mirror of
https://github.com/Z3Prover/z3
synced 2025-07-18 02:16:40 +00:00
merge with master branch
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
commit
651587ce01
1602 changed files with 40496 additions and 27837 deletions
|
@ -19,8 +19,8 @@ Notes:
|
|||
#ifndef ARITH_REWRITER_H_
|
||||
#define ARITH_REWRITER_H_
|
||||
|
||||
#include"poly_rewriter.h"
|
||||
#include"arith_decl_plugin.h"
|
||||
#include "ast/rewriter/poly_rewriter.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
|
||||
class arith_rewriter_core {
|
||||
protected:
|
||||
|
@ -35,7 +35,6 @@ protected:
|
|||
|
||||
bool is_numeral(expr * n) const { return m_util.is_numeral(n); }
|
||||
bool is_numeral(expr * n, numeral & r) const { return m_util.is_numeral(n, r); }
|
||||
bool is_zero(expr * n) const { return m_util.is_zero(n); }
|
||||
bool is_minus_one(expr * n) const { return m_util.is_minus_one(n); }
|
||||
void normalize(numeral & c, sort * s) {}
|
||||
app * mk_numeral(numeral const & r, sort * s) { return m_util.mk_numeral(r, s); }
|
||||
|
@ -45,16 +44,19 @@ protected:
|
|||
decl_kind power_decl_kind() const { return OP_POWER; }
|
||||
public:
|
||||
arith_rewriter_core(ast_manager & m):m_util(m) {}
|
||||
bool is_zero(expr * n) const { return m_util.is_zero(n); }
|
||||
};
|
||||
|
||||
class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
|
||||
bool m_arith_lhs;
|
||||
bool m_arith_ineq_lhs;
|
||||
bool m_gcd_rounding;
|
||||
bool m_eq2ineq;
|
||||
bool m_elim_to_real;
|
||||
bool m_push_to_real;
|
||||
bool m_anum_simp;
|
||||
bool m_elim_rem;
|
||||
bool m_eq2ineq;
|
||||
bool m_process_all_eqs;
|
||||
unsigned m_max_degree;
|
||||
|
||||
void get_coeffs_gcd(expr * t, numeral & g, bool & first, unsigned & num_consts);
|
||||
|
@ -82,12 +84,16 @@ class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
|
|||
expr * reduce_power(expr * arg, bool is_eq);
|
||||
br_status reduce_power(expr * arg1, expr * arg2, op_kind kind, expr_ref & result);
|
||||
|
||||
bool is_arith_term(expr * n) const;
|
||||
|
||||
bool is_pi_multiple(expr * t, rational & k);
|
||||
bool is_pi_offset(expr * t, rational & k, expr * & m);
|
||||
bool is_2_pi_integer(expr * t);
|
||||
bool is_2_pi_integer_offset(expr * t, expr * & m);
|
||||
bool is_pi_integer(expr * t);
|
||||
bool is_pi_integer_offset(expr * t, expr * & m);
|
||||
bool is_neg_poly(expr* e, expr_ref& neg) const;
|
||||
expr_ref neg_monomial(expr * e) const;
|
||||
expr * mk_sin_value(rational const & k);
|
||||
app * mk_sqrt(rational const & k);
|
||||
bool divides(expr* d, expr* n, expr_ref& quot);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue