3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

fixing bound detection (#86)

* fixing bound detection

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* check-idiv bounds

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-09-09 14:26:46 -07:00 committed by Lev Nachmanson
parent 211210338a
commit 67a2a26009

View file

@ -129,6 +129,7 @@ class theory_lra::imp {
struct scope {
unsigned m_bounds_lim;
unsigned m_idiv_lim;
unsigned m_asserted_qhead;
unsigned m_asserted_atoms_lim;
unsigned m_underspecified_lim;
@ -230,6 +231,7 @@ class theory_lra::imp {
svector<delayed_atom> m_asserted_atoms;
expr* m_not_handled;
ptr_vector<app> m_underspecified;
ptr_vector<expr> m_idiv_terms;
unsigned_vector m_var_trail;
vector<ptr_vector<lp_api::bound> > m_use_list; // bounds where variables are used.
@ -443,6 +445,7 @@ class theory_lra::imp {
}
else if (a.is_idiv(n, n1, n2)) {
if (!a.is_numeral(n2, r) || r.is_zero()) found_not_handled(n);
m_idiv_terms.push_back(n);
app * mod = a.mk_mod(n1, n2);
ctx().internalize(mod, false);
if (ctx().relevancy()) ctx().add_relevancy_dependency(n, mod);
@ -452,6 +455,7 @@ class theory_lra::imp {
if (!is_num) {
found_not_handled(n);
}
#if 0
else {
app_ref div(a.mk_idiv(n1, n2), m);
mk_enode(div);
@ -462,7 +466,8 @@ class theory_lra::imp {
// abs(r) > v >= 0
assert_idiv_mod_axioms(u, v, w, r);
}
if (!ctx().relevancy() && !is_num) mk_idiv_mod_axioms(n1, n2);
#endif
if (!ctx().relevancy()) mk_idiv_mod_axioms(n1, n2);
}
else if (a.is_rem(n, n1, n2)) {
if (!a.is_numeral(n2, r) || r.is_zero()) found_not_handled(n);
@ -803,7 +808,7 @@ public:
m_has_int(false),
m_arith_eq_adapter(th, ap, a),
m_internalize_head(0),
m_not_handled(0),
m_not_handled(nullptr),
m_asserted_qhead(0),
m_assume_eq_head(0),
m_num_conflicts(0),
@ -913,6 +918,7 @@ public:
scope& s = m_scopes.back();
s.m_bounds_lim = m_bounds_trail.size();
s.m_asserted_qhead = m_asserted_qhead;
s.m_idiv_lim = m_idiv_terms.size();
s.m_asserted_atoms_lim = m_asserted_atoms.size();
s.m_not_handled = m_not_handled;
s.m_underspecified_lim = m_underspecified.size();
@ -938,6 +944,7 @@ public:
}
m_theory_var2var_index[m_var_trail[i]] = UINT_MAX;
}
m_idiv_terms.shrink(m_scopes[old_size].m_idiv_lim);
m_asserted_atoms.shrink(m_scopes[old_size].m_asserted_atoms_lim);
m_asserted_qhead = m_scopes[old_size].m_asserted_qhead;
m_underspecified.shrink(m_scopes[old_size].m_underspecified_lim);
@ -1033,37 +1040,74 @@ public:
add_def_constraint(m_solver->add_var_bound(vi, lp::LE, rational::zero()));
add_def_constraint(m_solver->add_var_bound(get_var_index(v), lp::GE, rational::zero()));
add_def_constraint(m_solver->add_var_bound(get_var_index(v), lp::LT, abs(r)));
TRACE("arith", m_solver->print_constraints(tout << term << "\n"););
}
void mk_idiv_mod_axioms(expr * p, expr * q) {
if (a.is_zero(q)) {
return;
}
TRACE("arith", tout << expr_ref(p, m) << " " << expr_ref(q, m) << "\n";);
// if q is zero, then idiv and mod are uninterpreted functions.
expr_ref div(a.mk_idiv(p, q), m);
expr_ref mod(a.mk_mod(p, q), m);
expr_ref zero(a.mk_int(0), m);
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
literal q_le_0 = mk_literal(a.mk_le(q, zero));
// literal eqz = th.mk_eq(q, zero, false);
literal eq = th.mk_eq(a.mk_add(a.mk_mul(q, div), mod), p, false);
literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero));
// q >= 0 or p = (p mod q) + q * (p div q)
// q <= 0 or p = (p mod q) + q * (p div q)
// q >= 0 or (p mod q) >= 0
// q <= 0 or (p mod q) >= 0
// q <= 0 or (p mod q) < q
// q >= 0 or (p mod q) < -q
// enable_trace("mk_bool_var");
mk_axiom(q_ge_0, eq);
mk_axiom(q_le_0, eq);
mk_axiom(q_ge_0, mod_ge_0);
mk_axiom(q_le_0, mod_ge_0);
mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));
rational k;
if (m_arith_params.m_arith_enum_const_mod && a.is_numeral(q, k) &&
k.is_pos() && k < rational(8)) {
literal div_ge_0 = mk_literal(a.mk_ge(div, zero));
literal div_le_0 = mk_literal(a.mk_le(div, zero));
literal p_ge_0 = mk_literal(a.mk_ge(p, zero));
literal p_le_0 = mk_literal(a.mk_le(p, zero));
rational k(0);
expr_ref upper(m);
if (a.is_numeral(q, k)) {
if (k.is_pos()) {
upper = a.mk_numeral(k - 1, true);
}
else if (k.is_neg()) {
upper = a.mk_numeral(-k - 1, true);
}
}
else {
k = rational::zero();
}
if (!k.is_zero()) {
mk_axiom(eq);
mk_axiom(mod_ge_0);
mk_axiom(mk_literal(a.mk_le(mod, upper)));
if (k.is_pos()) {
mk_axiom(~p_ge_0, div_ge_0);
mk_axiom(~p_le_0, div_le_0);
}
else {
mk_axiom(~p_ge_0, div_le_0);
mk_axiom(~p_le_0, div_ge_0);
}
}
else {
// q >= 0 or p = (p mod q) + q * (p div q)
// q <= 0 or p = (p mod q) + q * (p div q)
// q >= 0 or (p mod q) >= 0
// q <= 0 or (p mod q) >= 0
// q <= 0 or (p mod q) < q
// q >= 0 or (p mod q) < -q
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
literal q_le_0 = mk_literal(a.mk_le(q, zero));
mk_axiom(q_ge_0, eq);
mk_axiom(q_le_0, eq);
mk_axiom(q_ge_0, mod_ge_0);
mk_axiom(q_le_0, mod_ge_0);
mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));
mk_axiom(q_le_0, ~p_ge_0, div_ge_0);
mk_axiom(q_le_0, ~p_le_0, div_le_0);
mk_axiom(q_ge_0, ~p_ge_0, div_le_0);
mk_axiom(q_ge_0, ~p_le_0, div_ge_0);
}
if (m_arith_params.m_arith_enum_const_mod && k.is_pos() && k < rational(8)) {
unsigned _k = k.get_unsigned();
literal_buffer lits;
for (unsigned j = 0; j < _k; ++j) {
@ -1211,10 +1255,9 @@ public:
}
void init_variable_values() {
reset_variable_values();
if (!m.canceled() && m_solver.get() && th.get_num_vars() > 0) {
reset_variable_values();
m_solver->get_model(m_variable_values);
TRACE("arith", display(tout););
}
}
@ -1317,6 +1360,7 @@ public:
}
final_check_status final_check_eh() {
IF_VERBOSE(2, verbose_stream() << "final-check\n");
m_use_nra_model = false;
lbool is_sat = l_true;
if (m_solver->get_status() != lp::lp_status::OPTIMAL) {
@ -1331,7 +1375,7 @@ public:
}
if (assume_eqs()) {
return FC_CONTINUE;
}
}
switch (check_lia()) {
case l_true:
@ -1343,7 +1387,7 @@ public:
st = FC_CONTINUE;
break;
}
switch (check_nra()) {
case l_true:
break;
@ -1422,20 +1466,126 @@ public:
return true;
}
unsigned nv = th.get_num_vars();
bool added_bound = false;
bool all_bounded = true;
for (unsigned v = 0; v < nv; ++v) {
lp::constraint_index ci;
rational bound;
lp::var_index vi = m_theory_var2var_index[v];
if (!has_upper_bound(vi, ci, bound) && !has_lower_bound(vi, ci, bound)) {
if (!m_solver->is_term(vi) && !var_has_bound(vi, true) && !var_has_bound(vi, false)) {
lp::lar_term term;
term.add_monomial(rational::one(), vi);
app_ref b = mk_bound(term, rational::zero(), false);
app_ref b = mk_bound(term, rational::zero(), true);
TRACE("arith", tout << "added bound " << b << "\n";);
added_bound = true;
IF_VERBOSE(2, verbose_stream() << "bound: " << b << "\n");
all_bounded = false;
}
}
return !added_bound;
return all_bounded;
}
/**
* n = (div p q)
*
* (div p q) * q + (mod p q) = p, (mod p q) >= 0
*
* 0 < q => (p/q <= v(p)/v(q) => n <= floor(v(p)/v(q)))
* 0 < q => (v(p)/v(q) <= p/q => v(p)/v(q) - 1 < n)
*
*/
bool check_idiv_bounds() {
if (m_idiv_terms.empty()) {
return true;
}
bool all_divs_valid = true;
init_variable_values();
for (expr* n : m_idiv_terms) {
expr* p = nullptr, *q = nullptr;
VERIFY(a.is_idiv(n, p, q));
theory_var v = mk_var(n);
theory_var v1 = mk_var(p);
theory_var v2 = mk_var(q);
rational r = get_value(v);
rational r1 = get_value(v1);
rational r2 = get_value(v2);
rational r3;
if (r2.is_zero()) {
continue;
}
if (r1.is_int() && r2.is_int() && r == div(r1, r2)) {
continue;
}
if (r2.is_neg()) {
// TBD
continue;
}
if (a.is_numeral(q, r3)) {
SASSERT(r3 == r2 && r2.is_int());
// p <= r1 => n <= div(r1, r2)
// r1 <= p => div(r1, r2) <= n
literal p_le_r1 = mk_literal(a.mk_le(p, a.mk_numeral(ceil(r1), true)));
literal p_ge_r1 = mk_literal(a.mk_ge(p, a.mk_numeral(floor(r1), true)));
literal n_le_div = mk_literal(a.mk_le(n, a.mk_numeral(div(ceil(r1), r2), true)));
literal n_ge_div = mk_literal(a.mk_ge(n, a.mk_numeral(div(floor(r1), r2), true)));
mk_axiom(~p_le_r1, n_le_div);
mk_axiom(~p_ge_r1, n_ge_div);
all_divs_valid = false;
TRACE("arith",
literal_vector lits;
lits.push_back(~p_le_r1);
lits.push_back(n_le_div);
ctx().display_literals_verbose(tout, lits) << "\n";
lits[0] = ~p_ge_r1;
lits[1] = n_ge_div;
ctx().display_literals_verbose(tout, lits) << "\n";);
continue;
}
if (!r1.is_int() || !r2.is_int()) {
// std::cout << r1 << " " << r2 << " " << r << " " << expr_ref(n, m) << "\n";
// TBD
// r1 = 223/4, r2 = 2, r = 219/8
// take ceil(r1), floor(r1), ceil(r2), floor(r2), for floor(r2) > 0
// then
// p/q <= ceil(r1)/floor(r2) => n <= div(ceil(r1), floor(r2))
// p/q >= floor(r1)/ceil(r2) => n >= div(floor(r1), ceil(r2))
continue;
}
all_divs_valid = false;
//
// p/q <= r1/r2 => n <= div(r1, r2)
// <=>
// p*r2 <= q*r1 => n <= div(r1, r2)
//
// p/q >= r1/r2 => n >= div(r1, r2)
// <=>
// p*r2 >= r1*q => n >= div(r1, r2)
//
expr_ref zero(a.mk_int(0), m);
expr_ref divc(a.mk_numeral(div(r1, r2), true), m);
expr_ref pqr(a.mk_sub(a.mk_mul(a.mk_numeral(r2, true), p), a.mk_mul(a.mk_numeral(r1, true), q)), m);
literal pq_lhs = ~mk_literal(a.mk_le(pqr, zero));
literal pq_rhs = ~mk_literal(a.mk_ge(pqr, zero));
literal n_le_div = mk_literal(a.mk_le(n, divc));
literal n_ge_div = mk_literal(a.mk_ge(n, divc));
mk_axiom(pq_lhs, n_le_div);
mk_axiom(pq_rhs, n_ge_div);
TRACE("arith",
literal_vector lits;
lits.push_back(pq_lhs);
lits.push_back(n_le_div);
ctx().display_literals_verbose(tout, lits) << "\n";
lits[0] = pq_rhs;
lits[1] = n_ge_div;
ctx().display_literals_verbose(tout, lits) << "\n";);
}
return all_divs_valid;
}
lbool check_lia() {
@ -1444,19 +1594,24 @@ public:
return l_undef;
}
if (!all_variables_have_bounds()) {
TRACE("arith", tout << "not all variables have bounds\n";);
return l_false;
}
if (!check_idiv_bounds()) {
TRACE("arith", tout << "idiv bounds check\n";);
return l_false;
}
lp::lar_term term;
lp::mpq k;
lp::explanation ex; // TBD, this should be streamlined accross different explanations
bool upper;
std::cout << ".";
switch(m_lia->check(term, k, ex, upper)) {
case lp::lia_move::sat:
return l_true;
case lp::lia_move::branch: {
TRACE("arith", tout << "branch\n";);
app_ref b = mk_bound(term, k, !upper);
IF_VERBOSE(2, verbose_stream() << "branch " << b << "\n";);
// branch on term >= k + 1
// branch on term <= k
// TBD: ctx().force_phase(ctx().get_literal(b));
@ -1469,6 +1624,7 @@ public:
++m_stats.m_gomory_cuts;
// m_explanation implies term <= k
app_ref b = mk_bound(term, k, !upper);
IF_VERBOSE(2, verbose_stream() << "cut " << b << "\n";);
m_eqs.reset();
m_core.reset();
m_params.reset();
@ -2411,6 +2567,18 @@ public:
}
}
bool var_has_bound(lp::var_index vi, bool is_lower) {
bool is_strict = false;
rational b;
lp::constraint_index ci;
if (is_lower) {
return m_solver->has_lower_bound(vi, ci, b, is_strict);
}
else {
return m_solver->has_upper_bound(vi, ci, b, is_strict);
}
}
bool has_upper_bound(lp::var_index vi, lp::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, false); }
bool has_lower_bound(lp::var_index vi, lp::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, true); }
@ -2981,7 +3149,7 @@ public:
}
if (!ctx().b_internalized(b)) {
fm.hide(b->get_decl());
bool_var bv = ctx().mk_bool_var(b);
bool_var bv = ctx().mk_bool_var(b);
ctx().set_var_theory(bv, get_id());
// ctx().set_enode_flag(bv, true);
lp_api::bound_kind bkind = lp_api::bound_kind::lower_t;