3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

more cleanup

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-10-31 10:54:59 -07:00
parent c2e95bb0c5
commit 683687b153
15 changed files with 2 additions and 508 deletions

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,849 +0,0 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
imdd.h
Abstract:
Interval based Multiple-valued Decision Diagrams.
Author:
Leonardo de Moura (leonardo) 2010-10-13.
Revision History:
--*/
#ifndef _IMDD_H_
#define _IMDD_H_
#include"id_gen.h"
#include"hashtable.h"
#include"map.h"
#include"obj_hashtable.h"
#include"obj_pair_hashtable.h"
#include"buffer.h"
#include"interval_skip_list.h"
#include"region.h"
#include"obj_ref.h"
class imdd;
class imdd_manager;
/**
\brief Manager for skip-lists used to implement IMDD nodes.
*/
class sl_imdd_manager : public random_level_manager {
imdd_manager * m_manager; // real manager
small_object_allocator & m_alloc;
friend class imdd_manager;
public:
sl_imdd_manager(small_object_allocator & alloc):m_alloc(alloc) {}
void * allocate(size_t size) { return m_alloc.allocate(size); }
void deallocate(size_t size, void* p) { m_alloc.deallocate(size, p); }
void inc_ref_eh(imdd * v);
void dec_ref_eh(imdd * v);
};
#define IMDD_BUCKET_CAPACITY 128
#define IMDD_MAX_LEVEL 32
typedef interval_skip_list<unsigned_interval_skip_list_traits<imdd*,
default_eq<imdd*>,
IMDD_BUCKET_CAPACITY,
IMDD_MAX_LEVEL,
true, /* support ref-counting */
sl_imdd_manager> > imdd_children;
typedef interval_skip_list<unsigned_interval_skip_list_traits<unsigned,
default_eq<unsigned>,
IMDD_BUCKET_CAPACITY,
IMDD_MAX_LEVEL,
false,
sl_manager_base<unsigned> > > sl_interval_set;
/*
Notes:
- We use reference counting for garbage collecting IMDDs nodes.
- Each IMDD node has a "memoized" flag. If the flag is true, the we use hash-consing for this node.
- The children of a memoized node must be memoized.
- The children of a non-memoized node may be memoized.
- The "memoized" flag cannot be reset after it was set.
- The result of some operations may be cached. We only use caching for
operations processing memoized nodes.
- For non-memoized nodes, if m_ref_count <= 1, destructive updates may be performed by some operations.
- IMPORTANT: "memoized" flag == false doesn't imply m_ref_count <= 1.
*/
/**
\brief IMDDs
*/
class imdd {
protected:
friend class imdd_manager;
unsigned m_id; //!< Unique ID
unsigned m_ref_count;
unsigned m_arity:30;
unsigned m_memoized:1;
unsigned m_dead:1;
imdd_children m_children;
void inc_ref() {
m_ref_count ++;
}
void dec_ref() {
SASSERT(m_ref_count > 0);
m_ref_count --;
}
void mark_as_memoized(bool flag = true) {
SASSERT(is_memoized() != flag);
m_memoized = flag;
}
void mark_as_dead() { SASSERT(!m_dead); m_dead = true; }
void replace_children(sl_imdd_manager & m, sbuffer<imdd_children::entry> & new_children);
public:
imdd(sl_imdd_manager & m, unsigned id, unsigned arity):m_id(id), m_ref_count(0), m_arity(arity), m_memoized(false), m_dead(false), m_children(m) {}
unsigned get_id() const { return m_id; }
unsigned get_ref_count() const { return m_ref_count; }
bool is_memoized() const { return m_memoized; }
bool is_shared() const { return m_ref_count > 1; }
bool is_dead() const { return m_dead; }
unsigned get_arity() const { return m_arity; }
imdd_children::iterator begin_children() const { return m_children.begin(); }
imdd_children::iterator end_children() const { return m_children.end(); }
unsigned hc_hash() const; // hash code for hash-consing.
bool hc_equal(imdd const * other) const; // eq function for hash-consing
bool empty() const { return m_children.empty(); }
unsigned hash() const { return m_id; }
unsigned memory() const { return sizeof(imdd) + m_children.memory() - sizeof(imdd_children); }
};
// -----------------------------------
//
// IMDD hash-consing
//
// -----------------------------------
// this is the internal hashing functor for hash-consing IMDDs.
struct imdd_hash_proc {
unsigned operator()(imdd const * d) const { return d->hc_hash(); }
};
// This is the internal comparison functor for hash-consing IMDDs.
struct imdd_eq_proc {
bool operator()(imdd const * d1, imdd const * d2) const { return d1->hc_equal(d2); }
};
typedef ptr_hashtable<imdd, imdd_hash_proc, imdd_eq_proc> imdd_table;
typedef obj_hashtable<imdd> imdd_cache;
typedef obj_map<imdd, imdd*> imdd2imdd_cache;
typedef obj_pair_map<imdd, imdd, imdd*> imdd_pair2imdd_cache;
typedef obj_pair_map<imdd, imdd, bool> imdd_pair2bool_cache;
typedef obj_map<imdd, sl_interval_set*> imdd2intervals;
typedef std::pair<imdd*, unsigned> imdd_value_pair;
struct fi_cache_entry {
imdd * m_d;
unsigned m_lower;
unsigned m_upper;
unsigned m_hash;
unsigned m_num_result;
imdd_value_pair m_result[0];
void mk_hash() {
m_hash = hash_u_u(m_d->get_id(), hash_u_u(m_lower, m_upper));
}
fi_cache_entry(imdd * d, unsigned l, unsigned u):
m_d(d),
m_lower(l),
m_upper(u) {
mk_hash();
}
fi_cache_entry(imdd * d, unsigned l, unsigned u, unsigned num, imdd_value_pair result[]):
m_d(d),
m_lower(l),
m_upper(u),
m_num_result(num) {
mk_hash();
memcpy(m_result, result, sizeof(imdd_value_pair)*num);
}
unsigned hash() const {
return m_hash;
}
bool operator==(fi_cache_entry const & other) const {
return
m_d == other.m_d &&
m_lower == other.m_lower &&
m_upper == other.m_upper;
}
};
typedef obj_hashtable<fi_cache_entry> imdd_fi_cache;
typedef union {
imdd * m_d;
fi_cache_entry * m_entry;
} mk_fi_result;
struct filter_cache_entry {
imdd * m_d;
imdd * m_r;
unsigned m_hash;
unsigned m_ctx_size;
unsigned m_ctx[0]; // lower and upper bounds that are part of the context.
static unsigned get_obj_size(unsigned ctx_size) {
return sizeof(filter_cache_entry) + ctx_size * sizeof(unsigned);
}
void mk_hash() {
if (m_ctx_size > 0)
m_hash = string_hash(reinterpret_cast<char *>(m_ctx), m_ctx_size * sizeof(unsigned), m_d->get_id());
else
m_hash = m_d->get_id();
}
filter_cache_entry(imdd * d, imdd * r, unsigned ctx_size, unsigned * ctx):
m_d(d),
m_r(r),
m_ctx_size(ctx_size) {
memcpy(m_ctx, ctx, sizeof(unsigned)*m_ctx_size);
mk_hash();
}
unsigned hash() const {
return m_hash;
}
bool operator==(filter_cache_entry const & other) const {
if (m_d != other.m_d)
return false;
if (m_ctx_size != other.m_ctx_size)
return false;
for (unsigned i = 0; i < m_ctx_size; i++)
if (m_ctx[i] != other.m_ctx[i])
return false;
return true;
}
};
typedef obj_hashtable<filter_cache_entry> imdd_mk_filter_cache;
typedef obj_ref<imdd, imdd_manager> imdd_ref;
class imdd_manager {
typedef imdd_children::entry entry;
small_object_allocator m_alloc;
id_gen m_id_gen;
vector<imdd_table> m_tables; // we keep a table for each height.
sl_imdd_manager m_sl_manager;
unsigned m_simple_max_entries; //!< maximum number of entries in a "simple" node.
bool m_delay_dealloc;
ptr_vector<imdd> m_to_delete; //!< list of IMDDs marked as dead. These IMDDs may still be in cache tables.
// generic cache and todo-lists
ptr_vector<imdd> m_worklist;
imdd_cache m_visited;
void mark_as_dead(imdd * d);
void deallocate_imdd(imdd * d);
void delete_imdd(imdd * d);
class delay_dealloc;
friend class delay_dealloc;
class delay_dealloc {
imdd_manager & m_manager;
bool m_delay_dealloc_value;
unsigned m_to_delete_size;
public:
delay_dealloc(imdd_manager & m):
m_manager(m),
m_delay_dealloc_value(m_manager.m_delay_dealloc),
m_to_delete_size(m_manager.m_to_delete.size()) {
m_manager.m_delay_dealloc = true;
}
~delay_dealloc();
};
bool is_simple_node(imdd * d) const;
void add_child(imdd * d, unsigned lower, unsigned upper, imdd * child) {
d->m_children.insert(m_sl_manager, lower, upper, child);
}
void add_child(imdd * d, unsigned value, imdd * child) {
add_child(d, value, value, child);
}
void remove_child(imdd * d, unsigned lower, unsigned upper) {
d->m_children.remove(m_sl_manager, lower, upper);
}
imdd * copy_main(imdd * d);
imdd * insert_main(imdd * d, unsigned b, unsigned e, bool destructive, bool memoize_res);
imdd * remove_main(imdd * d, unsigned b, unsigned e, bool destructive, bool memoize_res);
imdd2imdd_cache m_mk_product_cache;
struct null2imdd_proc;
struct mk_product_proc;
friend struct mk_product_proc;
imdd * mk_product_core(imdd * d1, imdd * d2, bool destructive, bool memoize);
imdd * mk_product_main(imdd * d1, imdd * d2, bool destructive, bool memoize_res);
imdd2imdd_cache m_add_facts_cache;
ptr_vector<imdd> m_add_facts_new_children;
void init_add_facts_new_children(unsigned num, unsigned const * lowers, unsigned const * uppers, bool memoize_res);
imdd * add_facts_core(imdd * d, unsigned num, unsigned const * lowers, unsigned const * uppers, bool destructive, bool memoize_res);
imdd * add_facts_main(imdd * d, unsigned num, unsigned const * lowers, unsigned const * uppers, bool destructive, bool memoize_res);
imdd2imdd_cache m_remove_facts_cache;
imdd * remove_facts_core(imdd * d, unsigned num, unsigned const * lowers, unsigned const * uppers, bool destructive, bool memoize_res);
imdd * remove_facts_main(imdd * d, unsigned num, unsigned const * lowers, unsigned const * uppers, bool destructive, bool memoize_res);
imdd2imdd_cache m_defrag_cache;
imdd * defrag_core(imdd * d);
imdd_pair2imdd_cache m_union_cache;
void push_back_entries(unsigned head, imdd_children::iterator & it, imdd_children::iterator & end,
imdd_children::push_back_proc & push_back, bool & children_memoized);
void push_back_upto(unsigned & head, imdd_children::iterator & it, imdd_children::iterator & end, unsigned limit,
imdd_children::push_back_proc & push_back, bool & children_memoized);
void move_head(unsigned & head, imdd_children::iterator & it, imdd_children::iterator & end, unsigned new_head);
void copy_upto(unsigned & head, imdd_children::iterator & it, imdd_children::iterator & end, unsigned limit, sbuffer<entry> & result);
void reset_union_cache();
imdd * mk_union_core(imdd * d1, imdd * d2, bool destructive, bool memoize_res);
imdd * mk_union_main(imdd * d1, imdd * d2, bool destructive, bool memoize_res);
void mk_union_core_dupdt(imdd_ref & d1, imdd * d2, bool memoize_res);
void mk_union_core(imdd * d1, imdd * d2, imdd_ref & r, bool memoize_res);
imdd_pair2bool_cache m_is_equal_cache;
bool is_equal_core(imdd * d1, imdd * d2);
imdd_pair2bool_cache m_subsumes_cache;
bool subsumes_core(imdd * d1, imdd * d2);
imdd2imdd_cache m_complement_cache;
imdd * mk_complement_core(imdd * d, unsigned num, unsigned const * mins, unsigned const * maxs, bool destructive, bool memoize_res);
imdd * mk_complement_main(imdd * d, unsigned num, unsigned const * mins, unsigned const * maxs, bool destructive, bool memoize_res);
imdd2imdd_cache m_filter_equal_cache;
imdd * mk_filter_equal_core(imdd * d, unsigned vidx, unsigned value, bool destructive, bool memoize_res);
imdd * mk_filter_equal_main(imdd * d, unsigned vidx, unsigned value, bool destructive, bool memoize_res);
// original
imdd2intervals m_imdd2interval_set;
ptr_vector<sl_interval_set> m_alloc_is;
typedef sl_manager_base<unsigned> sl_imanager;
void reset_fi_intervals(sl_imanager& m);
sl_interval_set const* init_fi_intervals(sl_imanager& m, imdd* d, unsigned var, unsigned num_found);
imdd2imdd_cache m_fi_top_cache;
imdd_fi_cache m_fi_bottom_cache;
unsigned m_fi_num_vars;
unsigned * m_fi_begin_vars;
unsigned * m_fi_end_vars;
region m_fi_entries;
bool is_fi_var(unsigned v) const { return std::find(m_fi_begin_vars, m_fi_end_vars, v) != m_fi_end_vars; }
fi_cache_entry * mk_fi_cache_entry(imdd * d, unsigned lower, unsigned upper, unsigned num_pairs, imdd_value_pair pairs[]);
mk_fi_result mk_filter_identical_core(imdd * d, unsigned offset, unsigned num_found, unsigned lower, unsigned upper,
bool destructive, bool memoize_res);
imdd * mk_filter_identical_main(imdd * d, unsigned num_vars, unsigned * vars, bool destructive, bool memoize_res);
// v2
obj_map<imdd, imdd*> m_filter_identical_cache;
void filter_identical_core2(imdd* d, unsigned num_vars, unsigned b, unsigned e, ptr_vector<imdd>& ch);
imdd* filter_identical_core2(imdd* d, unsigned var, unsigned num_vars, bool memoize_res);
void filter_identical_main2(imdd * d, imdd_ref& r, unsigned num_vars, unsigned * vars, bool destructive, bool memoize_res);
void swap_in(imdd * d, imdd_ref& r, unsigned num_vars, unsigned * vars);
void swap_out(imdd * d, imdd_ref& r, unsigned num_vars, unsigned * vars);
// v3
struct interval {
unsigned m_lo;
unsigned m_hi;
interval(unsigned lo, unsigned hi): m_lo(lo), m_hi(hi) {}
};
struct interval_dd : public interval {
imdd* m_dd;
interval_dd(unsigned lo, unsigned hi, imdd* d): interval(lo, hi), m_dd(d) {}
};
template<typename I>
class id_map {
unsigned m_T;
unsigned_vector m_Ts;
svector<svector<I>*> m_vecs;
unsigned_vector m_alloc;
unsigned m_first_free;
void hard_reset() {
std::for_each(m_vecs.begin(), m_vecs.end(), delete_proc<svector<I> >());
m_alloc.reset();
m_first_free = 0;
m_vecs.reset();
m_Ts.reset();
m_T = 0;
}
void allocate_entry(unsigned id) {
if (m_vecs[id]) {
return;
}
while (m_first_free < m_alloc.size()) {
if (m_vecs[m_first_free] && m_Ts[m_first_free] < m_T) {
svector<I>* v = m_vecs[m_first_free];
m_vecs[m_first_free] = 0;
m_vecs[id] = v;
++m_first_free;
return;
}
++m_first_free;
}
m_vecs[id] = alloc(svector<I>);
m_alloc.push_back(id);
}
public:
id_map():m_T(0) {}
~id_map() { hard_reset(); }
void reset() { ++m_T; m_first_free = 0; if (m_T == UINT_MAX) hard_reset(); }
svector<I>& init(imdd* d) {
unsigned id = d->get_id();
if (id >= m_vecs.size()) {
m_vecs.resize(id+1);
m_Ts.resize(id+1);
}
if (m_Ts[id] < m_T) {
allocate_entry(id);
m_vecs[id]->reset();
m_Ts[id] = m_T;
}
return *m_vecs[id];
}
typedef svector<I> data;
struct iterator {
unsigned m_offset;
id_map const& m;
iterator(unsigned o, id_map const& m):m_offset(o),m(m) {}
data const & operator*() const { return *m.m_vecs[m_offset]; }
data const * operator->() const { return &(operator*()); }
data * operator->() { return &(operator*()); }
iterator & operator++() { ++m_offset; return move_to_used(); }
iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; }
bool operator==(iterator const & it) const { return m_offset == it.m_offset; }
bool operator!=(iterator const & it) const { return m_offset != it.m_offset; }
iterator & move_to_used() {
while (m_offset < m.m_vecs.size() &&
m.m_Ts[m_offset] < m.m_T) {
++m_offset;
}
return *this;
}
};
iterator begin() const { return iterator(0, *this).move_to_used(); }
iterator end() const { return iterator(m_vecs.size(), *this); }
};
typedef id_map<interval > filter_id_map;
typedef id_map<interval_dd > filter_idd_map;
filter_id_map m_nodes;
filter_idd_map m_nodes_dd;
svector<interval_dd> m_i_nodes_dd, m_i_nodes_dd_tmp;
svector<interval> m_i_nodes, m_i_nodes_tmp;
unsigned_vector m_offsets;
void filter_identical_main3(imdd * d, imdd_ref& r, unsigned num_vars, unsigned * vars, bool destructive, bool memoize_res);
void filter_identical_main3(imdd * d, imdd_ref& r, unsigned v1, bool del1, unsigned v2, bool del2, bool memoize_res);
imdd* filter_identical_loop3(imdd * d, unsigned v1, bool del1, unsigned v2, bool del2, bool memoize_res);
void refine_intervals(svector<interval>& i_nodes, svector<interval_dd> const& i_nodes_dd);
void merge_intervals(svector<interval>& dst, svector<interval> const& src);
imdd* filter_identical_mk_nodes(imdd* d, unsigned v, bool del1, bool del2, bool memoize_res);
void print_filter_idd(std::ostream& out, filter_idd_map const& m);
void print_interval_dd(std::ostream& out, svector<interval_dd> const& m);
unsigned m_proj_num_vars;
unsigned * m_proj_begin_vars;
unsigned * m_proj_end_vars;
imdd2imdd_cache m_proj_cache;
bool is_proj_var(unsigned v) const { return std::find(m_proj_begin_vars, m_proj_end_vars, v) != m_proj_end_vars; }
void mk_project_init(unsigned num_vars, unsigned * vars);
void mk_project_core(imdd * d, imdd_ref & r, unsigned var, unsigned num_found, bool memoize_res);
void mk_project_dupdt_core(imdd_ref & d, unsigned var, unsigned num_found, bool memoize_res);
imdd2imdd_cache m_swap_cache;
imdd * m_swap_new_child;
bool m_swap_granchildren_memoized;
imdd * mk_swap_new_child(unsigned lower, unsigned upper, imdd * child);
void mk_swap_acc1_dupdt(imdd_ref & d, unsigned lower, unsigned upper, imdd * grandchild, bool memoize_res);
void mk_swap_acc1(imdd * d, imdd_ref & r, unsigned lower, unsigned upper, imdd * grandchild, bool memoize_res);
void mk_swap_acc2(imdd_ref & r, unsigned lower1, unsigned upper1, unsigned lower2, unsigned upper2, imdd * grandchild, bool memoize_res);
void mk_swap_top_vars(imdd * d, imdd_ref & r, bool memoize_res);
imdd * mk_swap_memoize(imdd * d);
void mk_swap_core(imdd * d, imdd_ref & r, unsigned vidx, bool memoize_res);
void mk_swap_dupdt_core(imdd_ref & d, unsigned vidx, bool memoize_res);
imdd2imdd_cache m_add_bounded_var_cache;
imdd * add_bounded_var_core(imdd * d, unsigned before_vidx, unsigned lower, unsigned upper, bool destructive, bool memoize_res);
imdd * add_bounded_var_main(imdd * d, unsigned before_vidx, unsigned lower, unsigned upper, bool destructive, bool memoize_res);
friend struct distinct_proc;
imdd * mk_distinct_imdd(unsigned l1, unsigned u1, unsigned l2, unsigned u2, imdd * d, bool memoize_res = true);
imdd_mk_filter_cache m_filter_cache;
region m_filter_entries;
unsigned m_filter_num_vars;
unsigned * m_filter_begin_vars;
unsigned * m_filter_end_vars;
unsigned_vector m_filter_context;
bool is_filter_var(unsigned v) const { return std::find(m_filter_begin_vars, m_filter_end_vars, v) != m_filter_end_vars; }
filter_cache_entry * mk_filter_cache_entry(imdd * d, unsigned ctx_sz, unsigned * ctx, imdd * r);
imdd * is_mk_filter_cached(imdd * d, unsigned ctx_sz, unsigned * ctx);
void cache_mk_filter(imdd * d, unsigned ctx_sz, unsigned * ctx, imdd * r);
void init_mk_filter(unsigned arity, unsigned num_vars, unsigned * vars);
template<typename FilterProc>
void mk_filter_dupdt_core(imdd_ref & d, unsigned vidx, unsigned num_found, FilterProc & proc, bool memoize_res);
template<typename FilterProc>
void mk_filter_core(imdd * d, imdd_ref & r, unsigned vidx, unsigned num_found, FilterProc & proc, bool memoize_res);
/**
\brief Filter the elements of the given IMDD using the given filter.
The FilterProc template parameter is a filter for computing subsets of sets of the form:
[L_1, U_1] X [L_2, U_2] X ... X [L_n, U_n] X d (where d is an IMDD)
where n == num_vars
The subset of elements is returned as an IMDD.
FilterProc must have a method of the form:
void operator()(unsigned * lowers_uppers, imdd * d, imdd_ref & r, bool memoize_res);
The size of the array lowers_uppers is 2*num_vars
The arity of the resultant IMDD must be num_vars + d->get_arity().
*/
template<typename FilterProc>
void mk_filter_dupdt(imdd_ref & d, unsigned num_vars, unsigned * vars, FilterProc & proc, bool memoize_res = true);
template<typename FilterProc>
void mk_filter(imdd * d, imdd_ref & r, unsigned num_vars, unsigned * vars, FilterProc & proc, bool memoize_res = true);
imdd * mk_disequal_imdd(unsigned l1, unsigned u1, unsigned value, imdd * d, bool memoize_res);
friend struct disequal_proc;
public:
imdd_manager();
void inc_ref(imdd * d) {
if (d)
d->inc_ref();
}
void dec_ref(imdd * d) {
if (d) {
d->dec_ref();
if (d->get_ref_count() == 0)
delete_imdd(d);
}
}
unsigned get_num_nodes(imdd const * d) const;
// count number of keys (rows) in table as if table is uncompressed.
size_t get_num_rows(imdd const* d) const;
unsigned memory(imdd const * d) const;
private:
imdd * _mk_empty(unsigned arity);
public:
imdd * mk_empty(unsigned arity) {
imdd * r = _mk_empty(arity);
STRACE("imdd_trace", tout << "mk_empty(" << arity << ", 0x" << r << ");\n";);
return r;
}
private:
imdd * memoize(imdd * d);
public:
void memoize(imdd_ref const & d, imdd_ref & r) { r = memoize(d.get()); }
void memoize(imdd_ref & d) { d = memoize(d.get()); }
imdd * memoize_new_imdd_if(bool cond, imdd * r) {
if (cond && is_simple_node(r)) {
SASSERT(!r->is_shared());
imdd * can_r = memoize(r);
if (can_r != r) {
SASSERT(r->get_ref_count() == 0);
delete_imdd(r);
}
return can_r;
}
return r;
}
public:
void defrag(imdd_ref & d);
void unmemoize(imdd * d);
void unmemoize_rec(imdd * d);
void copy(imdd * d, imdd_ref & r) { r = copy_main(d); }
void insert_dupdt(imdd_ref & d, unsigned b, unsigned e, bool memoize_res = true) {
d = insert_main(d, b, e, true, memoize_res);
}
void insert(imdd * d, imdd_ref & r, unsigned b, unsigned e, bool memoize_res = true) {
r = insert_main(d, b, e, false, memoize_res);
}
void mk_product_dupdt(imdd_ref & d1, imdd * d2, bool memoize_res = true) {
d1 = mk_product_main(d1.get(), d2, true, memoize_res);
}
void mk_product(imdd * d1, imdd * d2, imdd_ref & r, bool memoize_res = true) {
r = mk_product_main(d1, d2, false, memoize_res);
STRACE("imdd_trace", tout << "mk_product(0x" << d1 << ", 0x" << d2 << ", 0x" << r.get() << ", " << memoize_res << ");\n";);
}
void mk_union_dupdt(imdd_ref & d1, imdd * d2, bool memoize_res = true) {
d1 = mk_union_main(d1.get(), d2, true, memoize_res);
}
void mk_union(imdd * d1, imdd * d2, imdd_ref & r, bool memoize_res = true) {
r = mk_union_main(d1, d2, false, memoize_res);
STRACE("imdd_trace", tout << "mk_union(0x" << d1 << ", 0x" << d2 << ", 0x" << r.get() << ", " << memoize_res << ");\n";);
}
void mk_complement_dupdt(imdd_ref & d, unsigned num, unsigned const * mins, unsigned const * maxs, bool memoize_res = true) {
d = mk_complement_main(d, num, mins, maxs, true, memoize_res);
}
void mk_complement(imdd * d, imdd_ref & r, unsigned num, unsigned const * mins, unsigned const * maxs, bool memoize_res = true) {
r = mk_complement_main(d, num, mins, maxs, false, memoize_res);
STRACE("imdd_trace", tout << "mk_complement(0x" << d << ", 0x" << r.get() << ", ";
for (unsigned i = 0; i < num; i++) tout << mins[i] << ", " << maxs[i] << ", ";
tout << memoize_res << ");\n";);
}
void mk_filter_equal_dupdt(imdd_ref & d, unsigned vidx, unsigned value, bool memoize_res = true) {
d = mk_filter_equal_main(d, vidx, value, true, memoize_res);
}
void mk_filter_equal(imdd * d, imdd_ref & r, unsigned vidx, unsigned value, bool memoize_res = true) {
r = mk_filter_equal_main(d, vidx, value, false, memoize_res);
STRACE("imdd_trace", tout << "mk_filter_equal(0x" << d << ", 0x" << r.get() << ", " << vidx << ", " << value << ", " << memoize_res << ");\n";);
}
void mk_filter_identical_dupdt(imdd_ref & d, unsigned num_vars, unsigned * vars, bool memoize_res = true) {
// d = mk_filter_identical_main(d, num_vars, vars, true, memoize_res);
filter_identical_main3(d, d, num_vars, vars, true, memoize_res);
}
void mk_filter_identical(imdd * d, imdd_ref & r, unsigned num_vars, unsigned * vars, bool memoize_res = true) {
filter_identical_main3(d, r, num_vars, vars, false, memoize_res);
STRACE("imdd_trace", tout << "mk_filter_identical(0x" << d << ", 0x" << r.get() << ", ";
for (unsigned i = 0; i < num_vars; i++) tout << vars[i] << ", ";
tout << memoize_res << ");\n";);
}
void mk_project_dupdt(imdd_ref & d, unsigned num_vars, unsigned * vars, bool memoize_res = true);
void mk_project(imdd * d, imdd_ref & r, unsigned num_vars, unsigned * vars, bool memoize_res = true);
// swap vidx and vidx+1
void mk_swap_dupdt(imdd_ref & d, unsigned vidx, bool memoize_res = true);
// swap vidx and vidx+1
void mk_swap(imdd * d, imdd_ref & r, unsigned vidx, bool memoize_res = true);
void add_facts_dupdt(imdd_ref & d, unsigned num, unsigned const * lowers, unsigned const * uppers, bool memoize_res = true) {
d = add_facts_main(d, num, lowers, uppers, true, memoize_res);
}
void add_facts(imdd * d, imdd_ref & r, unsigned num, unsigned const * lowers, unsigned const * uppers, bool memoize_res = true) {
r = add_facts_main(d, num, lowers, uppers, false, memoize_res);
STRACE("imdd_trace", tout << "add_facts(0x" << d << ", 0x" << r.get() << ", ";
for (unsigned i = 0; i < num; i++) tout << lowers[i] << ", " << uppers[i] << ", ";
tout << memoize_res << ");\n";);
}
void add_fact_dupdt(imdd_ref & d, unsigned num, unsigned const * values, bool memoize_res = true) {
add_facts_dupdt(d, num, values, values, memoize_res);
}
void add_fact(imdd * d, imdd_ref & r, unsigned num, unsigned const * values, bool memoize_res = true) {
add_facts(d, r, num, values, values, memoize_res);
}
void add_bounded_var_dupdt(imdd_ref & d, unsigned before_vidx, unsigned lower, unsigned upper, bool memoize_res = true) {
d = add_bounded_var_main(d, before_vidx, lower, upper, true, memoize_res);
}
void add_bounded_var(imdd * d, imdd_ref & r, unsigned before_vidx, unsigned lower, unsigned upper, bool memoize_res = true) {
r = add_bounded_var_main(d, before_vidx, lower, upper, false, memoize_res);
}
void mk_filter_distinct_dupdt(imdd_ref & d, unsigned v1, unsigned v2, bool memoize_res = true);
void mk_filter_distinct(imdd * d, imdd_ref & r, unsigned v1, unsigned v2, bool memoize_res = true);
void mk_filter_disequal_dupdt(imdd_ref & d, unsigned var, unsigned value, bool memoize_res = true);
void mk_filter_disequal(imdd * d, imdd_ref & r, unsigned var, unsigned value, bool memoize_res = true);
void mk_join(imdd * d1, imdd * d2, imdd_ref & r, unsigned_vector const& vars1, unsigned_vector const& vars2, bool memoize_res = true);
void mk_join_project(imdd * d1, imdd * d2, imdd_ref & r,
unsigned_vector const& vars1, unsigned_vector const& vars2,
unsigned_vector const& proj_vars, bool memoize_res = true);
void mk_join_dupdt(imdd_ref & d1, imdd * d2, unsigned num_vars, unsigned const * vars1, unsigned const * vars2, bool memoize_res = true);
void remove_facts_dupdt(imdd_ref & d, unsigned num, unsigned const * lowers, unsigned const * uppers);
void remove_facts(imdd * d, imdd_ref & r, unsigned num, unsigned const * lowers, unsigned const * uppers);
bool is_equal(imdd * d1, imdd * d2);
bool contains(imdd * d, unsigned num, unsigned const * values) const;
bool contains(imdd * d, unsigned v) const { return contains(d, 1, &v); }
bool contains(imdd * d, unsigned v1, unsigned v2) const { unsigned vs[2] = {v1, v2}; return contains(d, 2, vs); }
bool contains(imdd * d, unsigned v1, unsigned v2, unsigned v3) const { unsigned vs[3] = {v1,v2,v3}; return contains(d, 3, vs); }
bool subsumes(imdd * d1, imdd * d2);
bool is_subset(imdd * d1, imdd * d2) { return subsumes(d2, d1); }
private:
void display(std::ostream & out, imdd const * d, unsigned_vector & intervals, bool & first) const;
public:
void display(std::ostream & out, imdd const * d) const;
void display_ll(std::ostream & out, imdd const * d) const;
/**
\brief Execute proc (once) in each node in the IMDD rooted by d.
*/
template<typename Proc>
void for_each(imdd * d, Proc & proc) const {
// for_each is a generic procedure, we don't know what proc will actually do.
// So, it is not safe to reuse m_worklist and m_visited.
ptr_buffer<imdd,128> worklist;
imdd_cache visited;
worklist.push_back(d);
while (!worklist.empty()) {
d = worklist.back();
worklist.pop_back();
if (d->is_shared() && visited.contains(d))
continue;
if (d->is_shared())
visited.insert(d);
proc(d);
if (d->get_arity() > 1) {
imdd_children::iterator it = d->begin_children();
imdd_children::iterator end = d->end_children();
for (; it != end; ++it)
worklist.push_back(it->val());
}
}
}
class iterator {
bool m_done;
svector<imdd_children::iterator> m_iterators;
svector<unsigned> m_element;
void begin_iterators(imdd const * curr, unsigned start_idx);
public:
iterator():m_done(true) {}
iterator(imdd_manager const & m, imdd const * d);
unsigned get_arity() const { return m_element.size(); }
unsigned * operator*() const { return m_element.c_ptr(); }
iterator & operator++();
bool operator==(iterator const & it) const;
bool operator!=(iterator const & it) const { return !operator==(it); }
};
friend class iterator;
iterator begin(imdd const * d) const { return iterator(*this, d); }
iterator end(imdd const * d) const { return iterator(); }
};
inline std::ostream & operator<<(std::ostream & out, imdd_ref const & r) {
r.get_manager().display(out, r.get());
return out;
}
struct mk_imdd_pp {
imdd * m_d;
imdd_manager & m_manager;
mk_imdd_pp(imdd * d, imdd_manager & m):m_d(d), m_manager(m) {}
};
inline mk_imdd_pp mk_pp(imdd * d, imdd_manager & m) {
return mk_imdd_pp(d, m);
}
inline std::ostream & operator<<(std::ostream & out, mk_imdd_pp const & pp) {
pp.m_manager.display(out, pp.m_d);
return out;
}
struct mk_imdd_ll_pp : public mk_imdd_pp {
mk_imdd_ll_pp(imdd * d, imdd_manager & m):mk_imdd_pp(d, m) {}
};
inline mk_imdd_ll_pp mk_ll_pp(imdd * d, imdd_manager & m) {
return mk_imdd_ll_pp(d, m);
}
inline std::ostream & operator<<(std::ostream & out, mk_imdd_ll_pp const & pp) {
pp.m_manager.display_ll(out, pp.m_d);
return out;
}
#endif /* _IMDD_H_ */

View file

@ -1,353 +0,0 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
interval.h
Abstract:
Goodies/Templates for interval arithmetic
Author:
Leonardo de Moura (leonardo) 2012-07-19.
Revision History:
--*/
#ifndef _INTERVAL_H_
#define _INTERVAL_H_
#include"mpq.h"
#include"ext_numeral.h"
/**
\brief Default configuration for interval manager.
It is used for documenting the required interface.
*/
class im_default_config {
unsynch_mpq_manager & m_manager;
public:
typedef unsynch_mpq_manager numeral_manager;
typedef mpq numeral;
// Every configuration object must provide an interval type.
// The actual fields are irrelevant, the interval manager
// accesses interval data using the following API.
struct interval {
numeral m_lower;
numeral m_upper;
unsigned m_lower_open:1;
unsigned m_upper_open:1;
unsigned m_lower_inf:1;
unsigned m_upper_inf:1;
};
// Should be NOOPs for precise numeral types.
// For imprecise types (e.g., floats) it should set the rounding mode.
void round_to_minus_inf() {}
void round_to_plus_inf() {}
void set_rounding(bool to_plus_inf) {}
// Getters
numeral const & lower(interval const & a) const { return a.m_lower; }
numeral const & upper(interval const & a) const { return a.m_upper; }
numeral & lower(interval & a) { return a.m_lower; }
numeral & upper(interval & a) { return a.m_upper; }
bool lower_is_open(interval const & a) const { return a.m_lower_open; }
bool upper_is_open(interval const & a) const { return a.m_upper_open; }
bool lower_is_inf(interval const & a) const { return a.m_lower_inf; }
bool upper_is_inf(interval const & a) const { return a.m_upper_inf; }
// Setters
void set_lower(interval & a, numeral const & n) { m_manager.set(a.m_lower, n); }
void set_upper(interval & a, numeral const & n) { m_manager.set(a.m_upper, n); }
void set_lower_is_open(interval & a, bool v) { a.m_lower_open = v; }
void set_upper_is_open(interval & a, bool v) { a.m_upper_open = v; }
void set_lower_is_inf(interval & a, bool v) { a.m_lower_inf = v; }
void set_upper_is_inf(interval & a, bool v) { a.m_upper_inf = v; }
// Reference to numeral manager
numeral_manager & m() const { return m_manager; }
im_default_config(numeral_manager & m):m_manager(m) {}
};
#define DEP_IN_LOWER1 1
#define DEP_IN_UPPER1 2
#define DEP_IN_LOWER2 4
#define DEP_IN_UPPER2 8
typedef short bound_deps;
inline bool dep_in_lower1(bound_deps d) { return (d & DEP_IN_LOWER1) != 0; }
inline bool dep_in_lower2(bound_deps d) { return (d & DEP_IN_LOWER2) != 0; }
inline bool dep_in_upper1(bound_deps d) { return (d & DEP_IN_UPPER1) != 0; }
inline bool dep_in_upper2(bound_deps d) { return (d & DEP_IN_UPPER2) != 0; }
inline bound_deps dep1_to_dep2(bound_deps d) {
SASSERT(!dep_in_lower2(d) && !dep_in_upper2(d));
bound_deps r = d << 2;
SASSERT(dep_in_lower1(d) == dep_in_lower2(r));
SASSERT(dep_in_upper1(d) == dep_in_upper2(r));
SASSERT(!dep_in_lower1(r) && !dep_in_upper1(r));
return r;
}
/**
\brief Interval dependencies for unary and binary operations on intervals.
It contains the dependencies for the output lower and upper bounds
for the resultant interval.
*/
struct interval_deps {
bound_deps m_lower_deps;
bound_deps m_upper_deps;
};
template<typename C>
class interval_manager {
typedef typename C::numeral_manager numeral_manager;
typedef typename numeral_manager::numeral numeral;
typedef typename C::interval interval;
C m_c;
numeral m_result_lower;
numeral m_result_upper;
numeral m_mul_ad;
numeral m_mul_bc;
numeral m_mul_ac;
numeral m_mul_bd;
numeral m_one;
numeral m_minus_one;
numeral m_inv_k;
unsigned m_pi_n;
interval m_pi_div_2;
interval m_pi;
interval m_3_pi_div_2;
interval m_2_pi;
volatile bool m_cancel;
void round_to_minus_inf() { m_c.round_to_minus_inf(); }
void round_to_plus_inf() { m_c.round_to_plus_inf(); }
void set_rounding(bool to_plus_inf) { m_c.set_rounding(to_plus_inf); }
ext_numeral_kind lower_kind(interval const & a) const { return m_c.lower_is_inf(a) ? EN_MINUS_INFINITY : EN_NUMERAL; }
ext_numeral_kind upper_kind(interval const & a) const { return m_c.upper_is_inf(a) ? EN_PLUS_INFINITY : EN_NUMERAL; }
void set_lower(interval & a, numeral const & n) { m_c.set_lower(a, n); }
void set_upper(interval & a, numeral const & n) { m_c.set_upper(a, n); }
void set_lower_is_open(interval & a, bool v) { m_c.set_lower_is_open(a, v); }
void set_upper_is_open(interval & a, bool v) { m_c.set_upper_is_open(a, v); }
void set_lower_is_inf(interval & a, bool v) { m_c.set_lower_is_inf(a, v); }
void set_upper_is_inf(interval & a, bool v) { m_c.set_upper_is_inf(a, v); }
void nth_root_slow(numeral const & a, unsigned n, numeral const & p, numeral & lo, numeral & hi);
void A_div_x_n(numeral const & A, numeral const & x, unsigned n, bool to_plus_inf, numeral & r);
void rough_approx_nth_root(numeral const & a, unsigned n, numeral & o);
void approx_nth_root(numeral const & a, unsigned n, numeral const & p, numeral & o);
void nth_root_pos(numeral const & A, unsigned n, numeral const & p, numeral & lo, numeral & hi);
void nth_root(numeral const & a, unsigned n, numeral const & p, numeral & lo, numeral & hi);
void pi_series(int x, numeral & r, bool to_plus_inf);
void fact(unsigned n, numeral & o);
void sine_series(numeral const & a, unsigned k, bool upper, numeral & o);
void cosine_series(numeral const & a, unsigned k, bool upper, numeral & o);
void e_series(unsigned k, bool upper, numeral & o);
void div_mul(numeral const & k, interval const & a, interval & b, bool inv_k);
void checkpoint();
public:
interval_manager(C const & c);
~interval_manager();
void set_cancel(bool f) { m_cancel = f; }
numeral_manager & m() const { return m_c.m(); }
void del(interval & a);
numeral const & lower(interval const & a) const { return m_c.lower(a); }
numeral const & upper(interval const & a) const { return m_c.upper(a); }
numeral & lower(interval & a) { return m_c.lower(a); }
numeral & upper(interval & a) { return m_c.upper(a); }
bool lower_is_open(interval const & a) const { return m_c.lower_is_open(a); }
bool upper_is_open(interval const & a) const { return m_c.upper_is_open(a); }
bool lower_is_inf(interval const & a) const { return m_c.lower_is_inf(a); }
bool upper_is_inf(interval const & a) const { return m_c.upper_is_inf(a); }
bool lower_is_neg(interval const & a) const { return ::is_neg(m(), lower(a), lower_kind(a)); }
bool lower_is_pos(interval const & a) const { return ::is_pos(m(), lower(a), lower_kind(a)); }
bool lower_is_zero(interval const & a) const { return ::is_zero(m(), lower(a), lower_kind(a)); }
bool upper_is_neg(interval const & a) const { return ::is_neg(m(), upper(a), upper_kind(a)); }
bool upper_is_pos(interval const & a) const { return ::is_pos(m(), upper(a), upper_kind(a)); }
bool upper_is_zero(interval const & a) const { return ::is_zero(m(), upper(a), upper_kind(a)); }
bool is_P(interval const & n) const { return lower_is_pos(n) || lower_is_zero(n); }
bool is_P0(interval const & n) const { return lower_is_zero(n) && !lower_is_open(n); }
bool is_P1(interval const & n) const { return lower_is_pos(n) || (lower_is_zero(n) && lower_is_open(n)); }
bool is_N(interval const & n) const { return upper_is_neg(n) || upper_is_zero(n); }
bool is_N0(interval const & n) const { return upper_is_zero(n) && !upper_is_open(n); }
bool is_N1(interval const & n) const { return upper_is_neg(n) || (upper_is_zero(n) && upper_is_open(n)); }
bool is_M(interval const & n) const { return lower_is_neg(n) && upper_is_pos(n); }
bool is_zero(interval const & n) const { return lower_is_zero(n) && upper_is_zero(n); }
void set(interval & t, interval const & s);
bool eq(interval const & a, interval const & b) const;
/**
\brief Set lower bound to -oo.
*/
void reset_lower(interval & a);
/**
\brief Set upper bound to +oo.
*/
void reset_upper(interval & a);
/**
\brief Set interval to (-oo, oo)
*/
void reset(interval & a);
/**
\brief Return true if the given interval contains 0.
*/
bool contains_zero(interval const & n) const;
/**
\brief Return true if n contains v.
*/
bool contains(interval const & n, numeral const & v) const;
void display(std::ostream & out, interval const & n) const;
bool check_invariant(interval const & n) const;
/**
\brief b <- -a
*/
void neg(interval const & a, interval & b, interval_deps & b_deps);
void neg(interval const & a, interval & b);
void neg_jst(interval const & a, interval_deps & b_deps);
/**
\brief c <- a + b
*/
void add(interval const & a, interval const & b, interval & c, interval_deps & c_deps);
void add(interval const & a, interval const & b, interval & c);
void add_jst(interval const & a, interval const & b, interval_deps & c_deps);
/**
\brief c <- a - b
*/
void sub(interval const & a, interval const & b, interval & c, interval_deps & c_deps);
void sub(interval const & a, interval const & b, interval & c);
void sub_jst(interval const & a, interval const & b, interval_deps & c_deps);
/**
\brief b <- k * a
*/
void mul(numeral const & k, interval const & a, interval & b, interval_deps & b_deps);
void mul(numeral const & k, interval const & a, interval & b) { div_mul(k, a, b, false); }
void mul_jst(numeral const & k, interval const & a, interval_deps & b_deps);
/**
\brief b <- (n/d) * a
*/
void mul(int n, int d, interval const & a, interval & b);
/**
\brief b <- a/k
\remark For imprecise numerals, this is not equivalent to
m().inv(k)
mul(k, a, b)
That is, we must invert k rounding towards +oo or -oo depending whether we
are computing a lower or upper bound.
*/
void div(interval const & a, numeral const & k, interval & b, interval_deps & b_deps);
void div(interval const & a, numeral const & k, interval & b) { div_mul(k, a, b, true); }
void div_jst(interval const & a, numeral const & k, interval_deps & b_deps) { mul_jst(k, a, b_deps); }
/**
\brief c <- a * b
*/
void mul(interval const & a, interval const & b, interval & c, interval_deps & c_deps);
void mul(interval const & a, interval const & b, interval & c);
void mul_jst(interval const & a, interval const & b, interval_deps & c_deps);
/**
\brief b <- a^n
*/
void power(interval const & a, unsigned n, interval & b, interval_deps & b_deps);
void power(interval const & a, unsigned n, interval & b);
void power_jst(interval const & a, unsigned n, interval_deps & b_deps);
/**
\brief b <- a^(1/n) with precision p.
\pre if n is even, then a must not contain negative numbers.
*/
void nth_root(interval const & a, unsigned n, numeral const & p, interval & b, interval_deps & b_deps);
void nth_root(interval const & a, unsigned n, numeral const & p, interval & b);
void nth_root_jst(interval const & a, unsigned n, numeral const & p, interval_deps & b_deps);
/**
\brief Given an equation x^n = y and an interval for y, compute the solution set for x with precision p.
\pre if n is even, then !lower_is_neg(y)
*/
void xn_eq_y(interval const & y, unsigned n, numeral const & p, interval & x, interval_deps & x_deps);
void xn_eq_y(interval const & y, unsigned n, numeral const & p, interval & x);
void xn_eq_y_jst(interval const & y, unsigned n, numeral const & p, interval_deps & x_deps);
/**
\brief b <- 1/a
\pre !contains_zero(a)
*/
void inv(interval const & a, interval & b, interval_deps & b_deps);
void inv(interval const & a, interval & b);
void inv_jst(interval const & a, interval_deps & b_deps);
/**
\brief c <- a/b
\pre !contains_zero(b)
\pre &a == &c (that is, c should not be an alias for a)
*/
void div(interval const & a, interval const & b, interval & c, interval_deps & c_deps);
void div(interval const & a, interval const & b, interval & c);
void div_jst(interval const & a, interval const & b, interval_deps & c_deps);
/**
\brief Store in r an interval that contains the number pi.
The size of the interval is (1/15)*(1/16^n)
*/
void pi(unsigned n, interval & r);
/**
\brief Set the precision of the internal interval representing pi.
*/
void set_pi_prec(unsigned n);
/**
\brief Set the precision of the internal interval representing pi to a precision of at least n.
*/
void set_pi_at_least_prec(unsigned n);
void sine(numeral const & a, unsigned k, numeral & lo, numeral & hi);
void cosine(numeral const & a, unsigned k, numeral & lo, numeral & hi);
/**
\brief Store in r the Euler's constant e.
The size of the interval is 4/(k+1)!
*/
void e(unsigned k, interval & r);
};
#endif

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,642 +0,0 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
old_interval.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-12-09.
Revision History:
--*/
#include"old_interval.h"
void ext_numeral::neg() {
switch (m_kind) {
case MINUS_INFINITY: m_kind = PLUS_INFINITY; break;
case FINITE: m_value.neg(); break;
case PLUS_INFINITY: m_kind = MINUS_INFINITY; break;
}
}
ext_numeral & ext_numeral::operator+=(ext_numeral const & other) {
SASSERT(!is_infinite() || !other.is_infinite() || m_kind == other.m_kind);
if (is_infinite())
return *this;
SASSERT(m_kind == FINITE);
switch (other.m_kind) {
case MINUS_INFINITY:
m_kind = MINUS_INFINITY;
m_value.reset();
return *this;
case FINITE:
m_value += other.m_value;
return *this;
case PLUS_INFINITY:
m_kind = PLUS_INFINITY;
m_value.reset();
return *this;
}
UNREACHABLE();
return *this;
}
ext_numeral & ext_numeral::operator-=(ext_numeral const & other) {
SASSERT(!is_infinite() || !other.is_infinite() || (m_kind != other.m_kind));
if (is_infinite())
return *this;
SASSERT(m_kind == FINITE);
switch (other.m_kind) {
case MINUS_INFINITY:
m_kind = PLUS_INFINITY;
m_value.reset();
return *this;
case FINITE:
m_value -= other.m_value;
return *this;
case PLUS_INFINITY:
m_kind = MINUS_INFINITY;
m_value.reset();
return *this;
}
UNREACHABLE();
return *this;
}
ext_numeral & ext_numeral::operator*=(ext_numeral const & other) {
if (is_zero() || other.is_zero()) {
m_kind = FINITE;
m_value.reset();
return *this;
}
if (is_infinite() || other.is_infinite()) {
if (sign() == other.sign())
m_kind = PLUS_INFINITY;
else
m_kind = MINUS_INFINITY;
m_value.reset();
return *this;
}
SASSERT(m_kind == FINITE);
m_value *= other.m_value;
return *this;
}
void ext_numeral::expt(unsigned n) {
switch (m_kind) {
case MINUS_INFINITY:
if (n % 2 == 0)
m_kind = PLUS_INFINITY;
return;
case FINITE:
m_value = m_value.expt(n);
break;
case PLUS_INFINITY:
// do nothing
break;
}
}
void ext_numeral::inv() {
SASSERT(!is_zero());
if (is_infinite()) {
m_kind = FINITE;
m_value.reset();
}
else {
m_value = rational(1) / m_value;
}
}
void ext_numeral::display(std::ostream & out) const {
switch (m_kind) {
case MINUS_INFINITY:
out << "-oo";
break;
case FINITE:
out << m_value;
break;
case PLUS_INFINITY:
out << "oo";
break;
}
}
bool operator==(ext_numeral const & n1, ext_numeral const & n2) {
return n1.m_kind == n2.m_kind && (n1.is_infinite() || n1.m_value == n2.m_value);
}
bool operator<(ext_numeral const & n1, ext_numeral const & n2) {
if (n1.is_infinite())
return n1.m_kind == ext_numeral::MINUS_INFINITY && n2.m_kind != ext_numeral::MINUS_INFINITY;
if (n2.is_infinite())
return n2.m_kind != ext_numeral::MINUS_INFINITY;
return n1.m_value < n2.m_value;
}
/**
\brief Create interval (-oo, oo)
*/
interval::interval(v_dependency_manager & m):
m_manager(m),
m_lower(false),
m_upper(true),
m_lower_open(true),
m_upper_open(true),
m_lower_dep(0),
m_upper_dep(0) {
}
/**
\brief Create intervals [l,u], (l,u], [l, u), (l,u), where l and u are numerals.
*/
interval::interval(v_dependency_manager & m, rational const & lower, bool l_open, v_dependency * l_dep, rational const & upper, bool u_open, v_dependency * u_dep):
m_manager(m),
m_lower(lower),
m_upper(upper),
m_lower_open(l_open),
m_upper_open(u_open),
m_lower_dep(l_dep),
m_upper_dep(u_dep) {
SASSERT(lower <= upper);
SASSERT(lower != upper || !l_open || !u_open);
}
/**
\brief Create intervals [l,u], (l,u], [l, u), (l,u), where l and u are ext_numerals.
*/
interval::interval(v_dependency_manager & m, ext_numeral const & lower, bool l_open, v_dependency * l_dep, ext_numeral const & upper, bool u_open, v_dependency * u_dep):
m_manager(m),
m_lower(lower),
m_upper(upper),
m_lower_open(l_open),
m_upper_open(u_open),
m_lower_dep(l_dep),
m_upper_dep(u_dep) {
SASSERT(lower <= upper);
SASSERT(lower != upper || !l_open || !u_open);
}
/**
\brief Create interval [val,val]
*/
interval::interval(v_dependency_manager & m, rational const & val, v_dependency * l_dep, v_dependency * u_dep):
m_manager(m),
m_lower(val),
m_upper(val),
m_lower_open(false),
m_upper_open(false),
m_lower_dep(l_dep),
m_upper_dep(u_dep) {
}
/**
\brief Create intervals (-oo, val], (-oo, val), [val, oo), (val, oo)
*/
interval::interval(v_dependency_manager & m, rational const & val, bool open, bool lower, v_dependency * d):
m_manager(m) {
if (lower) {
m_lower = ext_numeral(val);
m_lower_open = open;
m_lower_dep = d;
m_upper = ext_numeral(true);
m_upper_open = true;
m_upper_dep = 0;
}
else {
m_lower = ext_numeral(false);
m_lower_open = true;
m_lower_dep = 0;
m_upper = ext_numeral(val);
m_upper_open = open;
m_upper_dep = d;
}
}
interval::interval(interval const & other):
m_manager(other.m_manager),
m_lower(other.m_lower),
m_upper(other.m_upper),
m_lower_open(other.m_lower_open),
m_upper_open(other.m_upper_open),
m_lower_dep(other.m_lower_dep),
m_upper_dep(other.m_upper_dep) {
}
interval & interval::operator=(interval const & other) {
m_lower = other.m_lower;
m_upper = other.m_upper;
m_lower_open = other.m_lower_open;
m_upper_open = other.m_upper_open;
m_lower_dep = other.m_lower_dep;
m_upper_dep = other.m_upper_dep;
return *this;
}
interval & interval::operator+=(interval const & other) {
m_lower += other.m_lower;
m_upper += other.m_upper;
m_lower_open |= other.m_lower_open;
m_upper_open |= other.m_upper_open;
m_lower_dep = m_lower.is_infinite() ? 0 : m_manager.mk_join(m_lower_dep, other.m_lower_dep);
m_upper_dep = m_upper.is_infinite() ? 0 : m_manager.mk_join(m_upper_dep, other.m_upper_dep);
return *this;
}
void interval::neg() {
std::swap(m_lower, m_upper);
std::swap(m_lower_open, m_upper_open);
std::swap(m_lower_dep, m_upper_dep);
m_lower.neg();
m_upper.neg();
}
interval & interval::operator-=(interval const & other) {
interval tmp(other);
tmp.neg();
return operator+=(tmp);
}
v_dependency * interval::join(v_dependency * d1, v_dependency * d2, v_dependency * d3, v_dependency * d4) {
return m_manager.mk_join(m_manager.mk_join(d1, d2), m_manager.mk_join(d3,d4));
}
/**
\brief Create a new v_dependency using d1, d2, and (opt1 or opt2).
*/
v_dependency * interval::join_opt(v_dependency * d1, v_dependency * d2, v_dependency * opt1, v_dependency * opt2) {
if (opt1 == d1 || opt1 == d2)
return join(d1, d2);
if (opt2 == d1 || opt2 == d2)
return join(d1, d2);
if (opt1 == 0 || opt2 == 0)
return join(d1, d2);
// TODO: more opts...
return join(d1, d2, opt1);
}
interval & interval::operator*=(interval const & other) {
#if Z3DEBUG || _TRACE
bool contains_zero1 = contains_zero();
bool contains_zero2 = other.contains_zero();
#endif
if (is_zero()) {
return *this;
}
if (other.is_zero()) {
*this = other;
return *this;
}
ext_numeral const & a = m_lower;
ext_numeral const & b = m_upper;
ext_numeral const & c = other.m_lower;
ext_numeral const & d = other.m_upper;
bool a_o = m_lower_open;
bool b_o = m_upper_open;
bool c_o = other.m_lower_open;
bool d_o = other.m_upper_open;
v_dependency * a_d = m_lower_dep;
v_dependency * b_d = m_upper_dep;
v_dependency * c_d = other.m_lower_dep;
v_dependency * d_d = other.m_upper_dep;
TRACE("interval_bug", tout << "operator*= " << *this << " " << other << "\n";);
if (is_N()) {
if (other.is_N()) {
// x <= b <= 0, y <= d <= 0 --> b*d <= x*y
// a <= x <= b <= 0, c <= y <= d <= 0 --> x*y <= a*c (we can use the fact that x or y is always negative (i.e., b is neg or d is neg))
TRACE("interval_bug", tout << "(N, N)\n";);
ext_numeral new_lower = b * d;
ext_numeral new_upper = a * c;
// if b = 0 (and the interval is closed), then the lower bound is closed
m_lower_open = (is_N0() || other.is_N0()) ? false : (b_o || d_o);
m_upper_open = a_o || c_o; SASSERT(a.is_neg() && c.is_neg());
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join(b_d, d_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join_opt(a_d, c_d, b_d, d_d);
}
else if (other.is_M()) {
// a <= x <= b <= 0, y <= d, d > 0 --> a*d <= x*y (uses the fact that b is not positive)
// a <= x <= b <= 0, c <= y, c < 0 --> x*y <= a*c (uses the fact that b is not positive)
TRACE("interval_bug", tout << "(N, M)\n";);
ext_numeral new_lower = a * d; SASSERT(new_lower.is_neg());
ext_numeral new_upper = a * c; SASSERT(new_upper.is_pos());
m_lower_open = a_o || d_o;
m_upper_open = a_o || c_o;
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join(a_d, d_d, b_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(a_d, c_d, b_d);
}
else {
// a <= x <= b <= 0, 0 <= c <= y <= d --> a*d <= x*y (uses the fact that x is neg (b is not positive) or y is pos (c is not negative))
// x <= b <= 0, 0 <= c <= y --> x*y <= b*c
TRACE("interval_bug", tout << "(N, P)\n";);
SASSERT(other.is_P());
ext_numeral new_lower = a * d;
ext_numeral new_upper = b * c;
bool is_N0_old = is_N0(); // see comment in (P, N) case
m_lower_open = a_o || d_o; SASSERT(a.is_neg() && d.is_pos());
m_upper_open = (is_N0_old || other.is_P0()) ? false : (b_o || c_o);
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join_opt(a_d, d_d, b_d, c_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(b_d, c_d);
}
}
else if (is_M()) {
if (other.is_N()) {
// b > 0, x <= b, c <= y <= d <= 0 --> b*c <= x*y (uses the fact that d is not positive)
// a < 0, a <= x, c <= y <= d <= 0 --> x*y <= a*c (uses the fact that d is not positive)
TRACE("interval_bug", tout << "(M, N)\n";);
ext_numeral new_lower = b * c; SASSERT(new_lower.is_neg());
ext_numeral new_upper = a * c; SASSERT(new_upper.is_pos());
m_lower_open = b_o || c_o; SASSERT(b.is_pos() && c.is_neg());
m_upper_open = a_o || c_o; SASSERT(a.is_neg() && c.is_neg());
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join(b_d, c_d, d_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(a_d, c_d, d_d);
}
else if (other.is_M()) {
TRACE("interval_bug", tout << "(M, M)\n";);
SASSERT(!a.is_zero() && !b.is_zero() && !c.is_zero() && !d.is_zero());
ext_numeral ad = a*d; SASSERT(!ad.is_zero());
ext_numeral bc = b*c; SASSERT(!bc.is_zero());
ext_numeral ac = a*c; SASSERT(!ac.is_zero());
ext_numeral bd = b*d; SASSERT(!bd.is_zero());
bool ad_o = a_o || d_o;
bool bc_o = b_o || c_o;
bool ac_o = a_o || c_o;
bool bd_o = b_o || d_o;
if (ad < bc || (ad == bc && !ad_o && bc_o)) {
m_lower = ad;
m_lower_open = ad_o;
}
else {
m_lower = bc;
m_lower_open = bc_o;
}
if (ac > bd || (ac == bd && !ac_o && bd_o)) {
m_upper = ac;
m_upper_open = ac_o;
}
else {
m_upper = bd;
m_upper_open = bd_o;
}
m_lower_dep = m_lower.is_infinite() ? 0 : join(a_d, b_d, c_d, d_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(a_d, b_d, c_d, d_d);
}
else {
// a < 0, a <= x, 0 <= c <= y <= d --> a*d <= x*y (uses the fact that c is not negative)
// b > 0, x <= b, 0 <= c <= y <= d --> x*y <= b*d (uses the fact that c is not negative)
TRACE("interval_bug", tout << "(M, P)\n";);
SASSERT(other.is_P());
ext_numeral new_lower = a * d; SASSERT(new_lower.is_neg());
ext_numeral new_upper = b * d; SASSERT(new_upper.is_pos());
m_lower_open = a_o || d_o; SASSERT(a.is_neg() && d.is_pos());
m_upper_open = b_o || d_o; SASSERT(b.is_pos() && d.is_pos());
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join(a_d, d_d, c_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(b_d, d_d, c_d);
}
}
else {
SASSERT(is_P());
if (other.is_N()) {
// 0 <= a <= x <= b, c <= y <= d <= 0 --> x*y <= b*c (uses the fact that x is pos (a is not neg) or y is neg (d is not pos))
// 0 <= a <= x, y <= d <= 0 --> a*d <= x*y
TRACE("interval_bug", tout << "(P, N)\n";);
ext_numeral new_lower = b * c;
ext_numeral new_upper = a * d;
bool is_P0_old = is_P0(); // cache the value of is_P0(), since it may be affected by the next update.
m_lower_open = b_o || c_o; SASSERT(b.is_pos() && c.is_neg());
m_upper_open = (is_P0_old || other.is_N0()) ? false : a_o || d_o;
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join_opt(b_d, c_d, a_d, d_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(a_d, d_d);
}
else if (other.is_M()) {
// 0 <= a <= x <= b, c <= y --> b*c <= x*y (uses the fact that a is not negative)
// 0 <= a <= x <= b, y <= d --> x*y <= b*d (uses the fact that a is not negative)
TRACE("interval_bug", tout << "(P, M)\n";);
ext_numeral new_lower = b * c; SASSERT(new_lower.is_neg());
ext_numeral new_upper = b * d; SASSERT(new_upper.is_pos());
m_lower_open = b_o || c_o;
m_upper_open = b_o || d_o;
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join(b_d, c_d, a_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join(b_d, d_d, a_d);
}
else {
// 0 <= a <= x, 0 <= c <= y --> a*c <= x*y
// x <= b, y <= d --> x*y <= b*d (uses the fact that x is pos (a is not negative) or y is pos (c is not negative))
TRACE("interval_bug", tout << "(P, P)\n";);
SASSERT(other.is_P());
ext_numeral new_lower = a * c;
ext_numeral new_upper = b * d;
m_lower_open = (is_P0() || other.is_P0()) ? false : a_o || c_o;
m_upper_open = b_o || d_o; SASSERT(b.is_pos() && d.is_pos());
m_lower = new_lower;
m_upper = new_upper;
m_lower_dep = m_lower.is_infinite() ? 0 : join(a_d, c_d);
m_upper_dep = m_upper.is_infinite() ? 0 : join_opt(b_d, d_d, a_d, c_d);
}
}
TRACE("interval_bug", tout << "operator*= result: " << *this << "\n";);
CTRACE("interval", !(!(contains_zero1 || contains_zero2) || contains_zero()),
tout << "contains_zero1: " << contains_zero1 << ", contains_zero2: " << contains_zero2 << ", contains_zero(): " << contains_zero() << "\n";);
SASSERT(!(contains_zero1 || contains_zero2) || contains_zero());
return *this;
}
bool interval::contains_zero() const {
TRACE("interval_zero_bug", tout << "contains_zero info: " << *this << "\n";
tout << "m_lower.is_neg(): " << m_lower.is_neg() << "\n";
tout << "m_lower.is_zero: " << m_lower.is_zero() << "\n";
tout << "m_lower_open: " << m_lower_open << "\n";
tout << "m_upper.is_pos(): " << m_upper.is_pos() << "\n";
tout << "m_upper.is_zero: " << m_upper.is_zero() << "\n";
tout << "m_upper_open: " << m_upper_open << "\n";
tout << "result: " << ((m_lower.is_neg() || (m_lower.is_zero() && !m_lower_open)) && (m_upper.is_pos() || (m_upper.is_zero() && !m_upper_open))) << "\n";);
return
(m_lower.is_neg() || (m_lower.is_zero() && !m_lower_open)) &&
(m_upper.is_pos() || (m_upper.is_zero() && !m_upper_open));
}
bool interval::contains(rational const& v) const {
if (!inf().is_infinite()) {
if (v < inf().to_rational()) return false;
if (v == inf().to_rational() && m_lower_open) return false;
}
if (!sup().is_infinite()) {
if (v > sup().to_rational()) return false;
if (v == sup().to_rational() && m_upper_open) return false;
}
return true;
}
interval & interval::inv() {
// If the interval [l,u] does not contain 0, then 1/[l,u] = [1/u, 1/l]
SASSERT(!contains_zero());
if (is_P1()) {
// 0 < a <= x --> 1/x <= 1/a
// 0 < a <= x <= b --> 1/b <= 1/x (use lower and upper bounds)
ext_numeral new_lower = m_upper; SASSERT(!m_upper.is_zero());
new_lower.inv();
ext_numeral new_upper;
if (m_lower.is_zero()) {
SASSERT(m_lower_open);
ext_numeral plus_infinity(true);
new_upper = plus_infinity;
}
else {
new_upper = m_lower;
new_upper.inv();
}
m_lower = new_lower;
m_upper = new_upper;
std::swap(m_lower_open, m_upper_open);
v_dependency * new_upper_dep = m_lower_dep;
SASSERT(!m_lower.is_infinite());
m_lower_dep = m_manager.mk_join(m_lower_dep, m_upper_dep);
m_upper_dep = new_upper_dep;
}
else if (is_N1()) {
// x <= a < 0 --> 1/a <= 1/x
// b <= x <= a < 0 --> 1/b <= 1/x (use lower and upper bounds)
ext_numeral new_upper = m_lower; SASSERT(!m_lower.is_zero());
new_upper.inv();
ext_numeral new_lower;
if (m_upper.is_zero()) {
SASSERT(m_upper_open);
ext_numeral minus_infinity(false);
new_lower = minus_infinity;
}
else {
new_lower = m_upper;
new_lower.inv();
}
m_lower = new_lower;
m_upper = new_upper;
std::swap(m_lower_open, m_upper_open);
v_dependency * new_lower_dep = m_upper_dep;
SASSERT(!m_upper.is_infinite());
m_upper_dep = m_manager.mk_join(m_lower_dep, m_upper_dep);
m_lower_dep = new_lower_dep;
}
else {
UNREACHABLE();
}
return *this;
}
interval & interval::operator/=(interval const & other) {
SASSERT(!other.contains_zero());
if (is_zero()) {
// 0/other = 0 if other != 0
TRACE("interval", other.display_with_dependencies(tout););
if (other.m_lower.is_pos() || (other.m_lower.is_zero() && other.m_lower_open)) {
// other.lower > 0
m_lower_dep = join(m_lower_dep, other.m_lower_dep);
m_upper_dep = join(m_upper_dep, other.m_lower_dep);
}
else {
// assertion must hold since !other.contains_zero()
SASSERT(other.m_upper.is_neg() || (other.m_upper.is_zero() && other.m_upper_open));
// other.upper < 0
m_lower_dep = join(m_lower_dep, other.m_upper_dep);
m_upper_dep = join(m_upper_dep, other.m_upper_dep);
}
return *this;
}
else {
interval tmp(other);
tmp.inv();
return operator*=(tmp);
}
}
void interval::expt(unsigned n) {
if (n == 1)
return;
if (n % 2 == 0) {
if (m_lower.is_pos()) {
// [l, u]^n = [l^n, u^n] if l > 0
// 0 < a <= x --> a^n <= x^n (lower bound guarantees that is positive)
// 0 < a <= x <= b --> x^n <= b^n (use lower and upper bound -- need the fact that x is positive)
m_lower.expt(n);
m_upper.expt(n);
m_upper_dep = m_upper.is_infinite() ? 0 : m_manager.mk_join(m_lower_dep, m_upper_dep);
}
else if (m_upper.is_neg()) {
// [l, u]^n = [u^n, l^n] if u < 0
// a <= x <= b < 0 --> x^n <= a^n (use lower and upper bound -- need the fact that x is negative)
// x <= b < 0 --> b^n <= x^n
std::swap(m_lower, m_upper);
std::swap(m_lower_open, m_upper_open);
std::swap(m_lower_dep, m_upper_dep);
m_lower.expt(n);
m_upper.expt(n);
m_upper_dep = m_upper.is_infinite() ? 0 : m_manager.mk_join(m_lower_dep, m_upper_dep);
}
else {
// [l, u]^n = [0, max{l^n, u^n}] otherwise
// we need both bounds to justify upper bound
TRACE("interval", tout << "before: " << m_lower << " " << m_upper << " " << n << "\n";);
m_lower.expt(n);
m_upper.expt(n);
TRACE("interval", tout << "after: " << m_lower << " " << m_upper << "\n";);
if (m_lower > m_upper || (m_lower == m_upper && !m_lower_open && m_upper_open)) {
m_upper = m_lower;
m_upper_open = m_lower_open;
}
m_upper_dep = m_upper.is_infinite() ? 0 : m_manager.mk_join(m_lower_dep, m_upper_dep);
m_lower = ext_numeral(0);
m_lower_open = false;
m_lower_dep = 0;
}
}
else {
// Remark: when n is odd x^n is monotonic.
m_lower.expt(n);
m_upper.expt(n);
}
}
void interval::display(std::ostream & out) const {
out << (m_lower_open ? "(" : "[") << m_lower << ", " << m_upper << (m_upper_open ? ")" : "]");
}
void interval::display_with_dependencies(std::ostream & out) const {
ptr_vector<void> vs;
m_manager.linearize(m_lower_dep, vs);
m_manager.linearize(m_upper_dep, vs);
out << "[";
display(out);
out << ", ";
bool first = true;
::display(out, vs.begin(), vs.end(), ", ", first);
out << "]";
}

View file

@ -1,138 +0,0 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
old_interval.h
Abstract:
Old interval class. It is still used in some modules.
Author:
Leonardo de Moura (leonardo) 2008-12-09.
Revision History:
--*/
#ifndef _OLD_INTERVAL_H_
#define _OLD_INTERVAL_H_
#include"rational.h"
#include"dependency.h"
class ext_numeral {
public:
enum kind { MINUS_INFINITY, FINITE, PLUS_INFINITY };
private:
kind m_kind;
rational m_value;
explicit ext_numeral(kind k):m_kind(k) {}
public:
ext_numeral():m_kind(FINITE) {} /* zero */
explicit ext_numeral(bool plus_infinity):m_kind(plus_infinity ? PLUS_INFINITY : MINUS_INFINITY) {}
explicit ext_numeral(rational const & val):m_kind(FINITE), m_value(val) {}
explicit ext_numeral(int i):m_kind(FINITE), m_value(i) {}
ext_numeral(ext_numeral const & other):m_kind(other.m_kind), m_value(other.m_value) {}
bool is_infinite() const { return m_kind != FINITE; }
bool sign() const { return m_kind == MINUS_INFINITY || (m_kind == FINITE && m_value.is_neg()); }
void neg();
bool is_zero() const { return m_kind == FINITE && m_value.is_zero(); }
bool is_neg() const { return sign(); }
bool is_pos() const { return !is_neg() && !is_zero(); }
rational const & to_rational() const { SASSERT(!is_infinite()); return m_value; }
ext_numeral & operator+=(ext_numeral const & other);
ext_numeral & operator-=(ext_numeral const & other);
ext_numeral & operator*=(ext_numeral const & other);
void inv();
void expt(unsigned n);
void display(std::ostream & out) const;
friend bool operator==(ext_numeral const & n1, ext_numeral const & n2);
friend bool operator<(ext_numeral const & n1, ext_numeral const & n2);
};
bool operator==(ext_numeral const & n1, ext_numeral const & n2);
bool operator<(ext_numeral const & n1, ext_numeral const & n2);
inline bool operator!=(ext_numeral const & n1, ext_numeral const & n2) { return !operator==(n1,n2); }
inline bool operator>(ext_numeral const & n1, ext_numeral const & n2) { return operator<(n2, n1); }
inline bool operator<=(ext_numeral const & n1, ext_numeral const & n2) { return !operator>(n1, n2); }
inline bool operator>=(ext_numeral const & n1, ext_numeral const & n2) { return !operator<(n1, n2); }
inline ext_numeral operator+(ext_numeral const & n1, ext_numeral const & n2) { return ext_numeral(n1) += n2; }
inline ext_numeral operator-(ext_numeral const & n1, ext_numeral const & n2) { return ext_numeral(n1) -= n2; }
inline ext_numeral operator*(ext_numeral const & n1, ext_numeral const & n2) { return ext_numeral(n1) *= n2; }
inline std::ostream & operator<<(std::ostream & out, ext_numeral const & n) { n.display(out); return out; }
class old_interval {
v_dependency_manager & m_manager;
ext_numeral m_lower;
ext_numeral m_upper;
bool m_lower_open;
bool m_upper_open;
v_dependency * m_lower_dep; // justification for the lower bound
v_dependency * m_upper_dep; // justification for the upper bound
v_dependency * join(v_dependency * d1, v_dependency * d2) { return m_manager.mk_join(d1, d2); }
v_dependency * join(v_dependency * d1, v_dependency * d2, v_dependency * d3) { return m_manager.mk_join(m_manager.mk_join(d1, d2), d3); }
v_dependency * join(v_dependency * d1, v_dependency * d2, v_dependency * d3, v_dependency * d4);
v_dependency * join_opt(v_dependency * d1, v_dependency * d2, v_dependency * opt1, v_dependency * opt2);
public:
explicit old_interval(v_dependency_manager & m);
explicit old_interval(v_dependency_manager & m, rational const & lower, bool l_open, v_dependency * l_dep, rational const & upper, bool u_open, v_dependency * u_dep);
explicit old_interval(v_dependency_manager & m, rational const & val, v_dependency * l_dep = 0, v_dependency * u_dep = 0);
explicit old_interval(v_dependency_manager & m, rational const & val, bool open, bool lower, v_dependency * d);
explicit old_interval(v_dependency_manager & m, ext_numeral const& lower, bool l_open, v_dependency * l_dep, ext_numeral const & upper, bool u_open, v_dependency * u_dep);
old_interval(old_interval const & other);
bool minus_infinity() const { return m_lower.is_infinite(); }
bool plus_infinity() const { return m_upper.is_infinite(); }
bool is_lower_open() const { return m_lower_open; }
bool is_upper_open() const { return m_upper_open; }
v_dependency * get_lower_dependencies() const { return m_lower_dep; }
v_dependency * get_upper_dependencies() const { return m_upper_dep; }
rational const & get_lower_value() const { SASSERT(!minus_infinity()); return m_lower.to_rational(); }
rational const & get_upper_value() const { SASSERT(!plus_infinity()); return m_upper.to_rational(); }
old_interval & operator=(old_interval const & other);
old_interval & operator+=(old_interval const & other);
old_interval & operator-=(old_interval const & other);
old_interval & operator*=(old_interval const & other);
old_interval & operator*=(rational const & value);
old_interval & operator/=(old_interval const & other);
bool operator==(old_interval const & other) const { return m_lower == other.m_lower && m_upper == other.m_upper && m_lower_open == other.m_lower_open && m_upper_open == other.m_upper_open; }
bool contains_zero() const;
bool contains(rational const& v) const;
old_interval & inv();
void expt(unsigned n);
void neg();
void display(std::ostream & out) const;
void display_with_dependencies(std::ostream & out) const;
bool is_P() const { return m_lower.is_pos() || m_lower.is_zero(); }
bool is_P0() const { return m_lower.is_zero() && !m_lower_open; }
bool is_P1() const { return m_lower.is_pos() || (m_lower.is_zero() && m_lower_open); }
bool is_N() const { return m_upper.is_neg() || m_upper.is_zero(); }
bool is_N0() const { return m_upper.is_zero() && !m_upper_open; }
bool is_N1() const { return m_upper.is_neg() || (m_upper.is_zero() && m_upper_open); }
bool is_M() const { return m_lower.is_neg() && m_upper.is_pos(); }
bool is_zero() const { return m_lower.is_zero() && m_upper.is_zero(); }
ext_numeral const& inf() const { return m_lower; }
ext_numeral const& sup() const { return m_upper; }
};
inline old_interval operator+(old_interval const & i1, old_interval const & i2) { return old_interval(i1) += i2; }
inline old_interval operator-(old_interval const & i1, old_interval const & i2) { return old_interval(i1) -= i2; }
inline old_interval operator*(old_interval const & i1, old_interval const & i2) { return old_interval(i1) *= i2; }
inline old_interval operator/(old_interval const & i1, old_interval const & i2) { return old_interval(i1) /= i2; }
inline old_interval expt(old_interval const & i, unsigned n) { old_interval tmp(i); tmp.expt(n); return tmp; }
inline std::ostream & operator<<(std::ostream & out, old_interval const & i) { i.display(out); return out; }
struct interval_detail{};
inline std::pair<old_interval, interval_detail> wd(old_interval const & i) { interval_detail d; return std::make_pair(i, d); }
inline std::ostream & operator<<(std::ostream & out, std::pair<old_interval, interval_detail> const & p) { p.first.display_with_dependencies(out); return out; }
// allow "customers" of this file to keep using interval
#define interval old_interval
#endif /* _OLD_INTERVAL_H_ */

View file

@ -1,871 +0,0 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
skip_list_base.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2010-10-01.
Revision History:
WARNING: IT IS NOT SAFE TO STORE KEYS, VALUES in the SKIP_LIST that need non-default constructors/destructors.
--*/
#ifndef _SKIP_LIST_BASE_H_
#define _SKIP_LIST_BASE_H_
#include<memory.h>
#include"util.h"
#include"memory_manager.h"
#include"small_object_allocator.h"
#include"trace.h"
#ifdef _MSC_VER
#pragma warning(disable : 4200)
#endif
/*
This file defines a base class for implementing skip-list like data-structures.
This base class is relies on a manager for providing some basic services.
The manager is a template parameter.
A Skip-list manager is responsible for:
- Providing primitives for allocating/deallocating memory
void * allocate(size_t size);
void deallocate(size_t size, void* p);
- Generating random skip-list levels efficiently
unsigned random_level(unsigned max_level);
- Call-backs that will be invoked when a reference for a "value" stored in the skip-list is incremented/decremented.
void inc_ref_eh(value const & v);
void dec_ref_eh(value const & h);
*/
/**
\brief Base class for generating random_levels.
*/
class random_level_manager {
#define SL_BITS_IN_RANDOM 16
unsigned m_random_data;
unsigned m_random_bits:16;
unsigned m_random_left:16;
unsigned random_value() {
return ((m_random_data = m_random_data * 214013L + 2531011L) >> 16) & 0xffff;
}
void init_random() {
m_random_data = 0;
m_random_bits = random_value();
m_random_left = SL_BITS_IN_RANDOM/2;
}
public:
random_level_manager() {
init_random();
}
unsigned random_level(unsigned max_level) {
unsigned level = 1;
unsigned b;
do {
b = m_random_bits&3;
if (!b)
level++;
m_random_bits >>= 2;
m_random_left--;
if (m_random_left == 0) {
m_random_bits = random_value();
m_random_left = SL_BITS_IN_RANDOM/2;
}
} while (!b);
return (level > max_level ? max_level : level);
}
};
/**
\brief Basic skip-list manager.
The class is parametrized by the Value type that is stored in the skip-list.
*/
template<typename Value>
class sl_manager_base : public random_level_manager {
typedef Value value;
small_object_allocator m_alloc;
public:
void * allocate(size_t size) {
return m_alloc.allocate(size);
}
void deallocate(size_t size, void* p) {
m_alloc.deallocate(size, p);
}
void inc_ref_eh(value const & v) {
/* do nothing */
}
void dec_ref_eh(value const & h) {
/* do nothing */
}
};
#define SL_SIZE_NUM_BITS 12
#define SL_CAPACITY_NUM_BITS SL_SIZE_NUM_BITS
#define SL_MAX_CAPACITY ((1 << SL_SIZE_NUM_BITS) - 1)
#define SL_LEVEL_NUM_BITS 8
#define SL_MAX_LEVEL ((1 << SL_LEVEL_NUM_BITS) - 1)
COMPILE_TIME_ASSERT(SL_SIZE_NUM_BITS == SL_CAPACITY_NUM_BITS);
COMPILE_TIME_ASSERT(SL_SIZE_NUM_BITS + SL_CAPACITY_NUM_BITS + SL_LEVEL_NUM_BITS == 32);
/**
\brief Base (template) class for implementing skip-list like data-structures where
entries are stored in buckets to improve cache behavior.
The Traits template parameter must provide:
- a definition for the class Traits::manager
- a definition for the class Traits::entry which provides:
- a definition for the types key and value
- the methods:
key const & begin_key() const
key const & end_key() const
value const & val() const
void set_begin_key(key const & k)
void set_end_key(key const & k)
void set_val(value const & v)
void display(ostream & out) const
- the maximal number of levels Traits::max_level
- the maximal capacity of each bucket Traits::max_capacity
- the initial capacity of the first bucket Traits::initial_capacity
- flag for reference counting support Traits::ref_count. If this flag is true
the methods inc_ref_eh and dec_ref_eh in the manager object will be invoked.
- the methods
bool lt(key const & k1, key const & k2)
bool eq(key const & k1, key const & k2)
bool val_eq(value const & v1, value const & v2)
key succ(key const & k)
key pred(key const & k)
*/
template<typename Traits>
class skip_list_base : protected Traits {
protected:
typedef typename Traits::entry entry;
public:
typedef typename Traits::manager manager;
typedef typename entry::key key;
typedef typename entry::value value;
struct bucket {
unsigned m_size:SL_SIZE_NUM_BITS; //!< number of entries stored in the bucket.
unsigned m_capacity:SL_CAPACITY_NUM_BITS; //!< capacity (number of entries) that can be stored in the bucket.
unsigned m_level:SL_LEVEL_NUM_BITS;
char m_extra[0];
static unsigned get_obj_size(unsigned num_lvls, unsigned capacity) {
return sizeof(bucket) + num_lvls*sizeof(bucket*) + capacity*sizeof(entry);
}
entry * get_entries() { return reinterpret_cast<entry*>(m_extra); }
entry const * get_entries() const { return reinterpret_cast<entry const *>(m_extra); }
bucket ** next_vect() { return reinterpret_cast<bucket**>(get_entries() + m_capacity); }
bucket * const * next_vect() const { return reinterpret_cast<bucket* const *>(get_entries() + m_capacity); }
bucket(unsigned lvl, unsigned capacity = Traits::max_capacity):
m_size(0),
m_capacity(capacity),
m_level(lvl) {
memset(next_vect(), 0, sizeof(bucket*)*lvl);
}
unsigned level() const { return m_level; }
unsigned size() const { return m_size; }
unsigned capacity() const { return m_capacity; }
bool empty() const { return size() == 0; }
void set_size(unsigned sz) { m_size = sz; }
void shrink(unsigned delta) { m_size -= delta; }
void expand(unsigned delta) { m_size += delta; }
entry & first_entry() { SASSERT(!empty()); return get_entries()[0]; }
entry & last_entry() { SASSERT(!empty()); return get_entries()[size() - 1]; }
entry const & first_entry() const { SASSERT(!empty()); return get_entries()[0]; }
entry const & last_entry() const { SASSERT(!empty()); return get_entries()[size() - 1]; }
entry const & get(unsigned idx) const { SASSERT(idx < size()); return get_entries()[idx]; }
entry & get(unsigned idx) { SASSERT(idx < size()); return get_entries()[idx]; }
void set(unsigned idx, entry const & e) { SASSERT(idx < capacity()); get_entries()[idx] = e; }
bucket * get_next(unsigned idx) const { return next_vect()[idx]; }
void set_next(unsigned idx, bucket * bt) { SASSERT(idx < level()); next_vect()[idx] = bt; }
};
// Only the header bucket has zero entries.
bucket * m_header;
bucket * first_bucket() const {
return m_header->get_next(0);
}
#ifdef Z3DEBUG
/**
\brief (debugging only) Return the predecessor bucket of the given bucket.
\pre bt != m_header, and bt is a bucket of the list.
*/
bucket * pred_bucket(bucket * bt) const {
SASSERT(bt != m_header);
bucket * curr = m_header;
while (curr->get_next(0) != bt) {
curr = curr->get_next(0);
SASSERT(curr != 0); // bt is not in the list
}
return curr;
}
#endif
bool lt(key const & k1, key const & k2) const { return Traits::lt(k1, k2); }
bool gt(key const & k1, key const & k2) const { return lt(k2, k1); }
bool geq(key const & k1, key const & k2) const { return !lt(k1, k2); }
bool leq(key const & k1, key const & k2) const { return !gt(k1, k2); }
/**
\brief Create a new bucket of the given level.
*/
static bucket * mk_bucket(manager & m, unsigned lvl, unsigned capacity = Traits::max_capacity) {
void * mem = m.allocate(bucket::get_obj_size(lvl, capacity));
return new (mem) bucket(lvl, capacity);
}
static bucket * mk_header(manager & m, unsigned lvl) {
return mk_bucket(m, lvl, 0);
}
static void inc_ref(manager & m, value const & v) {
if (Traits::ref_count)
m.inc_ref_eh(v);
}
static void dec_ref(manager & m, value const & v) {
if (Traits::ref_count)
m.dec_ref_eh(v);
}
/**
\brief Invoke dec_ref_eh for each value stored in the bucket.
*/
static void dec_ref(manager & m, bucket * bt) {
if (Traits::ref_count) {
unsigned sz = bt->size();
for (unsigned i = 0; i < sz; i++)
m.dec_ref_eh(bt->get(i).val());
}
}
/**
\brief Deallocate the given bucket.
\remark This method invokes dec_ref_eh for each value in the bucket.
*/
template<bool DecRef>
static void deallocate_bucket(manager & m, bucket * bt) {
if (DecRef)
dec_ref(m, bt);
unsigned sz = bucket::get_obj_size(bt->level(), bt->capacity());
bt->~bucket();
m.deallocate(sz, bt);
}
/**
\brief Deallocate all buckets in the skip list.
\remark This method invokes dec_ref_eh for each value in the list.
*/
template<bool DecRef>
void deallocate_list(manager & m) {
bucket * curr = m_header;
while (curr != 0) {
bucket * old = curr;
curr = curr->get_next(0);
deallocate_bucket<DecRef>(m, old);
}
}
#ifdef Z3DEBUG
/**
\brief Check the following property
for all i \in [0, b->level()) . pred_vect[i]->get_next(i) == b
*/
bool check_pred_vect(bucket * bt, bucket * pred_vect[]) {
if (bt == 0)
return true;
for (unsigned i = 0; i < bt->level(); i++) {
SASSERT(pred_vect[i]->get_next(i) == bt);
}
return true;
}
#endif
/**
\brief Delete the given buffer and update the forward/next pointer of the buckets in pred_vect.
\remark This method invokes dec_ref_eh for each value in the bucket.
*/
void del_bucket(manager & m, bucket * bt, bucket * pred_vect[]) {
SASSERT(check_pred_vect(bt, pred_vect));
for (unsigned i = 0; i < bt->level(); i++)
pred_vect[i]->set_next(i, bt->get_next(i));
deallocate_bucket<true>(m, bt);
}
/**
\brief Update the \c pred_vect vector from levels [0, bt->level()).
That is, bt will be now the "predecessor" for these levels.
*/
static void update_predecessor_vector(bucket * pred_vect [], bucket * bt) {
unsigned lvl = bt->level();
for (unsigned i = 0; i < lvl; i++) {
pred_vect[i] = bt;
}
}
/**
\brief Similar to the previous method, but the updated vector is stored in new_pred_vect.
*/
void update_predecessor_vector(bucket * pred_vect[], bucket * bt, bucket * new_pred_vect[]) {
unsigned bt_lvl = bt->level();
for (unsigned i = 0; i < bt_lvl; i++) {
new_pred_vect[i] = bt;
}
unsigned list_lvl = level();
for (unsigned i = bt_lvl; i < list_lvl; i++) {
new_pred_vect[i] = pred_vect[i];
}
}
/**
\brief Return the list level.
*/
unsigned level() const {
return m_header->level();
}
/**
\brief Expand/Increase the number of levels in the header.
*/
void expand_header(manager & m, unsigned new_lvl) {
SASSERT(new_lvl > level());
bucket * new_header = mk_header(m, new_lvl);
// copy forward pointers of the old header.
unsigned old_lvl = level();
for (unsigned i = 0; i < old_lvl; i++)
new_header->set_next(i, m_header->get_next(i));
// update header
deallocate_bucket<false>(m, m_header);
m_header = new_header;
}
/**
\brief Increase list level to lvl if lvl > level()
*/
void update_list_level(manager & m, unsigned lvl) {
if (lvl > level()) {
expand_header(m, lvl);
}
}
/**
\brief Increase list level (and store m_header in the new levels in pred_vect) if lvl > level().
*/
void update_list_level(manager & m, unsigned lvl, bucket * pred_vect[]) {
if (lvl > level()) {
bucket * old_header = m_header;
unsigned old_lvl = m_header->level();
expand_header(m, lvl);
for (unsigned i = 0; i < old_lvl; i++) {
if (pred_vect[i] == old_header)
pred_vect[i] = m_header;
}
for (unsigned i = old_lvl; i < lvl; i++) {
pred_vect[i] = m_header;
}
SASSERT(level() == lvl);
}
}
/**
\brief Add first entry to the list.
\remark This method will invoke inc_ref_eh for e.val()
*/
void insert_first_entry(manager & m, entry const & e) {
unsigned lvl = m.random_level(Traits::max_level);
bucket * new_bucket = mk_bucket(m, lvl, Traits::initial_capacity);
update_list_level(m, lvl);
for (unsigned i = 0; i < lvl; i++) {
m_header->set_next(i, new_bucket);
}
inc_ref(m, e.val());
new_bucket->set_size(1);
new_bucket->set(0, e);
}
/**
\brief Expand the capacity of the first-bucket in a skip-list with only one bucket.
This method assumes the capacity of the first-bucket < Traits::max_capacity
*/
void expand_first_bucket(manager & m) {
bucket * f = first_bucket();
SASSERT(f != 0);
SASSERT(f->get_next(0) == 0);
SASSERT(f->capacity() < Traits::max_capacity);
unsigned old_capacity = f->capacity();
SASSERT(old_capacity > 0);
unsigned new_capacity = old_capacity * 2;
if (new_capacity > Traits::max_capacity)
new_capacity = Traits::max_capacity;
unsigned lvl = f->level();
bucket * new_f = mk_bucket(m, lvl, new_capacity);
unsigned sz = f->size();
new_f->set_size(sz);
for (unsigned i = 0; i < sz; i++)
new_f->set(i, f->get(i));
for (unsigned i = 0; i < lvl; i++)
m_header->set_next(i, new_f);
deallocate_bucket<false>(m, f);
SASSERT(first_bucket() == new_f);
}
/**
\brief Create a new bucket and divide the elements in bt between bt and the new bucket.
*/
void splice(manager & m, bucket * bt, bucket * pred_vect[]) {
SASSERT(bt->capacity() == Traits::max_capacity);
unsigned bt_lvl = bt->level();
unsigned new_bucket_lvl = m.random_level(Traits::max_level);
bucket * new_bucket = mk_bucket(m, new_bucket_lvl);
update_list_level(m, new_bucket_lvl, pred_vect);
unsigned _lvl = std::min(bt_lvl, new_bucket_lvl);
for (unsigned i = 0; i < _lvl; i++) {
new_bucket->set_next(i, bt->get_next(i));
bt->set_next(i, new_bucket);
}
for (unsigned i = bt_lvl; i < new_bucket_lvl; i++) {
new_bucket->set_next(i, pred_vect[i]->get_next(i));
pred_vect[i]->set_next(i, new_bucket);
}
unsigned old_size = bt->size();
SASSERT(old_size >= 2);
unsigned mid = old_size/2;
new_bucket->set_size(old_size - mid);
unsigned i = mid;
unsigned j = 0;
for (; i < old_size; i++, j++) {
new_bucket->set(j, bt->get(i));
}
bt->set_size(mid);
SASSERT(!bt->empty());
SASSERT(!new_bucket->empty());
}
/**
\brief Open space at position idx. The number of entries in bt is increased by one.
\remark This method will *NOT* invoke inc_ref_eh
*/
void open_space(bucket * bt, unsigned idx) {
SASSERT(bt->size() < bt->capacity());
SASSERT(idx <= bt->size());
unsigned i = bt->size();
while (i > idx) {
bt->set(i, bt->get(i-1));
i--;
}
bt->expand(1);
}
/**
\brief Open two spaces at position idx. The number of entries in bt is increased by one.
\remark This method will *NOT* invoke inc_ref_eh
*/
void open_2spaces(bucket * bt, unsigned idx) {
SASSERT(bt->size() < bt->capacity() - 1);
SASSERT(idx <= bt->size());
unsigned i = bt->size() + 1;
unsigned end = idx + 1;
while (i > end) {
bt->set(i, bt->get(i-2));
i--;
}
bt->expand(2);
}
/**
\brief Delete entry at position idx.
\remark This method will invoke dec_ref_eh for the value stored in entry at position idx.
*/
void del_entry(manager & m, bucket * bt, unsigned idx) {
SASSERT(!bt->empty());
SASSERT(idx < bt->size());
dec_ref(m, bt->get(idx).val());
unsigned sz = bt->size();
for (unsigned i = idx; i < sz - 1; i++) {
bt->set(i, bt->get(i+1));
}
bt->shrink(1);
}
/**
\brief Create a copy of the skip list.
\remark This method will invoke inc_ref_eh for all values copied.
*/
void clone_core(manager & m, skip_list_base * new_list) const {
bucket * pred_vect[Traits::max_level];
unsigned lvl = level();
new_list->update_list_level(m, lvl);
bucket * new_header = new_list->m_header;
for (unsigned i = 0; i < lvl; i++)
pred_vect[i] = new_header;
bucket * curr = first_bucket();
while (curr != 0) {
unsigned curr_lvl = curr->level();
bucket * new_bucket = new_list->mk_bucket(m, curr_lvl, curr->capacity());
for (unsigned i = 0; i < curr_lvl; i++) {
pred_vect[i]->set_next(i, new_bucket);
pred_vect[i] = new_bucket;
}
unsigned curr_sz = curr->size();
for (unsigned i = 0; i < curr_sz; i++) {
entry const & curr_entry = curr->get(i);
inc_ref(m, curr_entry.val());
new_bucket->set(i, curr_entry);
}
new_bucket->set_size(curr_sz);
curr = curr->get_next(0);
}
}
public:
skip_list_base():
m_header(0) {
SASSERT(Traits::max_capacity >= 2);
SASSERT(Traits::initial_capacity >= 2);
SASSERT(Traits::initial_capacity <= Traits::max_capacity);
SASSERT(Traits::max_level >= 1);
SASSERT(Traits::max_capacity <= SL_MAX_CAPACITY);
SASSERT(Traits::max_level <= SL_MAX_LEVEL);
}
skip_list_base(manager & m):
m_header(0) {
SASSERT(Traits::max_capacity >= 2);
SASSERT(Traits::initial_capacity >= 2);
SASSERT(Traits::initial_capacity <= Traits::max_capacity);
SASSERT(Traits::max_level >= 1);
SASSERT(Traits::max_capacity <= SL_MAX_CAPACITY);
SASSERT(Traits::max_level <= SL_MAX_LEVEL);
init(m);
}
~skip_list_base() {
SASSERT(m_header == 0);
}
void deallocate(manager & m) {
deallocate_list<true>(m);
m_header = 0;
}
/**
\brief Deallocate the list but do not invoke dec_ref_eh.
*/
void deallocate_no_decref(manager & m) {
deallocate_list<false>(m);
m_header = 0;
}
/**
\brief Initialize a list that was created using the default constructor.
It can be used also to initialized a list deallocated using the method #deallocate.
*/
void init(manager & m) {
SASSERT(m_header == 0);
m_header = mk_header(m, 1);
}
/**
\brief Remove all elements from the skip-list.
*/
void reset(manager & m) {
deallocate_list<true>(m);
m_header = mk_header(m, 1);
}
/**
\brief Remove all elements from the skip-list without invoking dec_ref_eh.
*/
void reset_no_decref(manager & m) {
deallocate_list<false>(m);
m_header = mk_header(m, 1);
}
/**
\brief Return true if the list is empty.
*/
bool empty() const {
SASSERT(m_header != 0);
return first_bucket() == 0;
}
protected:
/**
\brief Return the position of the bucket in the skip list.
*/
unsigned get_bucket_idx(bucket const * bt) const {
bucket * curr = m_header;
unsigned pos = 0;
while (curr != 0) {
if (curr == bt)
return pos;
pos++;
curr = curr->get_next(0);
}
UNREACHABLE();
return pos;
}
/**
\brief Display the given entry.
*/
void display(std::ostream & out, entry const & e) const {
e.display(out);
}
/**
\brief Display a reference to the given bucket.
*/
void display_bucket_ref(std::ostream & out, bucket const * bt) const {
if (bt == 0)
out << "NIL";
else
out << "#" << get_bucket_idx(bt);
}
/**
\brief Display the predecessor vector.
*/
void display_predecessor_vector(std::ostream & out, bucket const * const pred_vect[]) const {
for (unsigned i = 0; i < level(); i++) {
out << i << ": ";
display_bucket_ref(out, pred_vect[i]);
if (pred_vect[i]) {
out << " -> ";
display_bucket_ref(out, pred_vect[i]->get_next(i));
}
out << "\n";
}
}
/**
\brief Display the successors of the given bucket.
*/
void display_successors(std::ostream & out, bucket const * bt) const {
out << "[";
for (unsigned i = 0; i < bt->level(); i++) {
if (i > 0) out << ", ";
display_bucket_ref(out, bt->get_next(i));
}
out << "]";
}
/**
\brief Display the given bucket.
*/
void display(std::ostream & out, bucket const * bt) const {
if (bt == 0) {
out << "NIL\n";
return;
}
out << "bucket ";
display_bucket_ref(out, bt);
out << ", capacity: " << bt->capacity() << "\n";
out << "successors: ";
display_successors(out, bt);
out << "\n";
out << "entries:\n";
for (unsigned i = 0; i < bt->size(); i++) {
display(out, bt->get(i));
out << "\n";
}
out << "----------\n";
}
public:
/**
\brief Dump the skip list for debugging purposes.
It assumes that key and value types implement operator <<.
*/
void display_physical(std::ostream & out) const {
out << "{\nskip-list level: " << m_header->level() << "\n";
bucket * curr = m_header;
while (curr != 0) {
display(out, curr);
curr = curr->get_next(0);
}
out << "}\n";
}
void display(std::ostream & out) const {
bucket * curr = m_header;
while (curr != 0) {
unsigned sz = curr->size();
for (unsigned i = 0; i < sz; i++) {
if (i > 0)
out << " ";
curr->get(i).display(out);
}
curr = curr->get_next(0);
}
}
protected:
/**
\brief Return true if bucket b2 can be reached from b1 following get_next(i) pointers
*/
bool is_reachable_at_i(bucket const * bt1, bucket const * bt2, unsigned i) const {
bucket * curr = bt1->get_next(i);
while (curr != 0) {
if (curr == bt2)
return true;
curr = curr->get_next(i);
}
return false;
}
protected:
static void display_size_info_core(std::ostream & out, unsigned cls_size) {
out << "sizeof root: " << cls_size << "\n";
out << "bucket max capacity: " << Traits::max_capacity << "\n";
out << "bucket max level: " << Traits::max_level << "\n";
out << "sizeof(bucket): " << sizeof(bucket) << " + " << sizeof(bucket*) << "*lvl + " << sizeof(entry) << "*capacity\n";
out << "sizeof(usual bucket): " << (sizeof(bucket) + sizeof(entry)*Traits::max_capacity) << " + " << sizeof(bucket*) << "*lvl\n";
out << "sizeof(max. bucket): " << (sizeof(bucket) + sizeof(entry)*Traits::max_capacity + sizeof(bucket*)*Traits::max_level) << "\n";
out << "sizeof(entry): " << sizeof(entry) << "\n";
out << "sizeof empty: " << cls_size + bucket::get_obj_size(1, 0) << "\n";;
out << "sizeof singleton: ["
<< (cls_size + bucket::get_obj_size(1, 0) + bucket::get_obj_size(1, Traits::initial_capacity)) << ", "
<< (cls_size +
bucket::get_obj_size(Traits::max_level, 0) +
bucket::get_obj_size(Traits::max_level, Traits::max_capacity)) << "]\n";
}
public:
/**
\brief Return true if skip-list has more than k buckets (not considering the header).
\remark This method is for debugging purposes.
*/
bool has_more_than_k_buckets(unsigned k) const {
bucket * curr = first_bucket();
while (curr != 0 && k > 0) {
curr = curr->get_next(0);
k--;
}
return curr != 0;
}
/**
\brief Return true if the skip-list has more than k entries.
*/
bool has_more_than_k_entries(unsigned k) const {
bucket * curr = first_bucket();
while (curr != 0 && k >= curr->size()) {
k -= curr->size();
curr = curr->get_next(0);
}
SASSERT(curr == 0 || curr->size() > k);
return curr != 0;
}
protected:
/**
\brief Return the amount of memory consumed by the list.
*/
unsigned memory_core(unsigned cls_size) const {
unsigned r = 0;
r += cls_size;
bucket * curr = m_header;
while (curr != 0) {
r += bucket::get_obj_size(curr->level(), curr->capacity());
curr = curr->get_next(0);
}
return r;
}
public:
/**
\brief Compress the buckets of the skip-list.
Make sure that all, but the last bucket, have at least \c load entries.
\remark If load > Traits::max_capacity, then it assumes load = Traits::max_capacity.
*/
void compress(manager & m, unsigned load = Traits::max_capacity/2) {
if (load > Traits::max_capacity)
load = Traits::max_capacity;
bucket * pred_vect[Traits::max_level];
update_predecessor_vector(pred_vect, m_header);
bucket * curr = first_bucket();
while (curr != 0) {
update_predecessor_vector(pred_vect, curr);
bucket * next = curr->get_next(0);
while (curr->size() < load && next != 0) {
// steal entries of the successor bucket.
unsigned deficit = load - curr->size();
unsigned next_size = next->size();
if (next_size <= deficit) {
for (unsigned i = 0, j = curr->size(); i < next_size; i++, j++) {
curr->set(j, next->get(i));
}
curr->expand(next_size);
bucket * new_next = next->get_next(0);
del_bucket(m, next, pred_vect);
next = new_next;
SASSERT(curr->size() <= load);
}
else {
for (unsigned i = 0, j = curr->size(); i < deficit; i++, j++) {
curr->set(j, next->get(i));
}
curr->expand(deficit);
for (unsigned i = deficit, j = 0; i < next_size; i++, j++) {
next->set(j, next->get(i));
}
next->set_size(next_size - deficit);
SASSERT(curr->size() == load);
}
}
curr = curr->get_next(0);
}
}
void swap(skip_list_base & other) {
bucket * tmp = m_header;
m_header = other.m_header;
other.m_header = tmp;
}
};
#endif