3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-18 02:16:40 +00:00

merge with master branch

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-09-19 09:39:22 -07:00
commit 651587ce01
1602 changed files with 40496 additions and 27837 deletions

View file

@ -16,17 +16,17 @@ Author:
Notes:
--*/
#include"arith_rewriter.h"
#include"arith_rewriter_params.hpp"
#include"poly_rewriter_def.h"
#include"algebraic_numbers.h"
#include"ast_pp.h"
#include "ast/rewriter/arith_rewriter.h"
#include "ast/rewriter/arith_rewriter_params.hpp"
#include "ast/rewriter/poly_rewriter_def.h"
#include "math/polynomial/algebraic_numbers.h"
#include "ast/ast_pp.h"
void arith_rewriter::updt_local_params(params_ref const & _p) {
arith_rewriter_params p(_p);
m_arith_lhs = p.arith_lhs();
m_arith_ineq_lhs = p.arith_ineq_lhs();
m_gcd_rounding = p.gcd_rounding();
m_eq2ineq = p.eq2ineq();
m_elim_to_real = p.elim_to_real();
m_push_to_real = p.push_to_real();
m_anum_simp = p.algebraic_number_evaluator();
@ -35,6 +35,7 @@ void arith_rewriter::updt_local_params(params_ref const & _p) {
m_mul2power = p.mul_to_power();
m_elim_rem = p.elim_rem();
m_expand_tan = p.expand_tan();
m_eq2ineq = p.eq2ineq();
set_sort_sums(p.sort_sums());
}
@ -370,8 +371,8 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
if ((is_zero(arg1) && is_reduce_power_target(arg2, kind == EQ)) ||
(is_zero(arg2) && is_reduce_power_target(arg1, kind == EQ)))
return reduce_power(arg1, arg2, kind, result);
br_status st = cancel_monomials(arg1, arg2, m_arith_lhs, new_arg1, new_arg2);
TRACE("mk_le_bug", tout << "st: " << st << "\n";);
br_status st = cancel_monomials(arg1, arg2, m_arith_ineq_lhs || m_arith_lhs, new_arg1, new_arg2);
TRACE("mk_le_bug", tout << "st: " << st << " " << new_arg1 << " " << new_arg2 << "\n";);
if (st != BR_FAILED) {
arg1 = new_arg1;
arg2 = new_arg2;
@ -454,7 +455,16 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
st = BR_DONE;
}
}
if (st == BR_DONE && arg1 == orig_arg1 && arg2 == orig_arg2) {
if ((m_arith_lhs || m_arith_ineq_lhs) && is_numeral(arg2, a2) && is_neg_poly(arg1, new_arg1)) {
a2.neg();
new_arg2 = m_util.mk_numeral(a2, m_util.is_int(new_arg1));
switch (kind) {
case LE: result = m_util.mk_ge(new_arg1, new_arg2); return BR_DONE;
case GE: result = m_util.mk_le(new_arg1, new_arg2); return BR_DONE;
case EQ: result = m_util.mk_eq(new_arg1, new_arg2); return BR_DONE;
}
}
else if (st == BR_DONE && arg1 == orig_arg1 && arg2 == orig_arg2) {
// Nothing new; return BR_FAILED to avoid rewriting loops.
return BR_FAILED;
}
@ -486,12 +496,69 @@ br_status arith_rewriter::mk_gt_core(expr * arg1, expr * arg2, expr_ref & result
return BR_REWRITE2;
}
bool arith_rewriter::is_arith_term(expr * n) const {
return n->get_kind() == AST_APP && to_app(n)->get_family_id() == get_fid();
}
br_status arith_rewriter::mk_eq_core(expr * arg1, expr * arg2, expr_ref & result) {
if (m_eq2ineq) {
result = m().mk_and(m_util.mk_le(arg1, arg2), m_util.mk_ge(arg1, arg2));
return BR_REWRITE2;
}
return mk_le_ge_eq_core(arg1, arg2, EQ, result);
if (m_arith_lhs || is_arith_term(arg1) || is_arith_term(arg2)) {
return mk_le_ge_eq_core(arg1, arg2, EQ, result);
}
return BR_FAILED;
}
expr_ref arith_rewriter::neg_monomial(expr* e) const {
expr_ref_vector args(m());
rational a1;
if (is_app(e) & m_util.is_mul(e)) {
if (is_numeral(to_app(e)->get_arg(0), a1)) {
if (!a1.is_minus_one()) {
args.push_back(m_util.mk_numeral(-a1, m_util.is_int(e)));
}
args.append(to_app(e)->get_num_args() - 1, to_app(e)->get_args() + 1);
}
else {
args.push_back(m_util.mk_numeral(rational(-1), m_util.is_int(e)));
args.push_back(e);
}
}
else {
args.push_back(m_util.mk_numeral(rational(-1), m_util.is_int(e)));
args.push_back(e);
}
if (args.size() == 1) {
return expr_ref(args.back(), m());
}
else {
return expr_ref(m_util.mk_mul(args.size(), args.c_ptr()), m());
}
}
bool arith_rewriter::is_neg_poly(expr* t, expr_ref& neg) const {
rational r;
if (m_util.is_mul(t) && is_numeral(to_app(t)->get_arg(0), r) && r.is_neg()) {
neg = neg_monomial(t);
return true;
}
if (!m_util.is_add(t)) {
return false;
}
expr * t2 = to_app(t)->get_arg(0);
if (m_util.is_mul(t2) && is_numeral(to_app(t2)->get_arg(0), r) && r.is_neg()) {
expr_ref_vector args1(m());
for (expr* e1 : *to_app(t)) {
args1.push_back(neg_monomial(e1));
}
neg = m_util.mk_add(args1.size(), args1.c_ptr());
return true;
}
return false;
}
bool arith_rewriter::is_anum_simp_target(unsigned num_args, expr * const * args) {
@ -680,8 +747,7 @@ br_status arith_rewriter::mk_div_core(expr * arg1, expr * arg2, expr_ref & resul
if (m_util.is_numeral(arg2, v2, is_int)) {
SASSERT(!is_int);
if (v2.is_zero()) {
result = m_util.mk_div0(arg1);
return BR_REWRITE1;
return BR_FAILED;
}
else if (m_util.is_numeral(arg1, v1, is_int)) {
result = m_util.mk_numeral(v1/v2, false);
@ -734,10 +800,6 @@ br_status arith_rewriter::mk_idiv_core(expr * arg1, expr * arg2, expr_ref & resu
result = m_util.mk_numeral(div(v1, v2), is_int);
return BR_DONE;
}
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_zero()) {
result = m_util.mk_idiv0(arg1);
return BR_REWRITE1;
}
expr_ref quot(m());
if (divides(arg1, arg2, quot)) {
result = m_util.mk_mul(quot, m_util.mk_idiv(arg1, arg1));
@ -800,6 +862,13 @@ br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & resul
return BR_DONE;
}
if (arg1 == arg2 && !m_util.is_numeral(arg2)) {
expr_ref zero(m_util.mk_int(0), m()), abs(m());
mk_abs_core(arg2, abs);
result = m().mk_ite(m().mk_eq(arg2, zero), m_util.mk_mod(zero, zero), abs);
return BR_DONE;
}
// mod is idempotent on non-zero modulus.
expr* t1, *t2;
if (m_util.is_mod(arg1, t1, t2) && t2 == arg2 && m_util.is_numeral(arg2, v2, is_int) && is_int && !v2.is_zero()) {