3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

adding model-based opt facility

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-04-27 11:18:20 -07:00
parent 51e34e8b5f
commit 68c7d64d00
11 changed files with 465 additions and 227 deletions

View file

@ -1,6 +1,7 @@
z3_add_component(simplex
SOURCES
simplex.cpp
model_based_opt.cpp
COMPONENT_DEPENDENCIES
util
)

View file

@ -60,6 +60,9 @@ namespace Microsoft.Z3
/// <summary> Operator overloading for arithmetical operator </summary>
public static ArithExpr operator /(double a, ArithExpr b) { return MkNum(b, a) / b; }
/// <summary> Operator overloading for arithmetical operator </summary>
public static ArithExpr operator -(ArithExpr a) { return a.Context.MkUnaryMinus(a); }
/// <summary> Operator overloading for arithmetical operator </summary>
public static ArithExpr operator -(ArithExpr a, ArithExpr b) { return a.Context.MkSub(a, b); }

View file

@ -39,9 +39,7 @@ namespace Microsoft.Z3
/// <summary> Disjunction of Boolean expressions </summary>
public static BoolExpr operator|(BoolExpr a, BoolExpr b) { return a.Context.MkOr(a, b); }
/// <summary>
/// Conjunction of Boolean expressions
/// </summary>
/// <summary> Conjunction of Boolean expressions </summary>
public static BoolExpr operator &(BoolExpr a, BoolExpr b) { return a.Context.MkAnd(a, b); }
/// <summary> Xor of Boolean expressions </summary>

View file

@ -0,0 +1,307 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
model_based_opt.cpp
Abstract:
Model-based optimization for linear real arithmetic.
Author:
Nikolaj Bjorner (nbjorner) 2016-27-4
Revision History:
--*/
#include "model_based_opt.h"
namespace opt {
bool model_based_opt::invariant() {
// variables in each row are sorted.
for (unsigned i = 0; i < m_rows.size(); ++i) {
if (!invariant(m_rows[i])) {
return false;
}
}
return invariant(m_objective);
}
bool model_based_opt::invariant(row const& r) {
rational val = r.m_coeff;
vector<var> const& vars = r.m_vars;
for (unsigned i = 0; i < vars.size(); ++i) {
var const& v = vars[i];
SASSERT(i + 1 == vars.size() || v.m_id < vars[i+1].m_id);
SASSERT(!v.m_coeff.is_zero());
val += v.m_coeff * m_var2value[v.m_id];
}
SASSERT(val == r.m_value);
SASSERT(r.m_type != t_eq || val.is_zero());
SASSERT(r.m_type != t_lt || val.is_neg());
SASSERT(r.m_type != t_le || !val.is_pos());
return true;
}
// a1*x + obj
// a2*x + t2 <= 0
// a3*x + t3 <= 0
// a4*x + t4 <= 0
// a1 > 0, a2 > 0, a3 > 0, a4 < 0
// x <= -t2/a2
// x <= -t2/a3
// determine lub among these.
// then resolve lub with others
// e.g., -t2/a2 <= -t3/a3, then
// replace inequality a3*x + t3 <= 0 by -t2/a2 + t3/a3 <= 0
// mark a4 as invalid.
//
// a1 < 0, a2 < 0, a3 < 0, a4 > 0
// x >= t2/a2
// x >= t3/a3
// determine glb among these
// the resolve glb with others.
// e.g. t2/a2 >= t3/a3
// then replace a3*x + t3 by t3/a3 - t2/a2 <= 0
//
bound_type model_based_opt::maximize(rational& value) {
// tbd
SASSERT(invariant());
vector<var> & vars = m_objective.m_vars;
unsigned_vector other;
while (!vars.empty()) {
var const& v = vars.back();
unsigned x = v.m_id;
rational const& coeff = v.m_coeff;
rational const& x_val = m_var2value[x];
unsigned_vector const& row_ids = m_var2row_ids[x];
unsigned bound_index;
other.reset();
if (find_bound(x, bound_index, other, coeff.is_pos())) {
rational bound_coeff = m_rows[bound_index].m_coeff;
for (unsigned i = 0; i < other.size(); ++i) {
resolve(other[i], bound_coeff, bound_index, x);
}
// coeff*x + objective -> coeff*(bound) + objective
// tbd:
multiply(coeff/bound_coeff, bound_index);
//add(m_objective_id, bound_index);
m_rows[bound_index].m_alive = false;
}
else {
return unbounded;
}
}
value = m_objective.m_coeff;
switch (m_objective.m_type) {
case t_lt: return strict;
case t_le: return non_strict;
case t_eq: return non_strict;
}
return non_strict;
}
bool model_based_opt::find_bound(unsigned x, unsigned& bound_index, unsigned_vector& other, bool is_pos) {
bound_index = UINT_MAX;
rational lub_val;
rational const& x_val = m_var2value[x];
unsigned_vector const& row_ids = m_var2row_ids[x];
for (unsigned i = 0; i < row_ids.size(); ++i) {
unsigned row_id = row_ids[i];
row& r = m_rows[row_id];
if (r.m_alive) {
rational a = get_coefficient(row_id, x);
if (a.is_pos() == is_pos) {
rational value = r.m_value - x_val*a; // r.m_value = val_x*a + val(t), val(t) := r.m_value - val_x*a;
if (bound_index == UINT_MAX) {
lub_val = value;
bound_index = row_id;
}
else if ((is_pos && value < lub_val) || (!is_pos && value > lub_val)) {
other.push_back(bound_index);
lub_val = value;
bound_index = row_id;
}
else {
other.push_back(bound_index);
}
}
else if (!a.is_zero()) {
r.m_alive = false;
}
}
}
return bound_index != UINT_MAX;
}
rational model_based_opt::get_coefficient(unsigned row_id, unsigned var_id) {
row const& r = m_rows[row_id];
unsigned lo = 0, hi = r.m_vars.size();
while (lo < hi) {
unsigned mid = lo + (hi - lo)/2;
SASSERT(mid < hi);
unsigned id = r.m_vars[mid].m_id;
if (id == var_id) {
lo = mid;
break;
}
if (id < var_id) {
lo = mid + 1;
}
else {
hi = mid - 1;
}
}
unsigned id = r.m_vars[lo].m_id;
if (id == var_id) {
return r.m_vars[lo].m_coeff;
}
else {
return rational::zero();
}
}
bool model_based_opt::resolve(unsigned row_id1, rational const& a1, unsigned row_id2, unsigned x) {
// row1 is of the form a1*x + t1 <~ 0
// row2 is of the form a2*x + t2 <~ 0
// assume that a1, a2 have the same sign.
// if a1 is positive, then val(t1*a2/a1) <= val(t2*a1/a2)
// replace row2 with the new inequality of the form:
// t1 - a1*t2/a2 <~~ 0
// where <~~ is strict if either <~1 or <~2 is strict.
// if a1 is negative, then ....
//
if (!m_rows[row_id2].m_alive) {
return false;
}
rational a2 = get_coefficient(row_id2, x);
if (a2.is_zero()) {
return false;
}
else if (a1.is_pos() && a2.is_pos()) {
multiply(-a1/a2, row_id2);
add(row_id2, row_id1);
return true;
}
else if (a1.is_neg() && a2.is_neg()) {
NOT_IMPLEMENTED_YET();
// tbd
return true;
}
else {
m_rows[row_id2].m_alive = false;
return false;
}
}
void model_based_opt::multiply(rational const& c, unsigned row_id) {
if (c.is_one()) {
return;
}
row& r = m_rows[row_id];
SASSERT(r.m_alive);
for (unsigned i = 0; i < r.m_vars.size(); ++i) {
r.m_vars[i].m_coeff *= c;
}
r.m_coeff *= c;
r.m_value *= c;
}
// add row2 to row1, store result in row1.
void model_based_opt::add(unsigned row_id1, unsigned row_id2) {
m_new_vars.reset();
row& r1 = m_rows[row_id1];
row const& r2 = m_rows[row_id2];
unsigned i = 0, j = 0;
for(; i < r1.m_vars.size() || j < r2.m_vars.size(); ) {
if (j == r2.m_vars.size()) {
m_new_vars.append(r1.m_vars.size() - i, r1.m_vars.c_ptr() + i);
}
else if (i == r1.m_vars.size()) {
for (; j < r2.m_vars.size(); ++j) {
m_new_vars.push_back(r2.m_vars[j]);
m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1);
}
}
else {
unsigned v1 = r1.m_vars[i].m_id;
unsigned v2 = r2.m_vars[j].m_id;
if (v1 == v2) {
m_new_vars.push_back(r1.m_vars[i]);
m_new_vars.back().m_coeff += r2.m_vars[j].m_coeff;
++i;
++j;
if (m_new_vars.back().m_coeff.is_zero()) {
m_new_vars.pop_back();
}
}
else if (v1 < v2) {
m_new_vars.push_back(r1.m_vars[i]);
++i;
}
else {
m_new_vars.push_back(r2.m_vars[j]);
m_var2row_ids[r2.m_vars[j].m_id].push_back(row_id1);
++j;
}
}
}
r1.m_coeff += r2.m_coeff;
r1.m_vars.swap(m_new_vars);
r1.m_value += r2.m_value;
if (r2.m_type == t_lt) {
r1.m_type = t_lt;
}
}
void model_based_opt::display(std::ostream& out) const {
for (unsigned i = 0; i < m_rows.size(); ++i) {
display(out, m_rows[i]);
}
}
void model_based_opt::display(std::ostream& out, row const& r) const {
vector<var> const& vars = r.m_vars;
for (unsigned i = 0; i < vars.size(); ++i) {
if (i > 0 && vars[i].m_coeff.is_pos()) {
out << "+ ";
}
out << vars[i].m_coeff << "* v" << vars[i].m_id << " ";
}
out << r.m_coeff;
switch (r.m_type) {
case t_eq:
out << " = 0\n";
break;
case t_lt:
out << " < 0\n";
break;
case t_le:
out << " <= 0\n";
break;
}
}
unsigned model_based_opt::add_var(rational const& value) {
NOT_IMPLEMENTED_YET();
return 0;
}
void model_based_opt::add_constraint(vector<var> const& coeffs, rational const& c, ineq_type r) {
NOT_IMPLEMENTED_YET();
}
void model_based_opt::set_objective(vector<var> const& coeffs, rational const& c) {
NOT_IMPLEMENTED_YET();
}
}

View file

@ -0,0 +1,102 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
model_based_opt.h
Abstract:
Model-based optimization for linear real arithmetic.
Author:
Nikolaj Bjorner (nbjorner) 2016-27-4
Revision History:
--*/
#ifndef __MODEL_BASED_OPT_H__
#define __MODEL_BASED_OPT_H__
#include "util.h"
#include "rational.h"
namespace opt {
enum ineq_type {
t_eq,
t_lt,
t_le
};
enum bound_type {
unbounded,
strict,
non_strict
};
class model_based_opt {
public:
struct var {
unsigned m_id;
rational m_coeff;
var(unsigned id, rational const& c): m_id(id), m_coeff(c) {}
};
private:
struct row {
vector<var> m_vars; // variables with coefficients
rational m_coeff; // constant in inequality
ineq_type m_type; // inequality type
rational m_value; // value of m_vars + m_coeff under interpretation of m_var2value.
bool m_alive; // rows can be marked dead if they have been processed.
};
vector<row> m_rows;
vector<unsigned_vector> m_var2row_ids;
vector<rational> m_var2value;
row m_objective;
vector<var> m_new_vars;
bool invariant();
bool invariant(row const& r);
bool find_bound(unsigned x, unsigned& bound_index, unsigned_vector& other, bool is_pos);
rational get_coefficient(unsigned row_id, unsigned var_id);
bool resolve(unsigned row_id1, rational const& a1, unsigned row_id2, unsigned x);
void multiply(rational const& c, unsigned row_id);
void add(unsigned row_id1, unsigned row_id2);
public:
// add a fresh variable with value 'value'.
unsigned add_var(rational const& value);
// add a constraint. We assume that the constraint is
// satisfied under the values provided to the variables.
void add_constraint(vector<var> const& coeffs, rational const& c, ineq_type r);
// Set the objective function (linear).
void set_objective(vector<var> const& coeffs, rational const& c);
// find a maximal value for the objective function over the current values.
// in other words, the returned maximal value may not be globally optimal,
// but the current evaluation of variables are used to select a local
// optimal.
bound_type maximize(rational& value);
void display(std::ostream& out) const;
void display(std::ostream& out, row const& r) const;
};
}
#endif

View file

@ -51,175 +51,6 @@ namespace qe {
return is_divides(a, e1, e2, k, t) || is_divides(a, e2, e1, k, t);
}
enum ineq_type {
t_eq,
t_lt,
t_le
};
struct tableau {
struct var {
unsigned m_id;
rational m_coeff;
var(unsigned id, rational const& c): m_id(id), m_coeff(c) {}
};
struct row {
vector<var> m_vars; // variables with coefficients
rational m_coeff; // constant in inequality
ineq_type m_type; // inequality type
rational m_value; // value of m_vars + m_coeff under interpretation of m_var2value.
bool m_alive; // rows can be marked dead if they have been processed.
};
vector<row> m_rows;
vector<unsigned_vector> m_var2rows;
vector<rational> m_var2value;
row m_objective;
void invariant() {
// variables in each row are sorted.
}
mbp::bound_type maximize(rational& value) {
// tbd
return mbp::unbounded;
}
rational get_coefficient(unsigned row_id, unsigned var_id) {
row const& r = m_rows[row_id];
unsigned lo = 0, hi = r.m_vars.size();
while (lo < hi) {
unsigned mid = lo + (hi - lo)/2;
SASSERT(mid < hi);
unsigned id = r.m_vars[mid].m_id;
if (id == var_id) {
lo = mid;
break;
}
if (id < var_id) {
lo = mid + 1;
}
else {
hi = mid - 1;
}
}
unsigned id = r.m_vars[lo].m_id;
if (id == var_id) {
return r.m_vars[lo].m_coeff;
}
else {
return rational::zero();
}
}
void resolve(unsigned row_id1, unsigned row_id2, unsigned x) {
// row1 is of the form a1*x + t1 <~ 0
// row2 is of the form a2*x + t2 <~ 0
// assume that a1, a2 have the same sign.
// if a1 is positive, then val(t1*a2/a1) <= val(t2*a1/a2)
// replace row2 with the new inequality of the form:
// t1 - a1*t2/a2 <~~ 0
// where <~~ is strict if either <~1 or <~2 is strict.
// if a1 is negative, then ....
//
}
void multiply(rational const& c, unsigned row_id) {
if (c.is_one()) {
return;
}
row& r = m_rows[row_id];
SASSERT(r.m_alive);
for (unsigned i = 0; i < r.m_vars.size(); ++i) {
r.m_vars[i].m_coeff *= c;
}
r.m_coeff *= c;
r.m_value *= c;
}
// subtract row2 from row1, store result in row2
vector<var> m_new_vars;
void subtract(unsigned row_id1, unsigned row_id2) {
m_new_vars.reset();
row const& r1 = m_rows[row_id1];
row& r2 = m_rows[row_id2];
unsigned i = 0, j = 0;
for(; i < r1.m_vars.size() || j < r2.m_vars.size(); ) {
if (j == r2.m_vars.size()) {
for (; i < r1.m_vars.size(); ++i) {
m_new_vars.push_back(r1.m_vars[i]);
m_var2rows[r1.m_vars[i].m_id].push_back(row_id2);
}
}
else if (i == r1.m_vars.size()) {
for (; j < r2.m_vars.size(); ++j) {
m_new_vars.push_back(r2.m_vars[j]);
m_new_vars.back().m_coeff.neg();
}
}
else {
unsigned v1 = r1.m_vars[i].m_id;
unsigned v2 = r2.m_vars[j].m_id;
if (v1 == v2) {
m_new_vars.push_back(r1.m_vars[i]);
m_new_vars.back().m_coeff -= r2.m_vars[j].m_coeff;
++i;
++j;
if (m_new_vars.back().m_coeff.is_zero()) {
m_new_vars.pop_back();
}
}
else if (v1 < v2) {
m_new_vars.push_back(r1.m_vars[i]);
m_var2rows[r1.m_vars[i].m_id].push_back(row_id2);
++i;
}
else {
m_new_vars.push_back(r2.m_vars[j]);
m_new_vars.back().m_coeff.neg();
++j;
}
}
}
r2.m_coeff.neg();
r2.m_coeff += r1.m_coeff;
r2.m_vars.swap(m_new_vars);
r2.m_value.neg();
r2.m_value += r1.m_value;
if (r1.m_type == t_lt) {
r2.m_type = t_lt;
}
}
void display(std::ostream& out) const {
for (unsigned i = 0; i < m_rows.size(); ++i) {
display(out, m_rows[i]);
}
}
void display(std::ostream& out, row const& r) const {
vector<var> const& vars = r.m_vars;
for (unsigned i = 0; i < vars.size(); ++i) {
if (i > 0 && vars[i].m_coeff.is_pos()) {
out << "+ ";
}
out << vars[i].m_coeff << "* v" << vars[i].m_id << " ";
}
out << r.m_coeff;
switch (r.m_type) {
case t_eq:
out << " = 0\n";
break;
case t_lt:
out << " < 0\n";
break;
case t_le:
out << " <= 0\n";
break;
}
}
};
#if 0
obj_map<expr, unsigned> m_expr2var;
@ -234,7 +65,7 @@ namespace qe {
th_rewriter m_rw;
expr_ref_vector m_ineq_terms;
vector<rational> m_ineq_coeffs;
svector<ineq_type> m_ineq_types;
svector<opt::ineq_type> m_ineq_types;
expr_ref_vector m_div_terms;
vector<rational> m_div_divisors, m_div_coeffs;
expr_ref_vector m_new_lits;
@ -368,7 +199,7 @@ namespace qe {
bool is_linear(model& model, expr* lit, bool& found_eq) {
rational c(0), mul(1);
expr_ref t(m);
ineq_type ty = t_le;
opt::ineq_type ty = opt::t_le;
expr* e1, *e2;
expr_ref_vector ts(m);
bool is_not = m.is_not(lit, lit);
@ -379,17 +210,17 @@ namespace qe {
if (a.is_le(lit, e1, e2) || a.is_ge(lit, e2, e1)) {
is_linear(model, mul, e1, c, ts);
is_linear(model, -mul, e2, c, ts);
ty = is_not?t_lt:t_le;
ty = is_not? opt::t_lt : opt::t_le;
}
else if (a.is_lt(lit, e1, e2) || a.is_gt(lit, e2, e1)) {
is_linear(model, mul, e1, c, ts);
is_linear(model, -mul, e2, c, ts);
ty = is_not?t_le:t_lt;
ty = is_not? opt::t_le: opt::t_lt;
}
else if (m.is_eq(lit, e1, e2) && !is_not && is_arith(e1)) {
is_linear(model, mul, e1, c, ts);
is_linear(model, -mul, e2, c, ts);
ty = t_eq;
ty = opt::t_eq;
}
else if (m.is_distinct(lit) && !is_not && is_arith(to_app(lit)->get_arg(0))) {
expr_ref val(m);
@ -408,7 +239,7 @@ namespace qe {
is_linear(model, mul, nums[i+1].first, c, ts);
is_linear(model, -mul, nums[i].first, c, ts);
t = add(ts);
accumulate_linear(model, c, t, t_lt);
accumulate_linear(model, c, t, opt::t_lt);
}
t = mk_num(0);
c.reset();
@ -427,7 +258,7 @@ namespace qe {
if (r1 < r2) {
std::swap(e1, e2);
}
ty = t_lt;
ty = opt::t_lt;
is_linear(model, mul, e1, c, ts);
is_linear(model, -mul, e2, c, ts);
}
@ -435,24 +266,24 @@ namespace qe {
TRACE("qe", tout << "can't project:" << mk_pp(lit, m) << "\n";);
throw cant_project();
}
if (ty == t_lt && is_int()) {
if (ty == opt::t_lt && is_int()) {
ts.push_back(mk_num(1));
ty = t_le;
ty = opt::t_le;
}
t = add(ts);
if (ty == t_eq && c.is_neg()) {
if (ty == opt::t_eq && c.is_neg()) {
t = mk_uminus(t);
c.neg();
}
if (ty == t_eq && c > rational(1)) {
if (ty == opt::t_eq && c > rational(1)) {
m_ineq_coeffs.push_back(-c);
m_ineq_terms.push_back(mk_uminus(t));
m_ineq_types.push_back(t_le);
m_ineq_types.push_back(opt::t_le);
m_num_neg++;
ty = t_le;
ty = opt::t_le;
}
accumulate_linear(model, c, t, ty);
found_eq = !c.is_zero() && ty == t_eq;
found_eq = !c.is_zero() && ty == opt::t_eq;
return true;
}
@ -503,16 +334,16 @@ namespace qe {
}
};
void accumulate_linear(model& model, rational const& c, expr_ref& t, ineq_type ty) {
void accumulate_linear(model& model, rational const& c, expr_ref& t, opt::ineq_type ty) {
if (c.is_zero()) {
switch (ty) {
case t_eq:
case opt::t_eq:
t = a.mk_eq(t, mk_num(0));
break;
case t_lt:
case opt::t_lt:
t = a.mk_lt(t, mk_num(0));
break;
case t_le:
case opt::t_le:
t = a.mk_le(t, mk_num(0));
break;
}
@ -522,7 +353,7 @@ namespace qe {
m_ineq_coeffs.push_back(c);
m_ineq_terms.push_back(t);
m_ineq_types.push_back(ty);
if (ty == t_eq) {
if (ty == opt::t_eq) {
// skip
}
else if (c.is_pos()) {
@ -632,18 +463,18 @@ namespace qe {
expr* ineq_term(unsigned i) const { return m_ineq_terms[i]; }
rational const& ineq_coeff(unsigned i) const { return m_ineq_coeffs[i]; }
ineq_type ineq_ty(unsigned i) const { return m_ineq_types[i]; }
opt::ineq_type ineq_ty(unsigned i) const { return m_ineq_types[i]; }
app_ref mk_ineq_pred(unsigned i) {
app_ref result(m);
result = to_app(mk_add(mk_mul(ineq_coeff(i), m_var->x()), ineq_term(i)));
switch (ineq_ty(i)) {
case t_lt:
case opt::t_lt:
result = a.mk_lt(result, mk_num(0));
break;
case t_le:
case opt::t_le:
result = a.mk_le(result, mk_num(0));
break;
case t_eq:
case opt::t_eq:
result = m.mk_eq(result, mk_num(0));
break;
}
@ -652,9 +483,9 @@ namespace qe {
void display_ineq(std::ostream& out, unsigned i) const {
out << mk_pp(ineq_term(i), m) << " " << ineq_coeff(i) << "*" << mk_pp(m_var->x(), m);
switch (ineq_ty(i)) {
case t_eq: out << " = 0\n"; break;
case t_le: out << " <= 0\n"; break;
case t_lt: out << " < 0\n"; break;
case opt::t_eq: out << " = 0\n"; break;
case opt::t_le: out << " <= 0\n"; break;
case opt::t_lt: out << " < 0\n"; break;
}
}
unsigned num_ineqs() const { return m_ineq_terms.size(); }
@ -769,7 +600,7 @@ namespace qe {
bool is_int = a.is_int(m_var->x());
for (unsigned i = 0; i < num_ineqs(); ++i) {
rational const& ac = m_ineq_coeffs[i];
SASSERT(!is_int || t_le == ineq_ty(i));
SASSERT(!is_int || opt::t_le == ineq_ty(i));
//
// ac*x + t < 0
@ -783,7 +614,7 @@ namespace qe {
new_max =
new_max ||
(r > max_r) ||
(r == max_r && t_lt == ineq_ty(i)) ||
(r == max_r && opt::t_lt == ineq_ty(i)) ||
(r == max_r && is_int && ac.is_one());
TRACE("qe", tout << "max: " << mk_pp(ineq_term(i), m) << "/" << abs(ac) << " := " << r << " "
<< (new_max?"":"not ") << "new max\n";);
@ -821,7 +652,7 @@ namespace qe {
expr_ref ts = mk_add(bt, as);
expr_ref z = mk_num(0);
expr_ref fml(m);
if (t_lt == ineq_ty(i) || t_lt == ineq_ty(j)) {
if (opt::t_lt == ineq_ty(i) || opt::t_lt == ineq_ty(j)) {
fml = a.mk_lt(ts, z);
}
else {
@ -838,7 +669,7 @@ namespace qe {
rational ac = ineq_coeff(i);
rational bc = ineq_coeff(j);
expr_ref tmp(m);
SASSERT(t_le == ineq_ty(i) && t_le == ineq_ty(j));
SASSERT(opt::t_le == ineq_ty(i) && opt::t_le == ineq_ty(j));
SASSERT(ac.is_pos() == bc.is_neg());
rational abs_a = abs(ac);
rational abs_b = abs(bc);
@ -917,7 +748,7 @@ namespace qe {
expr* s = ineq_term(j);
expr_ref bt = mk_mul(abs(bc), t);
expr_ref as = mk_mul(abs(ac), s);
if (t_lt == ineq_ty(i) && t_le == ineq_ty(j)) {
if (opt::t_lt == ineq_ty(i) && opt::t_le == ineq_ty(j)) {
return expr_ref(a.mk_lt(bt, as), m);
}
else {
@ -988,9 +819,9 @@ namespace qe {
expr_ref lhs(m), val(m);
lhs = mk_sub(mk_mul(c, ineq_term(i)), mk_mul(ineq_coeff(i), t));
switch (ineq_ty(i)) {
case t_lt: lhs = a.mk_lt(lhs, mk_num(0)); break;
case t_le: lhs = a.mk_le(lhs, mk_num(0)); break;
case t_eq: lhs = m.mk_eq(lhs, mk_num(0)); break;
case opt::t_lt: lhs = a.mk_lt(lhs, mk_num(0)); break;
case opt::t_le: lhs = a.mk_le(lhs, mk_num(0)); break;
case opt::t_eq: lhs = m.mk_eq(lhs, mk_num(0)); break;
}
TRACE("qe", tout << lhs << "\n";);
SASSERT (model.eval(lhs, val) && m.is_true(val));
@ -1082,17 +913,17 @@ namespace qe {
return true;
}
mbp::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
opt::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
obj_map<expr, rational> ts;
rational c(0), mul(1);
linearize(mdl, mul, t, c, ts);
// TBD:
// pick variables one by one from ts.
// m_var = alloc(contains_app, m, v);
// perform upper or lower projection depending on sign of v.
//
return mbp::unbounded;
return opt::unbounded;
}
};
@ -1116,7 +947,7 @@ namespace qe {
return m_imp->a.get_family_id();
}
mbp::bound_type arith_project_plugin::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
opt::bound_type arith_project_plugin::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
return m_imp->maximize(fmls, mdl, t, value, bound);
}

View file

@ -29,7 +29,7 @@ namespace qe {
virtual bool operator()(model& model, app* var, app_ref_vector& vars, expr_ref_vector& lits);
virtual bool solve(model& model, app_ref_vector& vars, expr_ref_vector& lits);
virtual family_id get_family_id();
mbp::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound);
opt::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound);
};
bool arith_project(model& model, app* var, expr_ref_vector& lits);

View file

@ -213,7 +213,7 @@ class mbp::impl {
public:
mbp::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
opt::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
arith_project_plugin arith(m);
return arith.maximize(fmls, mdl, t, value, bound);
}
@ -421,6 +421,6 @@ void mbp::extract_literals(model& model, expr_ref_vector& lits) {
m_impl->extract_literals(model, lits);
}
mbp::bound_type mbp::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
opt::bound_type mbp::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
return m_impl->maximize(fmls, mdl, t, value, bound);
}

View file

@ -24,6 +24,7 @@ Revision History:
#include "ast.h"
#include "params.h"
#include "model.h"
#include "model_based_opt.h"
namespace qe {
@ -75,12 +76,7 @@ namespace qe {
\brief
Maximize objective t under current model for constraints in fmls.
*/
enum bound_type {
unbounded,
strict,
non_strict
};
bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound);
opt::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound);
};
}

View file

@ -1284,16 +1284,16 @@ namespace qe {
app* m_objective;
expr_ref m_value;
mbp::bound_type m_bound;
opt::bound_type m_bound;
bool m_was_sat;
lbool maximize(expr_ref_vector const& fmls, app* t, expr_ref& value, mbp::bound_type& bound) {
lbool maximize(expr_ref_vector const& fmls, app* t, expr_ref& value, opt::bound_type& bound) {
expr_ref_vector defs(m);
expr_ref fml = negate_core(fmls);
hoist(fml);
m_objective = t;
m_value = 0;
m_bound = mbp::unbounded;
m_bound = opt::unbounded;
m_was_sat = false;
m_pred_abs.abstract_atoms(fml, defs);
fml = m_pred_abs.mk_abstract(fml);
@ -1334,14 +1334,14 @@ namespace qe {
expr_ref bound(m);
m_bound = m_mbp.maximize(core, mdl, m_objective, m_value, bound);
switch (m_bound) {
case mbp::unbounded:
case opt::unbounded:
m_ex.assert_expr(m.mk_false());
m_fa.assert_expr(m.mk_false());
break;
case mbp::strict:
case opt::strict:
m_ex.assert_expr(bound);
break;
case mbp::non_strict:
case opt::non_strict:
m_ex.assert_expr(bound);
break;
}
@ -1349,7 +1349,7 @@ namespace qe {
};
lbool maximize(expr_ref_vector const& fmls, app* t, expr_ref& value, mbp::bound_type& bound, params_ref const& p) {
lbool maximize(expr_ref_vector const& fmls, app* t, expr_ref& value, opt::bound_type& bound, params_ref const& p) {
ast_manager& m = fmls.get_manager();
qsat qs(m, p, qsat_maximize);
return qs.maximize(fmls, t, value, bound);

View file

@ -114,7 +114,7 @@ namespace qe {
void collect_statistics(statistics& st) const;
};
lbool maximize(expr_ref_vector const& fmls, app* t, expr_ref& value, mbp::bound_type& bound, params_ref const& p);
lbool maximize(expr_ref_vector const& fmls, app* t, expr_ref& value, opt::bound_type& bound, params_ref const& p);
}