.second;
result = path_r.m_expr;
}
}
@ -306,32 +291,6 @@ protected:
}
return expr_ref(m.mk_app(fn, m_arith.mk_numeral(rational(id++), true)), m);
}
expr_ref local_simplify(app* a, expr* n, unsigned& id, unsigned index) {
SASSERT(index < a->get_num_args());
SASSERT(m.is_bool(a->get_arg(index)));
expr_ref n2(m), result(m), tmp(m);
n2 = mk_fresh(id, m.get_sort(a->get_arg(index)));
ptr_buffer<expr> args;
for (unsigned i = 0; i < a->get_num_args(); ++i) {
if (i == index) {
args.push_back(n2);
}
else {
args.push_back(a->get_arg(i));
}
}
m_mk_app(a->get_decl(), args.size(), args.c_ptr(), result);
m_solver.push();
tmp = m.mk_eq(result, n);
m_solver.assert_expr(tmp);
if (!simplify_bool(n2, result)) {
result = a;
}
m_solver.pop(1);
return result;
}
};

View file

@ -0,0 +1,151 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
unit_subsumption_tactic.cpp
Abstract:
Simplify goal using subsumption based on unit propagation.
Author:
Nikolaj Bjorner (nbjorner) 2012-9-6
--*/
#include "unit_subsumption_tactic.h"
#include "smt_context.h"
struct unit_subsumption_tactic : public tactic {
ast_manager& m;
params_ref m_params;
smt_params m_fparams;
volatile bool m_cancel;
smt::context m_context;
expr_ref_vector m_clauses;
unsigned m_clause_count;
bit_vector m_is_deleted;
unsigned_vector m_deleted;
unit_subsumption_tactic(
ast_manager& m,
params_ref const& p):
m(m),
m_params(p),
m_cancel(false),
m_context(m, m_fparams, p),
m_clauses(m) {
}
void set_cancel(bool f) {
m_cancel = f;
m_context.set_cancel_flag(f);
}
virtual void cleanup() {
set_cancel(false);
}
virtual void operator()(/* in */ goal_ref const & in,
/* out */ goal_ref_buffer & result,
/* out */ model_converter_ref & mc,
/* out */ proof_converter_ref & pc,
/* out */ expr_dependency_ref & core) {
reduce_core(in, result);
}
virtual void updt_params(params_ref const& p) {
m_params = p;
// m_context.updt_params(p); does not exist.
}
virtual tactic* translate(ast_manager& m) {
return alloc(unit_subsumption_tactic, m, m_params);
}
void checkpoint() {
if (m_cancel) {
throw tactic_exception(TACTIC_CANCELED_MSG);
}
}
void reduce_core(goal_ref const& g, goal_ref_buffer& result) {
init(g);
m_context.push();
assert_clauses(g);
m_context.push(); // internalize assertions.
prune_clauses();
goal_ref r(g);
insert_result(r);
r->elim_true();
result.push_back(r.get());
m_context.pop(2);
TRACE("unit_subsumption_tactic", g->display(tout); r->display(tout););
}
void assert_clauses(goal_ref const& g) {
for (unsigned i = 0; i < g->size(); ++i) {
m_context.assert_expr(m.mk_iff(new_clause(), g->form(i)));
}
}
void prune_clauses() {
for (unsigned i = 0; i < m_clause_count; ++i) {
prune_clause(i);
}
}
void prune_clause(unsigned i) {
m_context.push();
for (unsigned j = 0; j < m_clause_count; ++j) {
if (i == j) {
m_context.assert_expr(m.mk_not(m_clauses[j].get()));
}
else if (!m_is_deleted.get(j)) {
m_context.assert_expr(m_clauses[j].get());
}
}
m_context.push(); // force propagation
bool is_unsat = m_context.inconsistent();
m_context.pop(2);
if (is_unsat) {
TRACE("unit_subsumption_tactic", tout << "Removing clause " << i << "\n";);
m_is_deleted.set(i, true);
m_deleted.push_back(i);
}
}
void insert_result(goal_ref& result) {
for (unsigned i = 0; i < m_deleted.size(); ++i) {
result->update(m_deleted[i], m.mk_true()); // TBD proof?
}
}
void init(goal_ref const& g) {
m_clause_count = 0;
m_is_deleted.reset();
m_is_deleted.resize(g->size());
m_deleted.reset();
}
expr* new_bool(unsigned& count, expr_ref_vector& v, char const* name) {
SASSERT(count <= v.size());
if (count == v.size()) {
v.push_back(m.mk_fresh_const(name, m.mk_bool_sort()));
}
return v[count++].get();
}
expr* new_clause() {
return new_bool(m_clause_count, m_clauses, "#clause");
}
};
tactic * mk_unit_subsumption_tactic(ast_manager & m, params_ref const & p) {
return alloc(unit_subsumption_tactic, m, p);
}

View file

@ -0,0 +1,33 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
unit_subsumption_tactic.h
Abstract:
Simplify goal using subsumption based on unit propagation.
Author:
Nikolaj Bjorner (nbjorner) 2012-9-6
Notes:
Background: PDR generates several clauses that subsume each-other.
Simplify a goal assuming it is a conjunction of clauses.
Subsumed clauses are simplified by using unit-propagation
It uses the smt_context for the solver.
--*/
#ifndef _UNIT_SUBSUMPTION_TACTIC_H_
#define _UNIT_SUBSUMPTION_TACTIC_H_
#include "tactic.h"
tactic * mk_unit_subsumption_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("unit-subsume-simplify", "unit subsumption simplification.", "mk_unit_subsumption_tactic(m, p)")
*/
#endif

View file

@ -85,6 +85,7 @@ namespace smt {
typedef typename Ext::numeral numeral;
typedef typename Ext::inf_numeral inf_numeral;
typedef vector<numeral> numeral_vector;
typedef map<rational, theory_var, obj_hash<rational>, default_eq<rational> > rational2var;
static const int dead_row_id = -1;
protected:
@ -409,6 +410,7 @@ namespace smt {
atoms m_atoms; // set of theory atoms
ptr_vector<bound> m_asserted_bounds; // set of asserted bounds
unsigned m_asserted_qhead;
ptr_vector<atom> m_new_atoms; // new bound atoms that have yet to be internalized.
svector<theory_var> m_nl_monomials; // non linear monomials
svector<theory_var> m_nl_propagated; // non linear monomials that became linear
v_dependency_manager m_dep_manager; // for tracking bounds during non-linear reasoning
@ -569,6 +571,22 @@ namespace smt {
void mk_clause(literal l1, literal l2, unsigned num_params, parameter * params);
void mk_clause(literal l1, literal l2, literal l3, unsigned num_params, parameter * params);
void mk_bound_axioms(atom * a);
void mk_bound_axiom(atom* a1, atom* a2);
void flush_bound_axioms();
typename atoms::iterator next_sup(atom* a1, atom_kind kind,
typename atoms::iterator it,
typename atoms::iterator end,
bool& found_compatible);
typename atoms::iterator next_inf(atom* a1, atom_kind kind,
typename atoms::iterator it,
typename atoms::iterator end,
bool& found_compatible);
typename atoms::iterator first(atom_kind kind,
typename atoms::iterator it,
typename atoms::iterator end);
struct compare_atoms {
bool operator()(atom* a1, atom* a2) const { return a1->get_k() < a2->get_k(); }
};
virtual bool default_internalizer() const { return false; }
virtual bool internalize_atom(app * n, bool gate_ctx);
virtual bool internalize_term(app * term);

View file

@ -475,10 +475,11 @@ namespace smt {
bool theory_arith<Ext>::all_coeff_int(row const & r) const {
typename vector<row_entry>::const_iterator it = r.begin_entries();
typename vector<row_entry>::const_iterator end = r.end_entries();
for (; it != end; ++it) {
if (!it->is_dead() && !it->m_coeff.is_int())
for (; it != end; ++it) {
if (!it->is_dead() && !it->m_coeff.is_int())
TRACE("gomory_cut", display_row(tout, r, true););
return false;
}
return true;
}

View file

@ -348,13 +348,24 @@ namespace smt {
context & ctx = get_context();
simplifier & s = ctx.get_simplifier();
expr_ref s_ante(m), s_conseq(m);
expr* s_conseq_n, * s_ante_n;
bool negated;
proof_ref pr(m);
s(ante, s_ante, pr);
negated = m.is_not(s_ante, s_ante_n);
if (negated) s_ante = s_ante_n;
ctx.internalize(s_ante, false);
literal l_ante = ctx.get_literal(s_ante);
if (negated) l_ante.neg();
s(conseq, s_conseq, pr);
negated = m.is_not(s_conseq, s_conseq_n);
if (negated) s_conseq = s_conseq_n;
ctx.internalize(s_conseq, false);
literal l_conseq = ctx.get_literal(s_conseq);
if (negated) l_conseq.neg();
literal lits[2] = {l_ante, l_conseq};
ctx.mk_th_axiom(get_id(), 2, lits);
if (ctx.relevancy()) {
@ -800,48 +811,238 @@ namespace smt {
template<typename Ext>
void theory_arith<Ext>::mk_bound_axioms(atom * a1) {
theory_var v = a1->get_var();
literal l1(a1->get_bool_var());
atoms & occs = m_var_occs[v];
if (!get_context().is_searching()) {
//
// NB. We make an assumption that user push calls propagation
// before internal scopes are pushed. This flushes all newly
// asserted atoms into the right context.
//
m_new_atoms.push_back(a1);
return;
}
numeral const & k1(a1->get_k());
atom_kind kind1 = a1->get_atom_kind();
TRACE("mk_bound_axioms", tout << "making bound axioms for v" << v << " " << kind1 << " " << k1 << "\n";);
atoms & occs = m_var_occs[v];
typename atoms::iterator it = occs.begin();
typename atoms::iterator end = occs.end();
typename atoms::iterator lo_inf = end, lo_sup = end;
typename atoms::iterator hi_inf = end, hi_sup = end;
for (; it != end; ++it) {
atom * a2 = *it;
literal l2(a2->get_bool_var());
numeral const & k2 = a2->get_k();
atom_kind kind2 = a2->get_atom_kind();
atom * a2 = *it;
numeral const & k2(a2->get_k());
atom_kind kind2 = a2->get_atom_kind();
SASSERT(k1 != k2 || kind1 != kind2);
SASSERT(a2->get_var() == v);
parameter coeffs[3] = { parameter(symbol("farkas")), parameter(rational(1)), parameter(rational(1)) };
if (kind1 == A_LOWER) {
if (kind2 == A_LOWER) {
// x >= k1, x >= k2
if (k1 >= k2) mk_clause(~l1, l2, 3, coeffs);
else mk_clause(~l2, l1, 3, coeffs);
if (kind2 == A_LOWER) {
if (k2 < k1) {
if (lo_inf == end || k2 > (*lo_inf)->get_k()) {
lo_inf = it;
}
}
else {
// x >= k1, x <= k2
if (k1 > k2) mk_clause(~l1, ~l2, 3, coeffs);
else mk_clause(l1, l2, 3, coeffs);
else if (lo_sup == end || k2 < (*lo_sup)->get_k()) {
lo_sup = it;
}
}
else {
if (kind2 == A_LOWER) {
// x <= k1, x >= k2
if (k1 < k2) mk_clause(~l1, ~l2, 3, coeffs);
else mk_clause(l1, l2, 3, coeffs);
else if (k2 < k1) {
if (hi_inf == end || k2 > (*hi_inf)->get_k()) {
hi_inf = it;
}
}
else if (hi_sup == end || k2 < (*hi_sup)->get_k()) {
hi_sup = it;
}
}
if (lo_inf != end) mk_bound_axiom(a1, *lo_inf);
if (lo_sup != end) mk_bound_axiom(a1, *lo_sup);
if (hi_inf != end) mk_bound_axiom(a1, *hi_inf);
if (hi_sup != end) mk_bound_axiom(a1, *hi_sup);
}
template<typename Ext>
void theory_arith<Ext>::mk_bound_axiom(atom* a1, atom* a2) {
theory_var v = a1->get_var();
literal l1(a1->get_bool_var());
literal l2(a2->get_bool_var());
numeral const & k1(a1->get_k());
numeral const & k2(a2->get_k());
atom_kind kind1 = a1->get_atom_kind();
atom_kind kind2 = a2->get_atom_kind();
bool v_is_int = is_int(v);
SASSERT(v == a2->get_var());
SASSERT(k1 != k2 || kind1 != kind2);
parameter coeffs[3] = { parameter(symbol("farkas")),
parameter(rational(1)), parameter(rational(1)) };
if (kind1 == A_LOWER) {
if (kind2 == A_LOWER) {
if (k2 <= k1) {
mk_clause(~l1, l2, 3, coeffs);
}
else {
// x <= k1, x <= k2
if (k1 < k2) mk_clause(~l1, l2, 3, coeffs);
else mk_clause(~l2, l1, 3, coeffs);
mk_clause(l1, ~l2, 3, coeffs);
}
}
else if (k1 <= k2) {
// k1 <= k2, k1 <= x or x <= k2
mk_clause(l1, l2, 3, coeffs);
}
else {
// k1 > hi_inf, k1 <= x => ~(x <= hi_inf)
mk_clause(~l1, ~l2, 3, coeffs);
if (v_is_int && k1 == k2 + numeral(1)) {
// k1 <= x or x <= k1-1
mk_clause(l1, l2, 3, coeffs);
}
}
}
else if (kind2 == A_LOWER) {
if (k1 >= k2) {
// k1 >= lo_inf, k1 >= x or lo_inf <= x
mk_clause(l1, l2, 3, coeffs);
}
else {
// k1 < k2, k2 <= x => ~(x <= k1)
mk_clause(~l1, ~l2, 3, coeffs);
if (v_is_int && k1 == k2 - numeral(1)) {
// x <= k1 or k1+l <= x
mk_clause(l1, l2, 3, coeffs);
}
}
}
else {
// kind1 == A_UPPER, kind2 == A_UPPER
if (k1 >= k2) {
// k1 >= k2, x <= k2 => x <= k1
mk_clause(l1, ~l2, 3, coeffs);
}
else {
// k1 <= hi_sup , x <= k1 => x <= hi_sup
mk_clause(~l1, l2, 3, coeffs);
}
}
}
template<typename Ext>
void theory_arith<Ext>::flush_bound_axioms() {
while (!m_new_atoms.empty()) {
ptr_vector<atom> atoms;
atoms.push_back(m_new_atoms.back());
m_new_atoms.pop_back();
theory_var v = atoms.back()->get_var();
for (unsigned i = 0; i < m_new_atoms.size(); ++i) {
if (m_new_atoms[i]->get_var() == v) {
atoms.push_back(m_new_atoms[i]);
m_new_atoms[i] = m_new_atoms.back();
m_new_atoms.pop_back();
--i;
}
}
ptr_vector<atom> occs(m_var_occs[v]);
std::sort(atoms.begin(), atoms.end(), compare_atoms());
std::sort(occs.begin(), occs.end(), compare_atoms());
typename atoms::iterator begin1 = occs.begin();
typename atoms::iterator begin2 = occs.begin();
typename atoms::iterator end = occs.end();
begin1 = first(A_LOWER, begin1, end);
begin2 = first(A_UPPER, begin2, end);
typename atoms::iterator lo_inf = begin1, lo_sup = begin1;
typename atoms::iterator hi_inf = begin2, hi_sup = begin2;
typename atoms::iterator lo_inf1 = begin1, lo_sup1 = begin1;
typename atoms::iterator hi_inf1 = begin2, hi_sup1 = begin2;
bool flo_inf, fhi_inf, flo_sup, fhi_sup;
ptr_addr_hashtable<atom> visited;
for (unsigned i = 0; i < atoms.size(); ++i) {
atom* a1 = atoms[i];
lo_inf1 = next_inf(a1, A_LOWER, lo_inf, end, flo_inf);
hi_inf1 = next_inf(a1, A_UPPER, hi_inf, end, fhi_inf);
lo_sup1 = next_sup(a1, A_LOWER, lo_sup, end, flo_sup);
hi_sup1 = next_sup(a1, A_UPPER, hi_sup, end, fhi_sup);
if (lo_inf1 != end) lo_inf = lo_inf1;
if (lo_sup1 != end) lo_sup = lo_sup1;
if (hi_inf1 != end) hi_inf = hi_inf1;
if (hi_sup1 != end) hi_sup = hi_sup1;
if (!flo_inf) lo_inf = end;
if (!fhi_inf) hi_inf = end;
if (!flo_sup) lo_sup = end;
if (!fhi_sup) hi_sup = end;
visited.insert(a1);
if (lo_inf1 != end && lo_inf != end && !visited.contains(*lo_inf)) mk_bound_axiom(a1, *lo_inf);
if (lo_sup1 != end && lo_sup != end && !visited.contains(*lo_sup)) mk_bound_axiom(a1, *lo_sup);
if (hi_inf1 != end && hi_inf != end && !visited.contains(*hi_inf)) mk_bound_axiom(a1, *hi_inf);
if (hi_sup1 != end && hi_sup != end && !visited.contains(*hi_sup)) mk_bound_axiom(a1, *hi_sup);
}
}
}
template<typename Ext>
typename theory_arith<Ext>::atoms::iterator
theory_arith<Ext>::first(
atom_kind kind,
typename atoms::iterator it,
typename atoms::iterator end) {
for (; it != end; ++it) {
atom* a = *it;
if (a->get_atom_kind() == kind) return it;
}
return end;
}
template<typename Ext>
typename theory_arith<Ext>::atoms::iterator
theory_arith<Ext>::next_inf(
atom* a1,
atom_kind kind,
typename atoms::iterator it,
typename atoms::iterator end,
bool& found_compatible) {
numeral const & k1(a1->get_k());
typename atoms::iterator result = end;
found_compatible = false;
for (; it != end; ++it) {
atom * a2 = *it;
if (a1 == a2) continue;
if (a2->get_atom_kind() != kind) continue;
numeral const & k2(a2->get_k());
found_compatible = true;
if (k2 <= k1) {
result = it;
}
else {
break;
}
}
return result;
}
template<typename Ext>
typename theory_arith<Ext>::atoms::iterator
theory_arith<Ext>::next_sup(
atom* a1,
atom_kind kind,
typename atoms::iterator it,
typename atoms::iterator end,
bool& found_compatible) {
numeral const & k1(a1->get_k());
found_compatible = false;
for (; it != end; ++it) {
atom * a2 = *it;
if (a1 == a2) continue;
if (a2->get_atom_kind() != kind) continue;
numeral const & k2(a2->get_k());
found_compatible = true;
if (k1 < k2) {
return it;
}
}
return end;
}
template<typename Ext>
bool theory_arith<Ext>::internalize_atom(app * n, bool gate_ctx) {
TRACE("arith_internalize", tout << "internalising atom:\n" << mk_pp(n, this->get_manager()) << "\n";);
@ -879,7 +1080,7 @@ namespace smt {
bool_var bv = ctx.mk_bool_var(n);
ctx.set_var_theory(bv, get_id());
rational _k;
m_util.is_numeral(rhs, _k);
VERIFY(m_util.is_numeral(rhs, _k));
numeral k(_k);
atom * a = alloc(atom, bv, v, k, kind);
mk_bound_axioms(a);
@ -927,6 +1128,7 @@ namespace smt {
template<typename Ext>
void theory_arith<Ext>::assign_eh(bool_var v, bool is_true) {
TRACE("arith", tout << "v" << v << " " << is_true << "\n";);
atom * a = get_bv2a(v);
if (!a) return;
SASSERT(get_context().get_assignment(a->get_bool_var()) != l_undef);
@ -1072,8 +1274,10 @@ namespace smt {
}
}
while (m_final_check_idx != old_idx);
if (result == FC_DONE && m_found_unsupported_op)
if (result == FC_DONE && m_found_unsupported_op) {
TRACE("arith", tout << "Found unsupported operation\n";);
result = FC_GIVEUP;
}
return result;
}
@ -1142,6 +1346,7 @@ namespace smt {
CASSERT("arith", wf_columns());
CASSERT("arith", valid_row_assignment());
flush_bound_axioms();
propagate_linear_monomials();
while (m_asserted_qhead < m_asserted_bounds.size()) {
bound * b = m_asserted_bounds[m_asserted_qhead];
@ -2421,6 +2626,8 @@ namespace smt {
if (val == l_undef)
continue;
// TODO: check if the following line is a bottleneck
TRACE("arith", tout << "v" << a->get_bool_var() << " " << (val == l_true) << "\n";);
a->assign_eh(val == l_true, get_epsilon(a->get_var()));
if (val != l_undef && a->get_bound_kind() == b->get_bound_kind()) {
SASSERT((ctx.get_assignment(bv) == l_true) == a->is_true());
@ -2780,7 +2987,6 @@ namespace smt {
*/
template<typename Ext>
void theory_arith<Ext>::refine_epsilon() {
typedef map<rational, theory_var, obj_hash<rational>, default_eq<rational> > rational2var;
while (true) {
rational2var mapping;
theory_var num = get_num_vars();
@ -2788,6 +2994,8 @@ namespace smt {
for (theory_var v = 0; v < num; v++) {
if (is_int(v))
continue;
if (!get_context().is_shared(get_enode(v)))
continue;
inf_numeral const & val = get_value(v);
rational value = val.get_rational().to_rational() + m_epsilon.to_rational() * val.get_infinitesimal().to_rational();
theory_var v2;
@ -2915,6 +3123,7 @@ namespace smt {
SASSERT(m_to_patch.empty());
m_to_check.reset();
m_in_to_check.reset();
m_new_atoms.reset();
CASSERT("arith", wf_rows());
CASSERT("arith", wf_columns());
CASSERT("arith", valid_row_assignment());

View file

@ -193,7 +193,7 @@ namespace smt {
return true;
}
if (!r.get_base_var() == x && x > y) {
if (r.get_base_var() != x && x > y) {
std::swap(x, y);
k.neg();
}

View file

@ -1294,8 +1294,10 @@ namespace smt {
}
tout << "max: " << max << ", min: " << min << "\n";);
if (m_params.m_arith_ignore_int)
if (m_params.m_arith_ignore_int) {
TRACE("arith", tout << "Ignore int: give up\n";);
return FC_GIVEUP;
}
if (!gcd_test())
return FC_CONTINUE;

View file

@ -654,6 +654,7 @@ namespace smt {
}
return get_value(v, computed_epsilon) == val;
}
/**
\brief Return true if for every monomial x_1 * ... * x_n,
@ -2309,16 +2310,19 @@ namespace smt {
if (m_nl_monomials.empty())
return FC_DONE;
if (check_monomial_assignments())
if (check_monomial_assignments()) {
return FC_DONE;
}
if (!m_params.m_nl_arith)
if (!m_params.m_nl_arith) {
TRACE("non_linear", tout << "Non-linear is not enabled\n";);
return FC_GIVEUP;
}
TRACE("process_non_linear", display(tout););
if (m_nl_rounds > m_params.m_nl_arith_rounds) {
TRACE("non_linear", tout << "GIVE UP non linear problem...\n";);
TRACE("non_linear", tout << "GIVEUP non linear problem...\n";);
IF_VERBOSE(3, verbose_stream() << "Max. non linear arithmetic rounds. Increase threshold using NL_ARITH_ROUNDS=<limit>\n";);
return FC_GIVEUP;
}
@ -2338,9 +2342,10 @@ namespace smt {
if (!max_min_nl_vars())
return FC_CONTINUE;
if (check_monomial_assignments())
if (check_monomial_assignments()) {
return m_liberal_final_check || !m_changed_assignment ? FC_DONE : FC_CONTINUE;
}
svector<theory_var> vars;
get_non_linear_cluster(vars);
@ -2391,8 +2396,9 @@ namespace smt {
}
while (m_nl_strategy_idx != old_idx);
if (check_monomial_assignments())
if (check_monomial_assignments()) {
return m_liberal_final_check || !m_changed_assignment ? FC_DONE : FC_CONTINUE;
}
TRACE("non_linear", display(tout););

View file

@ -376,8 +376,10 @@ namespace smt {
enode_vector::const_iterator end = r->end_parents();
for (; it != end; ++it) {
enode * parent = *it;
#if 0
if (!ctx.is_relevant(parent))
continue;
#endif
unsigned num_args = parent->get_num_args();
if (is_store(parent)) {
SET_ARRAY(parent->get_arg(0));
@ -399,6 +401,7 @@ namespace smt {
return false;
}
#if 0
void theory_array_base::collect_shared_vars(sbuffer<theory_var> & result) {
TRACE("array_shared", tout << "collecting shared vars...\n";);
context & ctx = get_context();
@ -420,6 +423,31 @@ namespace smt {
}
unmark_enodes(to_unmark.size(), to_unmark.c_ptr());
}
#else
void theory_array_base::collect_shared_vars(sbuffer<theory_var> & result) {
TRACE("array_shared", tout << "collecting shared vars...\n";);
context & ctx = get_context();
ptr_buffer<enode> to_unmark;
unsigned num_vars = get_num_vars();
for (unsigned i = 0; i < num_vars; i++) {
enode * n = get_enode(i);
if (ctx.is_relevant(n)) {
enode * r = n->get_root();
if (!r->is_marked()){
if(is_array_sort(r) && ctx.is_shared(r)) {
TRACE("array_shared", tout << "new shared var: #" << r->get_owner_id() << "\n";);
theory_var r_th_var = r->get_th_var(get_id());
SASSERT(r_th_var != null_theory_var);
result.push_back(r_th_var);
}
r->set_mark();
to_unmark.push_back(r);
}
}
}
unmark_enodes(to_unmark.size(), to_unmark.c_ptr());
}
#endif
/**
\brief Create interface variables for shared array variables.
@ -688,7 +716,7 @@ namespace smt {
}
}
}
void theory_array_base::propagate_select_to_store_parents(enode * r, enode * sel, svector<enode_pair> & todo) {
SASSERT(r->get_root() == r);
SASSERT(is_select(sel));
@ -880,7 +908,7 @@ namespace smt {
}
else {
theory_var r = mg_find(v);
void * else_val = m_else_values[r];
void * else_val = m_else_values[r];
// DISABLED. It seems wrong, since different nodes can share the same
// else_val according to the mg class.
// SASSERT(else_val == 0 || get_context().is_relevant(UNTAG(app*, else_val)));

View file

@ -53,6 +53,7 @@ namespace smt {
unsigned bv_size = get_bv_size(n);
context & ctx = get_context();
literal_vector & bits = m_bits[v];
bits.reset();
for (unsigned i = 0; i < bv_size; i++) {
app * bit = mk_bit2bool(owner, i);
ctx.internalize(bit, true);
@ -75,12 +76,14 @@ namespace smt {
void theory_bv::mk_bit2bool(app * n) {
context & ctx = get_context();
SASSERT(!ctx.b_internalized(n));
if (!ctx.e_internalized(n->get_arg(0))) {
expr* first_arg = n->get_arg(0);
if (!ctx.e_internalized(first_arg)) {
// This may happen if bit2bool(x) is in a conflict
// clause that is being reinitialized, and x was not reinitialized
// yet.
// So, we internalize x (i.e., n->get_arg(0))
expr * first_arg = n->get_arg(0);
// So, we internalize x (i.e., arg)
ctx.internalize(first_arg, false);
SASSERT(ctx.e_internalized(first_arg));
// In most cases, when x is internalized, its bits are created.
@ -91,10 +94,27 @@ namespace smt {
// This will also force the creation of all bits for x.
enode * first_arg_enode = ctx.get_enode(first_arg);
get_var(first_arg_enode);
SASSERT(ctx.b_internalized(n));
// numerals are not blasted into bit2bool, so we do this directly.
if (!ctx.b_internalized(n)) {
rational val;
unsigned sz;
VERIFY(m_util.is_numeral(first_arg, val, sz));
theory_var v = first_arg_enode->get_th_var(get_id());
app* owner = first_arg_enode->get_owner();
for (unsigned i = 0; i < sz; ++i) {
ctx.internalize(mk_bit2bool(owner, i), true);
}
m_bits[v].reset();
rational bit;
for (unsigned i = 0; i < sz; ++i) {
div(val, rational::power_of_two(i), bit);
mod(bit, rational(2), bit);
m_bits[v].push_back(bit.is_zero()?false_literal:true_literal);
}
}
}
else {
enode * arg = ctx.get_enode(n->get_arg(0));
enode * arg = ctx.get_enode(first_arg);
// The argument was already internalized, but it may not have a theory variable associated with it.
// For example, for ite-terms the method apply_sort_cnstr is not invoked.
// See comment in the then-branch.
@ -581,10 +601,13 @@ namespace smt {
void theory_bv::assert_int2bv_axiom(app* n) {
//
// create the axiom:
// bv2int(n) = e mod 2^bit_width
//
// bv2int(n) = e mod 2^bit_width
// where n = int2bv(e)
//
// Create the axioms:
// bit2bool(i,n) == ((e div 2^i) mod 2 != 0)
// for i = 0,.., sz-1
//
SASSERT(get_context().e_internalized(n));
SASSERT(m_util.is_int2bv(n));
ast_manager & m = get_manager();
@ -592,10 +615,12 @@ namespace smt {
parameter param(m_autil.mk_int());
expr* n_expr = n;
expr* lhs = m.mk_app(get_id(), OP_BV2INT, 1, &param, 1, &n_expr);
expr* e = n->get_arg(0);
expr_ref lhs(m), rhs(m);
lhs = m.mk_app(get_id(), OP_BV2INT, 1, &param, 1, &n_expr);
unsigned sz = m_util.get_bv_size(n);
numeral mod = power(numeral(2), sz);
expr* rhs = m_autil.mk_mod(n->get_arg(0), m_autil.mk_numeral(mod, true));
rhs = m_autil.mk_mod(e, m_autil.mk_numeral(mod, true));
literal l(mk_eq(lhs, rhs, false));
ctx.mark_as_relevant(l);
@ -605,6 +630,24 @@ namespace smt {
tout << mk_pp(lhs, m) << " == \n";
tout << mk_pp(rhs, m) << "\n";
);
expr_ref_vector n_bits(m);
enode * n_enode = mk_enode(n);
get_bits(n_enode, n_bits);
for (unsigned i = 0; i < sz; ++i) {
numeral div = power(numeral(2), i);
mod = numeral(2);
rhs = m_autil.mk_idiv(e, m_autil.mk_numeral(div,true));
rhs = m_autil.mk_mod(rhs, m_autil.mk_numeral(mod, true));
rhs = m.mk_eq(rhs, m_autil.mk_numeral(rational(1), true));
lhs = n_bits.get(i);
TRACE("bv", tout << mk_pp(lhs, m) << " == " << mk_pp(rhs, m) << "\n";);
l = literal(mk_eq(lhs, rhs, false));
ctx.mark_as_relevant(l);
ctx.mk_th_axiom(get_id(), 1, &l);
}
}
@ -1018,6 +1061,7 @@ namespace smt {
void theory_bv::new_diseq_eh(theory_var v1, theory_var v2) {
if (is_bv(v1)) {
SASSERT(m_bits[v1].size() == m_bits[v2].size());
expand_diseq(v1, v2);
}
}
@ -1175,6 +1219,7 @@ namespace smt {
void theory_bv::relevant_eh(app * n) {
ast_manager & m = get_manager();
context & ctx = get_context();
TRACE("bv", tout << "relevant: " << mk_pp(n, m) << "\n";);
if (m.is_bool(n)) {
bool_var v = ctx.get_bool_var(n);
atom * a = get_bv2a(v);
@ -1357,6 +1402,7 @@ namespace smt {
if (v1 != null_theory_var) {
// conflict was detected ... v1 and v2 have complementary bits
SASSERT(m_bits[v1][it->m_idx] == ~(m_bits[v2][it->m_idx]));
SASSERT(m_bits[v1].size() == m_bits[v2].size());
mk_new_diseq_axiom(v1, v2, it->m_idx);
RESET_MERGET_AUX();
return false;

View file

@ -983,11 +983,8 @@ template<typename Ext>
void theory_diff_logic<Ext>::get_eq_antecedents(
theory_var v1, theory_var v2, unsigned timestamp, conflict_resolution & cr) {
imp_functor functor(cr);
bool r;
r = m_graph.find_shortest_zero_edge_path(v1, v2, timestamp, functor);
SASSERT(r);
r = m_graph.find_shortest_zero_edge_path(v2, v1, timestamp, functor);
SASSERT(r);
VERIFY(m_graph.find_shortest_zero_edge_path(v1, v2, timestamp, functor));
VERIFY(m_graph.find_shortest_zero_edge_path(v2, v1, timestamp, functor));
}
template<typename Ext>

View file

@ -91,7 +91,7 @@ namespace smt {
rational val;
if (ctx.e_internalized(rep_of) && th_bv &&
th_bv->get_fixed_value(rep_of.get(), val)) {
result = m_th.u().mk_numeral(val.get_int64(), s);
result = m_th.u().mk_numeral(val.get_int64(), s);
}
else {
result = m_th.u().mk_numeral(0, s);
@ -162,7 +162,7 @@ namespace smt {
m.register_factory(alloc(dl_factory, m_util, m.get_model()));
}
virtual smt::model_value_proc * mk_value(smt::enode * n) {
virtual smt::model_value_proc * mk_value(smt::enode * n, smt::model_generator&) {
return alloc(dl_value_proc, *this, n);
}
@ -201,9 +201,8 @@ namespace smt {
if(!m_reps.find(s, r) || !m_vals.find(s,v)) {
SASSERT(!m_reps.contains(s));
sort* bv = b().mk_sort(64);
// TBD: filter these from model.
r = m().mk_fresh_func_decl("rep",1, &s,bv);
v = m().mk_fresh_func_decl("val",1, &bv,s);
r = m().mk_func_decl(m_util.get_family_id(), datalog::OP_DL_REP, 0, 0, 1, &s, bv);
v = m().mk_func_decl(m_util.get_family_id(), datalog::OP_DL_ABS, 0, 0, 1, &bv, s);
m_reps.insert(s, r);
m_vals.insert(s, v);
add_trail(r);

46
src/smt/theory_fpa.cpp Normal file
View file

@ -0,0 +1,46 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
theory_fpa.cpp
Abstract:
Floating-Point Theory Plugin
Author:
Christoph (cwinter) 2014-04-23
Revision History:
--*/
#include"ast_smt2_pp.h"
#include"theory_fpa.h"
namespace smt {
bool theory_fpa::internalize_atom(app * atom, bool gate_ctx) {
TRACE("bv", tout << "internalizing atom: " << mk_ismt2_pp(atom, get_manager()) << "\n";);
SASSERT(atom->get_family_id() == get_family_id());
NOT_IMPLEMENTED_YET();
return true;
}
void theory_fpa::new_eq_eh(theory_var, theory_var) {
NOT_IMPLEMENTED_YET();
}
void theory_fpa::new_diseq_eh(theory_var, theory_var) {
NOT_IMPLEMENTED_YET();
}
void theory_fpa::push_scope_eh() {
NOT_IMPLEMENTED_YET();
}
void theory_fpa::pop_scope_eh(unsigned num_scopes) {
NOT_IMPLEMENTED_YET();
}
};

45
src/smt/theory_fpa.h Normal file
View file

@ -0,0 +1,45 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
theory_fpa.h
Abstract:
Floating-Point Theory Plugin
Author:
Christoph (cwinter) 2014-04-23
Revision History:
--*/
#ifndef _THEORY_FPA_H_
#define _THEORY_FPA_H_
#include"smt_theory.h"
#include"fpa2bv_converter.h"
namespace smt {
class theory_fpa : public theory {
fpa2bv_converter m_converter;
virtual final_check_status final_check_eh() { return FC_DONE; }
virtual bool internalize_atom(app*, bool);
virtual bool internalize_term(app*) { return internalize_atom(0, false); }
virtual void new_eq_eh(theory_var, theory_var);
virtual void new_diseq_eh(theory_var, theory_var);
virtual void push_scope_eh();
virtual void pop_scope_eh(unsigned num_scopes);
virtual theory* mk_fresh(context*) { return alloc(theory_fpa, get_manager()); }
virtual char const * get_name() const { return "fpa"; }
public:
theory_fpa(ast_manager& m) : theory(m.mk_family_id("fpa")), m_converter(m) {}
};
};
#endif /* _THEORY_FPA_H_ */

View file

@ -1,236 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_horn_ineq.h
Author:
Nikolaj Bjorner (nbjorner) 2013-04-18
Revision History:
The implementaton is derived from theory_diff_logic.
--*/
#include "theory_horn_ineq.h"
#include "theory_horn_ineq_def.h"
namespace smt {
template class theory_horn_ineq<ihi_ext>;
template class theory_horn_ineq<rhi_ext>;
// similar to test_diff_logic:
horn_ineq_tester::horn_ineq_tester(ast_manager& m): m(m), a(m) {}
bool horn_ineq_tester::operator()(expr* e) {
m_todo.reset();
m_pols.reset();
pos_mark.reset();
neg_mark.reset();
m_todo.push_back(e);
m_pols.push_back(l_true);
while (!m_todo.empty()) {
expr* e = m_todo.back();
lbool p = m_pols.back();
m_todo.pop_back();
m_pols.pop_back();
switch (p) {
case l_true:
if (pos_mark.is_marked(e)) {
continue;
}
pos_mark.mark(e, true);
break;
case l_false:
if (neg_mark.is_marked(e)) {
continue;
}
neg_mark.mark(e, true);
break;
case l_undef:
if (pos_mark.is_marked(e) && neg_mark.is_marked(e)) {
continue;
}
pos_mark.mark(e, true);
neg_mark.mark(e, true);
break;
}
if (!test_expr(p, e)) {
return false;
}
}
return true;
}
vector<std::pair<expr*,rational> > const& horn_ineq_tester::get_linearization() const {
return m_terms;
}
bool horn_ineq_tester::test_expr(lbool p, expr* e) {
expr* e1, *e2, *e3;
if (is_var(e)) {
return true;
}
if (!is_app(e)) {
return false;
}
app* ap = to_app(e);
if (m.is_and(ap) || m.is_or(ap)) {
for (unsigned i = 0; i < ap->get_num_args(); ++i) {
m_todo.push_back(ap->get_arg(i));
m_pols.push_back(p);
}
}
else if (m.is_not(e, e1)) {
m_todo.push_back(e);
m_pols.push_back(~p);
}
else if (m.is_ite(e, e1, e2, e3)) {
m_todo.push_back(e1);
m_pols.push_back(l_undef);
m_todo.push_back(e2);
m_pols.push_back(p);
m_todo.push_back(e3);
m_pols.push_back(p);
}
else if (m.is_iff(e, e1, e2)) {
m_todo.push_back(e1);
m_pols.push_back(l_undef);
m_todo.push_back(e2);
m_pols.push_back(l_undef);
m_todo.push_back(e2);
}
else if (m.is_implies(e, e1, e2)) {
m_todo.push_back(e1);
m_pols.push_back(~p);
m_todo.push_back(e2);
m_pols.push_back(p);
}
else if (m.is_eq(e, e1, e2)) {
return linearize(e1, e2) == diff;
}
else if (m.is_true(e) || m.is_false(e)) {
// no-op
}
else if (a.is_le(e, e1, e2) || a.is_ge(e, e2, e1) ||
a.is_lt(e, e1, e2) || a.is_gt(e, e2, e1)) {
if (p == l_false) {
std::swap(e2, e1);
}
classify_t cl = linearize(e1, e2);
switch(p) {
case l_undef:
return cl == diff;
case l_true:
case l_false:
return cl == horn || cl == diff;
}
}
else if (!is_uninterp_const(e)) {
return false;
}
return true;
}
bool horn_ineq_tester::operator()(unsigned num_fmls, expr* const* fmls) {
for (unsigned i = 0; i < num_fmls; ++i) {
if (!(*this)(fmls[i])) {
return false;
}
}
return true;
}
horn_ineq_tester::classify_t horn_ineq_tester::linearize(expr* e) {
m_terms.reset();
m_terms.push_back(std::make_pair(e, rational(1)));
return linearize();
}
horn_ineq_tester::classify_t horn_ineq_tester::linearize(expr* e1, expr* e2) {
m_terms.reset();
m_terms.push_back(std::make_pair(e1, rational(1)));
m_terms.push_back(std::make_pair(e2, rational(-1)));
return linearize();
}
horn_ineq_tester::classify_t horn_ineq_tester::linearize() {
m_weight.reset();
m_coeff_map.reset();
while (!m_terms.empty()) {
expr* e1, *e2;
rational num;
rational mul = m_terms.back().second;
expr* e = m_terms.back().first;
m_terms.pop_back();
if (a.is_add(e)) {
for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) {
m_terms.push_back(std::make_pair(to_app(e)->get_arg(i), mul));
}
}
else if (a.is_mul(e, e1, e2) && a.is_numeral(e1, num)) {
m_terms.push_back(std::make_pair(e2, mul*num));
}
else if (a.is_mul(e, e2, e1) && a.is_numeral(e1, num)) {
m_terms.push_back(std::make_pair(e2, mul*num));
}
else if (a.is_sub(e, e1, e2)) {
m_terms.push_back(std::make_pair(e1, mul));
m_terms.push_back(std::make_pair(e2, -mul));
}
else if (a.is_uminus(e, e1)) {
m_terms.push_back(std::make_pair(e1, -mul));
}
else if (a.is_numeral(e, num)) {
m_weight += num*mul;
}
else if (a.is_to_real(e, e1)) {
m_terms.push_back(std::make_pair(e1, mul));
}
else if (!is_uninterp_const(e)) {
return non_horn;
}
else {
m_coeff_map.insert_if_not_there2(e, rational(0))->get_data().m_value += mul;
}
}
unsigned num_negative = 0;
unsigned num_positive = 0;
bool is_unit_pos = true, is_unit_neg = true;
obj_map<expr, rational>::iterator it = m_coeff_map.begin();
obj_map<expr, rational>::iterator end = m_coeff_map.end();
for (; it != end; ++it) {
rational r = it->m_value;
if (r.is_zero()) {
continue;
}
m_terms.push_back(std::make_pair(it->m_key, r));
if (r.is_pos()) {
is_unit_pos = is_unit_pos && r.is_one();
num_positive++;
}
else {
is_unit_neg = is_unit_neg && r.is_minus_one();
num_negative++;
}
}
if (num_negative <= 1 && is_unit_pos && is_unit_neg && num_positive <= 1) {
return diff;
}
if (num_positive <= 1 && is_unit_pos) {
return horn;
}
if (num_negative <= 1 && is_unit_neg) {
return co_horn;
}
return non_horn;
}
}

View file

@ -1,328 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_horn_ineq.h
Abstract:
A*x <= weight + D*x, coefficients to A and D are non-negative,
D is a diagonal matrix.
Coefficients to weight may have both signs.
Label variables by weight.
Select inequality that is not satisfied.
Set delta(LHS) := 0
Set delta(RHS(x)) := weight(x) - b
Propagate weight increment through inequalities.
Author:
Nikolaj Bjorner (nbjorner) 2013-04-18
Revision History:
The implementaton is derived from theory_diff_logic.
--*/
#ifndef _THEORY_HORN_INEQ_H_
#define _THEORY_HORN_INEQ_H_
#include"rational.h"
#include"inf_rational.h"
#include"inf_int_rational.h"
#include"inf_eps_rational.h"
#include"smt_theory.h"
#include"arith_decl_plugin.h"
#include"smt_justification.h"
#include"map.h"
#include"smt_params.h"
#include"arith_eq_adapter.h"
#include"smt_model_generator.h"
#include"numeral_factory.h"
#include"smt_clause.h"
namespace smt {
class horn_ineq_tester {
ast_manager& m;
arith_util a;
ptr_vector<expr> m_todo;
svector<lbool> m_pols;
ast_mark pos_mark, neg_mark;
obj_map<expr, rational> m_coeff_map;
rational m_weight;
vector<std::pair<expr*, rational> > m_terms;
public:
enum classify_t {
co_horn,
horn,
diff,
non_horn
};
horn_ineq_tester(ast_manager& m);
// test if formula is in the Horn inequality fragment:
bool operator()(expr* fml);
bool operator()(unsigned num_fmls, expr* const* fmls);
// linearize inequality/equality
classify_t linearize(expr* e);
classify_t linearize(expr* e1, expr* e2);
// retrieve linearization
vector<std::pair<expr*,rational> > const& get_linearization() const;
rational const& get_weight() const { return m_weight; }
private:
bool test_expr(lbool p, expr* e);
classify_t linearize();
};
template<typename Ext>
class theory_horn_ineq : public theory, private Ext {
typedef typename Ext::numeral numeral;
typedef typename Ext::inf_numeral inf_numeral;
typedef literal explanation;
typedef theory_var th_var;
typedef svector<th_var> th_var_vector;
typedef unsigned clause_id;
typedef vector<std::pair<th_var, rational> > coeffs;
class clause;
class graph;
class assignment_trail;
class parent_trail;
class atom {
protected:
bool_var m_bvar;
bool m_true;
int m_pos;
int m_neg;
public:
atom(bool_var bv, int pos, int neg) :
m_bvar(bv), m_true(false),
m_pos(pos), m_neg(neg) {}
~atom() {}
bool_var get_bool_var() const { return m_bvar; }
bool is_true() const { return m_true; }
void assign_eh(bool is_true) { m_true = is_true; }
int get_asserted_edge() const { return this->m_true?m_pos:m_neg; }
int get_pos() const { return m_pos; }
int get_neg() const { return m_neg; }
std::ostream& display(theory_horn_ineq const& th, std::ostream& out) const;
};
typedef svector<atom> atoms;
struct scope {
unsigned m_atoms_lim;
unsigned m_asserted_atoms_lim;
unsigned m_asserted_qhead_old;
};
struct stats {
unsigned m_num_conflicts;
unsigned m_num_assertions;
unsigned m_num_core2th_eqs;
unsigned m_num_core2th_diseqs;
void reset() {
memset(this, 0, sizeof(*this));
}
stats() {
reset();
}
};
stats m_stats;
smt_params m_params;
arith_util a;
arith_eq_adapter m_arith_eq_adapter;
th_var m_zero_int; // cache the variable representing the zero variable.
th_var m_zero_real; // cache the variable representing the zero variable.
graph* m_graph;
atoms m_atoms;
unsigned_vector m_asserted_atoms; // set of asserted atoms
unsigned m_asserted_qhead;
u_map<unsigned> m_bool_var2atom;
svector<scope> m_scopes;
double m_agility;
bool m_lia;
bool m_lra;
bool m_non_horn_ineq_exprs;
horn_ineq_tester m_test;
arith_factory * m_factory;
rational m_delta;
rational m_lambda;
// Set a conflict due to a negative cycle.
void set_neg_cycle_conflict();
// Create a new theory variable.
virtual th_var mk_var(enode* n);
virtual th_var mk_var(expr* n);
void compute_delta();
void found_non_horn_ineq_expr(expr * n);
bool is_interpreted(app* n) const {
return n->get_family_id() == get_family_id();
}
public:
theory_horn_ineq(ast_manager& m);
virtual ~theory_horn_ineq();
virtual theory * mk_fresh(context * new_ctx) { return alloc(theory_horn_ineq, get_manager()); }
virtual char const * get_name() const { return "horn-inequality-logic"; }
/**
\brief See comment in theory::mk_eq_atom
*/
virtual app * mk_eq_atom(expr * lhs, expr * rhs) { return a.mk_eq(lhs, rhs); }
virtual void init(context * ctx);
virtual bool internalize_atom(app * atom, bool gate_ctx);
virtual bool internalize_term(app * term);
virtual void internalize_eq_eh(app * atom, bool_var v);
virtual void assign_eh(bool_var v, bool is_true);
virtual void new_eq_eh(th_var v1, th_var v2) {
m_arith_eq_adapter.new_eq_eh(v1, v2);
}
virtual bool use_diseqs() const { return true; }
virtual void new_diseq_eh(th_var v1, th_var v2) {
m_arith_eq_adapter.new_diseq_eh(v1, v2);
}
virtual void push_scope_eh();
virtual void pop_scope_eh(unsigned num_scopes);
virtual void restart_eh() {
m_arith_eq_adapter.restart_eh();
}
virtual void relevant_eh(app* e) {}
virtual void init_search_eh() {
m_arith_eq_adapter.init_search_eh();
}
virtual final_check_status final_check_eh();
virtual bool is_shared(th_var v) const {
return false;
}
virtual bool can_propagate() {
SASSERT(m_asserted_qhead <= m_asserted_atoms.size());
return m_asserted_qhead != m_asserted_atoms.size();
}
virtual void propagate();
virtual justification * why_is_diseq(th_var v1, th_var v2) {
UNREACHABLE();
return 0;
}
virtual void reset_eh();
virtual void init_model(model_generator & m);
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
virtual bool validate_eq_in_model(th_var v1, th_var v2, bool is_true) const {
return true;
}
virtual void display(std::ostream & out) const;
virtual void collect_statistics(::statistics & st) const;
private:
virtual void new_eq_eh(th_var v1, th_var v2, justification& j) {
m_stats.m_num_core2th_eqs++;
new_eq_or_diseq(true, v1, v2, j);
}
virtual void new_diseq_eh(th_var v1, th_var v2, justification& j) {
m_stats.m_num_core2th_diseqs++;
new_eq_or_diseq(false, v1, v2, j);
}
void negate(coeffs& coeffs, rational& weight);
numeral mk_weight(bool is_real, bool is_strict, rational const& w) const;
void mk_coeffs(vector<std::pair<expr*,rational> >const& terms, coeffs& coeffs, rational& w);
void del_atoms(unsigned old_size);
void propagate_core();
bool propagate_atom(atom const& a);
th_var mk_term(app* n);
th_var mk_num(app* n, rational const& r);
bool is_consistent() const;
th_var expand(bool pos, th_var v, rational & k);
void new_eq_or_diseq(bool is_eq, th_var v1, th_var v2, justification& eq_just);
th_var get_zero(sort* s) const { return a.is_int(s)?m_zero_int:m_zero_real; }
th_var get_zero(expr* e) const { return get_zero(get_manager().get_sort(e)); }
void inc_conflicts();
};
struct rhi_ext {
typedef inf_rational inf_numeral;
typedef inf_eps_rational<inf_rational> numeral;
numeral m_epsilon;
numeral m_minus_infty;
rhi_ext() : m_epsilon(inf_rational(rational(), true)), m_minus_infty(rational(-1),inf_rational()) {}
};
struct ihi_ext {
typedef rational inf_numeral;
typedef inf_eps_rational<rational> numeral;
numeral m_epsilon;
numeral m_minus_infty;
ihi_ext() : m_epsilon(rational(1)), m_minus_infty(rational(-1),rational(0)) {}
};
typedef theory_horn_ineq<rhi_ext> theory_rhi;
typedef theory_horn_ineq<ihi_ext> theory_ihi;
};
#endif /* _THEORY_HORN_INEQ_H_ */

File diff suppressed because it is too large Load diff

View file

@ -752,7 +752,8 @@ namespace smt {
for (unsigned j = 0; j < zero_v.size(); ++j) {
int v = zero_v[j];
m_graph.acc_assignment(v, numeral(-1));
m_graph.inc_assignment(v, numeral(-1));
th_var k = from_var(v);
if (!is_parity_ok(k)) {
todo.push_back(k);