3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 13:58:45 +00:00

adding bdd

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-10-13 18:03:35 -07:00
parent 4f7147dd78
commit 64ea473bc7
4 changed files with 432 additions and 0 deletions

View file

@ -3,6 +3,7 @@ z3_add_component(sat
ba_solver.cpp
dimacs.cpp
sat_asymm_branch.cpp
sat_bdd.cpp
sat_clause.cpp
sat_clause_set.cpp
sat_clause_use_list.cpp

260
src/sat/sat_bdd.cpp Normal file
View file

@ -0,0 +1,260 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_bdd.cpp
Abstract:
Simple BDD package modeled after BuDDy, which is modeled after CUDD.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-13
Revision History:
--*/
#include "sat/sat_bdd.h"
namespace sat {
bdd_manager::bdd_manager(unsigned num_vars, unsigned cache_size) {
for (BDD a = 0; a < 2; ++a) {
for (BDD b = 0; b < 2; ++b) {
for (unsigned op = bdd_and_op; op < bdd_no_op; ++op) {
unsigned index = a + 2*b + 4*op;
m_apply_const.reserve(index+1);
m_apply_const[index] = apply_const(a, b, static_cast<bdd_op>(op));
}
}
}
// add two dummy nodes for true_bdd and false_bdd
m_nodes.push_back(bdd_node(0,0,0));
m_nodes.push_back(bdd_node(0,0,0));
m_nodes[0].m_refcount = max_rc;
m_nodes[1].m_refcount = max_rc;
// add variables
for (unsigned i = 0; i < num_vars; ++i) {
m_var2bdd.push_back(make_node(i, false_bdd, true_bdd));
m_var2bdd.push_back(make_node(i, true_bdd, false_bdd));
m_nodes[m_var2bdd[2*i]].m_refcount = max_rc;
m_nodes[m_var2bdd[2*i+1]].m_refcount = max_rc;
m_var2level.push_back(i);
m_level2var.push_back(i);
}
m_spare_entry = nullptr;
}
bdd_manager::BDD bdd_manager::apply_const(BDD a, BDD b, bdd_op op) {
switch (op) {
case bdd_and_op:
return (a == 1 && b == 1) ? 1 : 0;
case bdd_or_op:
return (a == 1 || b == 1) ? 1 : 0;
case bdd_iff_op:
return (a == b) ? 1 : 0;
default:
UNREACHABLE();
return 0;
}
}
bdd_manager::BDD bdd_manager::apply(BDD arg1, BDD arg2, bdd_op op) {
return apply_rec(arg1, arg2, op);
}
bdd_manager::BDD bdd_manager::apply_rec(BDD a, BDD b, bdd_op op) {
switch (op) {
case bdd_and_op:
if (a == b) return a;
if (is_false(a) || is_false(b)) return false_bdd;
if (is_true(a)) return b;
if (is_true(b)) return a;
break;
case bdd_or_op:
if (a == b) return a;
if (is_false(a)) return b;
if (is_false(b)) return a;
if (is_true(a) || is_true(b)) return true_bdd;
break;
case bdd_iff_op:
if (a == b) return true_bdd;
if (is_true(a)) return b;
if (is_true(b)) return a;
break;
default:
UNREACHABLE();
break;
}
if (is_const(a) && is_const(b)) {
return m_apply_const[a + 2*b + 4*op];
}
cache_entry * e1 = pop_entry(hash2(a, b, op));
cache_entry const* e2 = m_cache.insert_if_not_there(e1);
if (e2->m_op == op && e2->m_bdd1 == a && e2->m_bdd2 == b) {
push_entry(e1);
return e2->m_result;
}
BDD r;
if (level(a) == level(b)) {
push(apply_rec(lo(a), lo(b), op));
push(apply_rec(hi(a), hi(b), op));
r = make_node(level(a), read(2), read(1));
}
else if (level(a) < level(b)) {
push(apply_rec(lo(a), b, op));
push(apply_rec(hi(a), b, op));
r = make_node(level(a), read(2), read(1));
}
else {
push(apply_rec(a, lo(b), op));
push(apply_rec(a, hi(b), op));
r = make_node(level(b), read(2), read(1));
}
e1->m_result = r;
e1->m_bdd1 = a;
e1->m_bdd2 = b;
e1->m_op = op;
return r;
}
void bdd_manager::push(BDD b) {
m_bdd_stack.push_back(b);
}
void bdd_manager::pop(unsigned num_scopes) {
m_bdd_stack.shrink(m_bdd_stack.size() - num_scopes);
}
bdd_manager::BDD bdd_manager::read(unsigned index) {
return m_bdd_stack[m_bdd_stack.size() - index];
}
bdd_manager::cache_entry* bdd_manager::pop_entry(unsigned hash) {
cache_entry* result = 0;
if (m_spare_entry) {
result = m_spare_entry;
m_spare_entry = 0;
result->m_hash = hash;
}
else {
void * mem = m_alloc.allocate(sizeof(cache_entry));
result = new (mem) cache_entry(hash);
}
return result;
}
void bdd_manager::push_entry(cache_entry* e) {
SASSERT(!m_spare_entry);
m_spare_entry = e;
}
bdd_manager::BDD bdd_manager::make_node(unsigned level, BDD l, BDD r) {
if (l == r) {
return l;
}
#if 0
// TBD
unsigned hash = node_hash(level, l, r);
bdd result = m_
#endif
int sz = m_nodes.size();
m_nodes.push_back(bdd_node(level, l, r));
return sz;
}
#if 0
void bdd_manager::bdd_reorder(int) {
}
#endif
bdd bdd_manager::mk_var(unsigned i) {
return bdd(m_var2bdd[2*i+1], this);
}
bdd bdd_manager::mk_nvar(unsigned i) {
return bdd(m_var2bdd[2*i+1], this);
}
unsigned bdd_manager::hash2(BDD a, BDD b, bdd_op op) const {
return mk_mix(a, b, op);
}
bdd bdd_manager::mk_not(bdd b) {
return bdd(mk_not_rec(b.root), this);
}
bdd_manager::BDD bdd_manager::mk_not_rec(BDD b) {
if (is_true(b)) return false_bdd;
if (is_false(b)) return true_bdd;
cache_entry* e1 = pop_entry(hash1(b, bdd_not_op));
cache_entry const* e2 = m_cache.insert_if_not_there(e1);
if (e2->m_bdd1 == b && e2->m_op == bdd_not_op) {
push_entry(e1);
return e2->m_result;
}
push(mk_not_rec(lo(b)));
push(mk_not_rec(hi(b)));
BDD r = make_node(level(b), read(2), read(1));
pop(2);
e1->m_bdd1 = b;
e1->m_bdd2 = b;
e1->m_op = bdd_not_op;
e1->m_result = r;
return r;
}
#if 0
bdd bdd_manager::mk_exists(bdd vars, bdd b) {
}
bdd bdd_manager::mk_forall(bdd vars, bdd b) {
}
bdd bdd_manager::mk_ite(bdd c, bdd t, bdd e) {
}
double bdd_manager::path_count(bdd b) {
}
#endif
std::ostream& bdd_manager::display(std::ostream& out, bdd b) {
return out;
}
std::ostream& bdd_manager::display(std::ostream& out) {
return out;
}
bdd::bdd(int root, bdd_manager* m):
root(root), m(m) {
m->inc_ref(root);
}
bdd::bdd(bdd & other): root(other.root), m(other.m) { m->inc_ref(root); }
bdd::~bdd() {
m->dec_ref(root);
}
#if 0
#endif
}

170
src/sat/sat_bdd.h Normal file
View file

@ -0,0 +1,170 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_bdd
Abstract:
Simple BDD package modeled after BuDDy, which is modeled after CUDD.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-13
Revision History:
--*/
#ifndef SAT_BDD_H_
#define SAT_BDD_H_
#include "util/vector.h"
#include "util/map.h"
#include "util/small_object_allocator.h"
namespace sat {
struct bdd_pair {
int* m_bdd;
int m_last;
int m_id;
bdd_pair* m_next;
};
class bdd_manager;
class bdd {
friend class bdd_manager;
int root;
bdd_manager* m;
bdd(int root, bdd_manager* m);
public:
bdd(bdd & other);
~bdd();
// bdd operator!() { return m->mk_not(*this); }
};
class bdd_manager {
friend bdd;
typedef int BDD;
enum bdd_op {
bdd_and_op = 0,
bdd_or_op,
bdd_iff_op,
bdd_not_op,
bdd_no_op
};
struct bdd_node {
bdd_node(unsigned level, int lo, int hi):
m_refcount(0),
m_level(level),
m_lo(lo),
m_hi(hi)
{}
unsigned m_refcount : 10;
unsigned m_level : 22;
int m_lo;
int m_hi;
//unsigned m_hash;
//unsigned m_next;
};
struct cache_entry {
cache_entry(unsigned hash):
m_bdd1(0),
m_bdd2(0),
m_op(bdd_no_op),
m_result(0),
m_hash(hash)
{}
BDD m_bdd1;
BDD m_bdd2;
bdd_op m_op;
BDD m_result;
unsigned m_hash;
};
struct hash_entry {
unsigned operator()(cache_entry* e) const { return e->m_hash; }
};
struct eq_entry {
bool operator()(cache_entry * a, cache_entry * b) const {
return a->m_hash == b->m_hash;
}
};
svector<bdd_node> m_nodes;
ptr_hashtable<cache_entry, hash_entry, eq_entry> m_cache;
unsigned_vector m_apply_const;
svector<BDD> m_bdd_stack;
cache_entry* m_spare_entry;
svector<BDD> m_var2bdd;
unsigned_vector m_var2level, m_level2var;
small_object_allocator m_alloc;
BDD make_node(unsigned level, BDD l, BDD r);
BDD apply_const(BDD a, BDD b, bdd_op op);
BDD apply(BDD arg1, BDD arg2, bdd_op op);
BDD apply_rec(BDD arg1, BDD arg2, bdd_op op);
void push(BDD b);
void pop(unsigned num_scopes);
BDD read(unsigned index);
cache_entry* pop_entry(unsigned hash);
void push_entry(cache_entry* e);
// void bdd_reorder(int);
BDD mk_not_rec(BDD b);
unsigned hash1(BDD b, bdd_op op) const { return hash2(b, b, op); }
unsigned hash2(BDD a, BDD b, bdd_op op) const;
unsigned hash3(BDD a, BDD b, BDD c, bdd_op op) const;
static const BDD false_bdd = 0;
static const BDD true_bdd = 1;
static const unsigned max_rc = (1 << 10) - 1;
inline bool is_true(BDD b) const { return b == true_bdd; }
inline bool is_false(BDD b) const { return b == false_bdd; }
inline bool is_const(BDD b) const { return 0 <= b && b <= 1; }
unsigned level(BDD b) const { return m_nodes[b].m_level; }
BDD lo(BDD b) const { return m_nodes[b].m_lo; }
BDD hi(BDD b) const { return m_nodes[b].m_hi; }
void inc_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount++; }
void dec_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc && m_nodes[b].m_refcount > 0) m_nodes[b].m_refcount--; }
BDD mk_true() { return 1; }
BDD mk_false() { return 0; }
public:
bdd_manager(unsigned nodes, unsigned cache_size);
bdd mk_var(unsigned i);
bdd mk_nvar(unsigned i);
bdd mk_not(bdd b);
bdd mk_exist(bdd vars, bdd b);
bdd mk_forall(bdd vars, bdd b);
bdd mk_and(bdd a, bdd b) { return bdd(apply(a.root, b.root, bdd_and_op), this); }
bdd mk_or(bdd a, bdd b) { return bdd(apply(a.root, b.root, bdd_or_op), this); }
bdd mk_iff(bdd a, bdd b) { return bdd(apply(a.root, b.root, bdd_iff_op), this); }
bdd mk_ite(bdd c, bdd t, bdd e);
double path_count(bdd b);
std::ostream& display(std::ostream& out, bdd b);
std::ostream& display(std::ostream& out);
};
}
#endif

View file

@ -39,6 +39,7 @@ def_module_params('sat',
('lookahead.cube.fraction', DOUBLE, 0.4, 'adaptive fraction to create lookahead cubes. Used when lookahead_cube is true'),
('lookahead.cube.cutoff', UINT, 0, 'cut-off depth to create cubes. Only enabled when non-zero. Used when lookahead_cube is true.'),
('lookahead_search', BOOL, False, 'use lookahead solver'),
('lookahead.preselect', BOOL, False, 'use pre-selection of subset of variables for branching'),
('lookahead_simplify', BOOL, False, 'use lookahead solver during simplification'),
('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu'),
('dimacs.display', BOOL, False, 'display SAT instance in DIMACS format and return unknown instead of solving'),