3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-17 14:21:45 +00:00

git bindings v1.0

This commit is contained in:
Nikolaj Bjorner 2026-02-15 21:24:40 -08:00
parent e2486eff77
commit 66d0fb5477
33 changed files with 5289 additions and 7 deletions

263
src/api/go/solver.go Normal file
View file

@ -0,0 +1,263 @@
package z3
/*
#include "z3.h"
#include <stdlib.h>
*/
import "C"
import (
"runtime"
"unsafe"
)
// Status represents the result of a satisfiability check.
type Status int
const (
// Unsatisfiable means the constraints are unsatisfiable.
Unsatisfiable Status = -1
// Unknown means Z3 could not determine satisfiability.
Unknown Status = 0
// Satisfiable means the constraints are satisfiable.
Satisfiable Status = 1
)
// String returns the string representation of the status.
func (s Status) String() string {
switch s {
case Unsatisfiable:
return "unsat"
case Unknown:
return "unknown"
case Satisfiable:
return "sat"
default:
return "unknown"
}
}
// Solver represents a Z3 solver.
type Solver struct {
ctx *Context
ptr C.Z3_solver
}
// NewSolver creates a new solver for the given context.
func (c *Context) NewSolver() *Solver {
s := &Solver{
ctx: c,
ptr: C.Z3_mk_solver(c.ptr),
}
C.Z3_solver_inc_ref(c.ptr, s.ptr)
runtime.SetFinalizer(s, func(solver *Solver) {
C.Z3_solver_dec_ref(solver.ctx.ptr, solver.ptr)
})
return s
}
// NewSolverForLogic creates a solver for a specific logic.
func (c *Context) NewSolverForLogic(logic string) *Solver {
sym := c.MkStringSymbol(logic)
s := &Solver{
ctx: c,
ptr: C.Z3_mk_solver_for_logic(c.ptr, sym.ptr),
}
C.Z3_solver_inc_ref(c.ptr, s.ptr)
runtime.SetFinalizer(s, func(solver *Solver) {
C.Z3_solver_dec_ref(solver.ctx.ptr, solver.ptr)
})
return s
}
// String returns the string representation of the solver.
func (s *Solver) String() string {
return C.GoString(C.Z3_solver_to_string(s.ctx.ptr, s.ptr))
}
// Assert adds a constraint to the solver.
func (s *Solver) Assert(constraint *Expr) {
C.Z3_solver_assert(s.ctx.ptr, s.ptr, constraint.ptr)
}
// AssertAndTrack adds a constraint with a tracking literal.
func (s *Solver) AssertAndTrack(constraint, track *Expr) {
C.Z3_solver_assert_and_track(s.ctx.ptr, s.ptr, constraint.ptr, track.ptr)
}
// Check checks the satisfiability of the constraints.
func (s *Solver) Check() Status {
result := C.Z3_solver_check(s.ctx.ptr, s.ptr)
return Status(result)
}
// CheckAssumptions checks satisfiability under assumptions.
func (s *Solver) CheckAssumptions(assumptions ...*Expr) Status {
if len(assumptions) == 0 {
return s.Check()
}
cAssumptions := make([]C.Z3_ast, len(assumptions))
for i, a := range assumptions {
cAssumptions[i] = a.ptr
}
result := C.Z3_solver_check_assumptions(s.ctx.ptr, s.ptr, C.uint(len(assumptions)), &cAssumptions[0])
return Status(result)
}
// Model returns the model if the constraints are satisfiable.
func (s *Solver) Model() *Model {
modelPtr := C.Z3_solver_get_model(s.ctx.ptr, s.ptr)
if modelPtr == nil {
return nil
}
return newModel(s.ctx, modelPtr)
}
// Push creates a backtracking point.
func (s *Solver) Push() {
C.Z3_solver_push(s.ctx.ptr, s.ptr)
}
// Pop removes backtracking points.
func (s *Solver) Pop(n uint) {
C.Z3_solver_pop(s.ctx.ptr, s.ptr, C.uint(n))
}
// Reset removes all assertions from the solver.
func (s *Solver) Reset() {
C.Z3_solver_reset(s.ctx.ptr, s.ptr)
}
// NumScopes returns the number of backtracking points.
func (s *Solver) NumScopes() uint {
return uint(C.Z3_solver_get_num_scopes(s.ctx.ptr, s.ptr))
}
// Assertions returns the assertions in the solver.
func (s *Solver) Assertions() []*Expr {
vec := C.Z3_solver_get_assertions(s.ctx.ptr, s.ptr)
size := uint(C.Z3_ast_vector_size(s.ctx.ptr, vec))
result := make([]*Expr, size)
for i := uint(0); i < size; i++ {
result[i] = newExpr(s.ctx, C.Z3_ast_vector_get(s.ctx.ptr, vec, C.uint(i)))
}
return result
}
// UnsatCore returns the unsat core if the constraints are unsatisfiable.
func (s *Solver) UnsatCore() []*Expr {
vec := C.Z3_solver_get_unsat_core(s.ctx.ptr, s.ptr)
size := uint(C.Z3_ast_vector_size(s.ctx.ptr, vec))
result := make([]*Expr, size)
for i := uint(0); i < size; i++ {
result[i] = newExpr(s.ctx, C.Z3_ast_vector_get(s.ctx.ptr, vec, C.uint(i)))
}
return result
}
// ReasonUnknown returns the reason why the result is unknown.
func (s *Solver) ReasonUnknown() string {
return C.GoString(C.Z3_solver_get_reason_unknown(s.ctx.ptr, s.ptr))
}
// Model represents a Z3 model (satisfying assignment).
type Model struct {
ctx *Context
ptr C.Z3_model
}
// newModel creates a new Model and manages its reference count.
func newModel(ctx *Context, ptr C.Z3_model) *Model {
m := &Model{ctx: ctx, ptr: ptr}
C.Z3_model_inc_ref(ctx.ptr, ptr)
runtime.SetFinalizer(m, func(model *Model) {
C.Z3_model_dec_ref(model.ctx.ptr, model.ptr)
})
return m
}
// String returns the string representation of the model.
func (m *Model) String() string {
return C.GoString(C.Z3_model_to_string(m.ctx.ptr, m.ptr))
}
// NumConsts returns the number of constants in the model.
func (m *Model) NumConsts() uint {
return uint(C.Z3_model_get_num_consts(m.ctx.ptr, m.ptr))
}
// NumFuncs returns the number of function interpretations in the model.
func (m *Model) NumFuncs() uint {
return uint(C.Z3_model_get_num_funcs(m.ctx.ptr, m.ptr))
}
// GetConstDecl returns the i-th constant declaration in the model.
func (m *Model) GetConstDecl(i uint) *FuncDecl {
return newFuncDecl(m.ctx, C.Z3_model_get_const_decl(m.ctx.ptr, m.ptr, C.uint(i)))
}
// GetFuncDecl returns the i-th function declaration in the model.
func (m *Model) GetFuncDecl(i uint) *FuncDecl {
return newFuncDecl(m.ctx, C.Z3_model_get_func_decl(m.ctx.ptr, m.ptr, C.uint(i)))
}
// Eval evaluates an expression in the model.
// If modelCompletion is true, Z3 will assign an interpretation for uninterpreted constants.
func (m *Model) Eval(expr *Expr, modelCompletion bool) (*Expr, bool) {
var result C.Z3_ast
var completion C.bool
if modelCompletion {
completion = C.bool(true)
} else {
completion = C.bool(false)
}
success := C.Z3_model_eval(m.ctx.ptr, m.ptr, expr.ptr, completion, &result)
if success == C.bool(false) {
return nil, false
}
return newExpr(m.ctx, result), true
}
// GetConstInterp returns the interpretation of a constant.
func (m *Model) GetConstInterp(decl *FuncDecl) *Expr {
result := C.Z3_model_get_const_interp(m.ctx.ptr, m.ptr, decl.ptr)
if result == nil {
return nil
}
return newExpr(m.ctx, result)
}
// FuncInterp represents a function interpretation in a model.
type FuncInterp struct {
ctx *Context
ptr C.Z3_func_interp
}
// GetFuncInterp returns the interpretation of a function.
func (m *Model) GetFuncInterp(decl *FuncDecl) *FuncInterp {
result := C.Z3_model_get_func_interp(m.ctx.ptr, m.ptr, decl.ptr)
if result == nil {
return nil
}
fi := &FuncInterp{ctx: m.ctx, ptr: result}
C.Z3_func_interp_inc_ref(m.ctx.ptr, result)
runtime.SetFinalizer(fi, func(f *FuncInterp) {
C.Z3_func_interp_dec_ref(f.ctx.ptr, f.ptr)
})
return fi
}
// NumEntries returns the number of entries in the function interpretation.
func (fi *FuncInterp) NumEntries() uint {
return uint(C.Z3_func_interp_get_num_entries(fi.ctx.ptr, fi.ptr))
}
// GetElse returns the else value of the function interpretation.
func (fi *FuncInterp) GetElse() *Expr {
result := C.Z3_func_interp_get_else(fi.ctx.ptr, fi.ptr)
return newExpr(fi.ctx, result)
}
// GetArity returns the arity of the function interpretation.
func (fi *FuncInterp) GetArity() uint {
return uint(C.Z3_func_interp_get_arity(fi.ctx.ptr, fi.ptr))
}