mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	adding proof hint output
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									eb10ab1633
								
							
						
					
					
						commit
						6485808b49
					
				
					 6 changed files with 191 additions and 137 deletions
				
			
		|  | @ -24,6 +24,11 @@ Revision History: | ||||||
| #include "ast/array_decl_plugin.h" | #include "ast/array_decl_plugin.h" | ||||||
| #include "ast/rewriter/finite_set_axioms.h" | #include "ast/rewriter/finite_set_axioms.h" | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
|  | std::ostream& operator<<(std::ostream& out, theory_axiom const& ax) { | ||||||
|  |     return out << "axiom"; | ||||||
|  | } | ||||||
|  | 
 | ||||||
| // a ~ set.empty => not (x in a)
 | // a ~ set.empty => not (x in a)
 | ||||||
| // x is an element, generate axiom that x is not in any empty set of x's type
 | // x is an element, generate axiom that x is not in any empty set of x's type
 | ||||||
| void finite_set_axioms::in_empty_axiom(expr *x) { | void finite_set_axioms::in_empty_axiom(expr *x) { | ||||||
|  | @ -33,9 +38,9 @@ void finite_set_axioms::in_empty_axiom(expr *x) { | ||||||
|     expr_ref empty_set(u.mk_empty(elem_sort), m); |     expr_ref empty_set(u.mk_empty(elem_sort), m); | ||||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m); |     expr_ref x_in_empty(u.mk_in(x, empty_set), m); | ||||||
|      |      | ||||||
|     expr_ref_vector clause(m); |     theory_axiom ax(m, "finite-set", "in-empty"); | ||||||
|     clause.push_back(m.mk_not(x_in_empty)); |     ax.clause.push_back(m.mk_not(x_in_empty)); | ||||||
|     m_add_clause(clause); |     m_add_clause(ax); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.union(b, c) 
 | // a := set.union(b, c) 
 | ||||||
|  | @ -45,29 +50,28 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | ||||||
|     if (!u.is_union(a, b, c)) |     if (!u.is_union(a, b, c)) | ||||||
|         return; |         return; | ||||||
| 
 | 
 | ||||||
|     expr_ref_vector clause(m); |     theory_axiom ax(m, "finite-set", "in-union"); | ||||||
|     expr_ref x_in_a(u.mk_in(x, a), m); |     expr_ref x_in_a(u.mk_in(x, a), m); | ||||||
|     expr_ref x_in_b(u.mk_in(x, b), m); |     expr_ref x_in_b(u.mk_in(x, b), m); | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b) or (x in c)
 |     // (x in a) => (x in b) or (x in c)
 | ||||||
|     expr_ref_vector clause1(m); |     ax.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause1.push_back(m.mk_not(x_in_a)); |     ax.clause.push_back(x_in_b); | ||||||
|     clause1.push_back(x_in_b); |     ax.clause.push_back(x_in_c); | ||||||
|     clause1.push_back(x_in_c); |     m_add_clause(ax); | ||||||
|     m_add_clause(clause1); |  | ||||||
| 
 | 
 | ||||||
|     // (x in b) => (x in a)
 |     // (x in b) => (x in a)
 | ||||||
|     expr_ref_vector clause2(m); |     theory_axiom ax2(m, "finite-set", "in-union"); | ||||||
|     clause2.push_back(m.mk_not(x_in_b)); |     ax2.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     clause2.push_back(x_in_a); |     ax2.clause.push_back(x_in_a); | ||||||
|     m_add_clause(clause2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in c) => (x in a)
 |     // (x in c) => (x in a)
 | ||||||
|     expr_ref_vector clause3(m); |     theory_axiom ax3(m, "finite-set", "in-union"); | ||||||
|     clause3.push_back(m.mk_not(x_in_c)); |     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||||
|     clause3.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|     m_add_clause(clause3); |     m_add_clause(ax3); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.intersect(b, c)
 | // a := set.intersect(b, c)
 | ||||||
|  | @ -82,23 +86,23 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     expr_ref_vector clause1(m); |     theory_axiom ax1(m, "finite-set", "in-intersect"); | ||||||
|     clause1.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause1.push_back(x_in_b); |     ax1.clause.push_back(x_in_b); | ||||||
|     m_add_clause(clause1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     // (x in a) => (x in c)
 |     // (x in a) => (x in c)
 | ||||||
|     expr_ref_vector clause2(m); |     theory_axiom ax2(m, "finite-set", "in-intersect"); | ||||||
|     clause2.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause2.push_back(x_in_c); |     ax2.clause.push_back(x_in_c); | ||||||
|     m_add_clause(clause2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in b) and (x in c) => (x in a)
 |     // (x in b) and (x in c) => (x in a)
 | ||||||
|     expr_ref_vector clause3(m); |     theory_axiom ax3(m, "finite-set", "in-intersect"); | ||||||
|     clause3.push_back(m.mk_not(x_in_b)); |     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     clause3.push_back(m.mk_not(x_in_c)); |     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||||
|     clause3.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|     m_add_clause(clause3); |     m_add_clause(ax3); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.difference(b, c)
 | // a := set.difference(b, c)
 | ||||||
|  | @ -113,23 +117,23 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_in_c(u.mk_in(x, c), m); |     expr_ref x_in_c(u.mk_in(x, c), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     expr_ref_vector clause1(m); |     theory_axiom ax1(m, "finite-set", "in-difference"); | ||||||
|     clause1.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause1.push_back(x_in_b); |     ax1.clause.push_back(x_in_b); | ||||||
|     m_add_clause(clause1); |     m_add_clause(ax1); | ||||||
|      |      | ||||||
|     // (x in a) => not (x in c)
 |     // (x in a) => not (x in c)
 | ||||||
|     expr_ref_vector clause2(m); |     theory_axiom ax2(m, "finite-set", "in-difference"); | ||||||
|     clause2.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause2.push_back(m.mk_not(x_in_c)); |     ax2.clause.push_back(m.mk_not(x_in_c)); | ||||||
|     m_add_clause(clause2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in b) and not (x in c) => (x in a)
 |     // (x in b) and not (x in c) => (x in a)
 | ||||||
|     expr_ref_vector clause3(m); |     theory_axiom ax3(m, "finite-set", "in-difference"); | ||||||
|     clause3.push_back(m.mk_not(x_in_b)); |     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     clause3.push_back(x_in_c); |     ax3.clause.push_back(x_in_c); | ||||||
|     clause3.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|     m_add_clause(clause3); |     m_add_clause(ax3); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.singleton(b)
 | // a := set.singleton(b)
 | ||||||
|  | @ -141,27 +145,27 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | ||||||
|      |      | ||||||
|     expr_ref x_in_a(u.mk_in(x, a), m); |     expr_ref x_in_a(u.mk_in(x, a), m); | ||||||
| 
 | 
 | ||||||
|  |     theory_axiom ax(m, "finite-set", "in-singleton"); | ||||||
|     if (x == b) { |     if (x == b) { | ||||||
|         // If x and b are syntactically identical, then (x in a) is always true
 |         // If x and b are syntactically identical, then (x in a) is always true
 | ||||||
|         expr_ref_vector clause(m); | 
 | ||||||
|         clause.push_back(x_in_a); |         ax.clause.push_back(x_in_a); | ||||||
|         m_add_clause(clause); |         m_add_clause(ax); | ||||||
|         return; |         return; | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     expr_ref x_eq_b(m.mk_eq(x, b), m); |     expr_ref x_eq_b(m.mk_eq(x, b), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x == b)
 |     // (x in a) => (x == b)
 | ||||||
|     expr_ref_vector clause1(m); |     ax.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause1.push_back(m.mk_not(x_in_a)); |     ax.clause.push_back(x_eq_b); | ||||||
|     clause1.push_back(x_eq_b); |     m_add_clause(ax); | ||||||
|     m_add_clause(clause1); |     ax.clause.reset(); | ||||||
| 
 | 
 | ||||||
|     // (x == b) => (x in a)
 |     // (x == b) => (x in a)
 | ||||||
|     expr_ref_vector clause2(m); |     ax.clause.push_back(m.mk_not(x_eq_b)); | ||||||
|     clause2.push_back(m.mk_not(x_eq_b)); |     ax.clause.push_back(x_in_a); | ||||||
|     clause2.push_back(x_in_a); |     m_add_clause(ax); | ||||||
|     m_add_clause(clause2); |  | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.range(lo, hi)
 | // a := set.range(lo, hi)
 | ||||||
|  | @ -177,23 +181,23 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | ||||||
|     expr_ref x_le_hi(arith.mk_le(x, hi), m); |     expr_ref x_le_hi(arith.mk_le(x, hi), m); | ||||||
|      |      | ||||||
|     // (x in a) => (lo <= x)
 |     // (x in a) => (lo <= x)
 | ||||||
|     expr_ref_vector clause1(m); |     theory_axiom ax1(m, "finite-set", "in-range"); | ||||||
|     clause1.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause1.push_back(lo_le_x); |     ax1.clause.push_back(lo_le_x); | ||||||
|     m_add_clause(clause1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     // (x in a) => (x <= hi)
 |     // (x in a) => (x <= hi)
 | ||||||
|     expr_ref_vector clause2(m); |     theory_axiom ax2(m, "finite-set", "in-range"); | ||||||
|     clause2.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause2.push_back(x_le_hi); |     ax2.clause.push_back(x_le_hi); | ||||||
|     m_add_clause(clause2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (lo <= x) and (x <= hi) => (x in a)
 |     // (lo <= x) and (x <= hi) => (x in a)
 | ||||||
|     expr_ref_vector clause3(m); |     theory_axiom ax3(m, "finite-set", "in-range"); | ||||||
|     clause3.push_back(m.mk_not(lo_le_x)); |     ax3.clause.push_back(m.mk_not(lo_le_x)); | ||||||
|     clause3.push_back(m.mk_not(x_le_hi)); |     ax3.clause.push_back(m.mk_not(x_le_hi)); | ||||||
|     clause3.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|     m_add_clause(clause3); |     m_add_clause(ax3); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.map(f, b)
 | // a := set.map(f, b)
 | ||||||
|  | @ -224,10 +228,10 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | ||||||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); |     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||||
|      |      | ||||||
|     // (x in b) => f(x) in a
 |     // (x in b) => f(x) in a
 | ||||||
|     expr_ref_vector clause(m); |     theory_axiom ax(m, "finite-set", "in-map-image"); | ||||||
|     clause.push_back(m.mk_not(x_in_b)); |     ax.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     clause.push_back(fx_in_a); |     ax.clause.push_back(fx_in_a); | ||||||
|     m_add_clause(clause); |     m_add_clause(ax); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.filter(p, b)
 | // a := set.filter(p, b)
 | ||||||
|  | @ -245,23 +249,23 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | ||||||
|     expr_ref px(autil.mk_select(p, x), m); |     expr_ref px(autil.mk_select(p, x), m); | ||||||
|      |      | ||||||
|     // (x in a) => (x in b)
 |     // (x in a) => (x in b)
 | ||||||
|     expr_ref_vector clause1(m); |     theory_axiom ax1(m, "finite-set", "in-filter"); | ||||||
|     clause1.push_back(m.mk_not(x_in_a)); |     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause1.push_back(x_in_b); |     ax1.clause.push_back(x_in_b); | ||||||
|     m_add_clause(clause1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     // (x in a) => p(x)
 |     // (x in a) => p(x)
 | ||||||
|     expr_ref_vector clause2(m); |     theory_axiom ax2(m, "finite-set", "in-filter"); | ||||||
|     clause2.push_back(m.mk_not(x_in_a)); |     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||||
|     clause2.push_back(px); |     ax2.clause.push_back(px); | ||||||
|     m_add_clause(clause2); |     m_add_clause(ax2); | ||||||
| 
 | 
 | ||||||
|     // (x in b) and p(x) => (x in a)
 |     // (x in b) and p(x) => (x in a)
 | ||||||
|     expr_ref_vector clause3(m); |     theory_axiom ax3(m, "finite-set", "in-filter"); | ||||||
|     clause3.push_back(m.mk_not(x_in_b)); |     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||||
|     clause3.push_back(m.mk_not(px)); |     ax3.clause.push_back(m.mk_not(px)); | ||||||
|     clause3.push_back(x_in_a); |     ax3.clause.push_back(x_in_a); | ||||||
|     m_add_clause(clause3); |     m_add_clause(ax3); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| // a := set.singleton(b)
 | // a := set.singleton(b)
 | ||||||
|  | @ -276,9 +280,9 @@ void finite_set_axioms::size_singleton_axiom(expr *a) { | ||||||
|     expr_ref one(arith.mk_int(1), m); |     expr_ref one(arith.mk_int(1), m); | ||||||
|     expr_ref eq(m.mk_eq(size_a, one), m); |     expr_ref eq(m.mk_eq(size_a, one), m); | ||||||
| 
 | 
 | ||||||
|     expr_ref_vector clause(m); |     theory_axiom ax(m, "finite-set", "size-singleton"); | ||||||
|     clause.push_back(eq); |     ax.clause.push_back(eq); | ||||||
|     m_add_clause(clause); |     m_add_clause(ax); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| void finite_set_axioms::subset_axiom(expr* a) { | void finite_set_axioms::subset_axiom(expr* a) { | ||||||
|  | @ -289,15 +293,15 @@ void finite_set_axioms::subset_axiom(expr* a) { | ||||||
|     expr_ref intersect_bc(u.mk_intersect(b, c), m); |     expr_ref intersect_bc(u.mk_intersect(b, c), m); | ||||||
|     expr_ref eq(m.mk_eq(intersect_bc, b), m); |     expr_ref eq(m.mk_eq(intersect_bc, b), m); | ||||||
| 
 | 
 | ||||||
|     expr_ref_vector clause1(m); |     theory_axiom ax1(m, "finite-set", "subset"); | ||||||
|     clause1.push_back(m.mk_not(a)); |     ax1.clause.push_back(m.mk_not(a)); | ||||||
|     clause1.push_back(eq); |     ax1.clause.push_back(eq); | ||||||
|     m_add_clause(clause1); |     m_add_clause(ax1); | ||||||
| 
 | 
 | ||||||
|     expr_ref_vector clause2(m); |     theory_axiom ax2(m, "finite-set", "subset"); | ||||||
|     clause2.push_back(a); |     ax2.clause.push_back(a); | ||||||
|     clause2.push_back(m.mk_not(eq)); |     ax2.clause.push_back(m.mk_not(eq)); | ||||||
|     m_add_clause(clause2); |     m_add_clause(ax2); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | ||||||
|  | @ -309,8 +313,15 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | ||||||
|     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); |     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); | ||||||
|      |      | ||||||
|     // (a != b) => (x in diff_ab != x in diff_ba)
 |     // (a != b) => (x in diff_ab != x in diff_ba)
 | ||||||
|     expr_ref_vector clause(m); |     theory_axiom ax(m, "finite-set", "extensionality"); | ||||||
|     clause.push_back(a_eq_b); |     ax.clause.push_back(a_eq_b); | ||||||
|     clause.push_back(m.mk_not(m.mk_iff(diff_in_a, diff_in_b))); |     ax.clause.push_back(m.mk_not(diff_in_a)); | ||||||
|     m_add_clause(clause);    |     ax.clause.push_back(m.mk_not(diff_in_b)); | ||||||
|  |     m_add_clause(ax); | ||||||
|  | 
 | ||||||
|  |     theory_axiom ax2(m, "finite-set", "extensionality"); | ||||||
|  |     ax2.clause.push_back(m.mk_not(a_eq_b)); | ||||||
|  |     ax2.clause.push_back(diff_in_a); | ||||||
|  |     ax2.clause.push_back(diff_in_b); | ||||||
|  |     m_add_clause(ax2); | ||||||
| } | } | ||||||
|  | @ -12,17 +12,39 @@ Abstract: | ||||||
|         |         | ||||||
| --*/ | --*/ | ||||||
| 
 | 
 | ||||||
|  | struct theory_axiom { | ||||||
|  |     expr_ref_vector   clause; | ||||||
|  |     vector<parameter> params; | ||||||
|  |     unsigned          weight = 0; // can be used to prioritize instantiation of axioms
 | ||||||
|  |     theory_axiom(ast_manager& m, symbol const& th): clause(m) { | ||||||
|  |         params.push_back(parameter(th)); | ||||||
|  |     } | ||||||
|  |     theory_axiom(ast_manager &m, symbol const &th, symbol const& rule) : clause(m) { | ||||||
|  |         params.push_back(parameter(th)); | ||||||
|  |         params.push_back(parameter(rule)); | ||||||
|  |     } | ||||||
|  |     theory_axiom(ast_manager &m, char const *th, char const *rule) : clause(m) { | ||||||
|  |         params.push_back(parameter(symbol(th))); | ||||||
|  |         params.push_back(parameter(symbol(rule))); | ||||||
|  |     } | ||||||
|  |     theory_axiom(ast_manager &m) : clause(m) { | ||||||
|  |     } | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | std::ostream &operator<<(std::ostream &out, theory_axiom const &ax); | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
| class finite_set_axioms { | class finite_set_axioms { | ||||||
|     ast_manager&    m; |     ast_manager&    m; | ||||||
|     finite_set_util u; |     finite_set_util u; | ||||||
| 
 | 
 | ||||||
|     std::function<void(expr_ref_vector const &)> m_add_clause; |     std::function<void(theory_axiom const &)> m_add_clause; | ||||||
| 
 | 
 | ||||||
| public: | public: | ||||||
| 
 | 
 | ||||||
|     finite_set_axioms(ast_manager &m) : m(m), u(m) {} |     finite_set_axioms(ast_manager &m) : m(m), u(m) {} | ||||||
| 
 | 
 | ||||||
|     void set_add_clause(std::function<void(expr_ref_vector const &)> &ac) { |     void set_add_clause(std::function<void(theory_axiom const &)> &ac) { | ||||||
|         m_add_clause = ac; |         m_add_clause = ac; | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -158,8 +158,10 @@ namespace smt { | ||||||
|         for (literal l : ante) |         for (literal l : ante) | ||||||
|             m_lits.push_back(ctx.literal2expr(~l)); |             m_lits.push_back(ctx.literal2expr(~l)); | ||||||
|         m_lits.push_back(ctx.literal2expr(lit)); |         m_lits.push_back(ctx.literal2expr(lit)); | ||||||
|         proof_ref pr(m.mk_app(symbol("smt"), 0, nullptr, m.mk_proof_sort()), m); |         auto st = clause_proof::status::th_lemma; | ||||||
|         update(clause_proof::status::th_lemma, m_lits, pr); |         auto pr = justification2proof(st, &const_cast<justification &>(jst)); | ||||||
|  |         // proof_ref pr(m.mk_app(symbol("smt"), 0, nullptr, m.mk_proof_sort()), m);
 | ||||||
|  |         update(st, m_lits, pr); | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     void clause_proof::del(clause& c) { |     void clause_proof::del(clause& c) { | ||||||
|  |  | ||||||
|  | @ -351,8 +351,9 @@ namespace smt { | ||||||
| 
 | 
 | ||||||
|     proof * ext_theory_propagation_justification::mk_proof(conflict_resolution & cr) { |     proof * ext_theory_propagation_justification::mk_proof(conflict_resolution & cr) { | ||||||
|         ptr_buffer<proof> prs; |         ptr_buffer<proof> prs; | ||||||
|         if (!antecedent2proof(cr, prs)) |         if (!antecedent2proof(cr, prs)) { | ||||||
|             return nullptr; |             return nullptr; | ||||||
|  |         } | ||||||
|         context & ctx = cr.get_context(); |         context & ctx = cr.get_context(); | ||||||
|         ast_manager & m = cr.get_manager(); |         ast_manager & m = cr.get_manager(); | ||||||
|         expr_ref fact(m); |         expr_ref fact(m); | ||||||
|  |  | ||||||
|  | @ -29,9 +29,9 @@ namespace smt { | ||||||
|         m_axioms(m), m_find(*this) |         m_axioms(m), m_find(*this) | ||||||
|     { |     { | ||||||
|         // Setup the add_clause callback for axioms
 |         // Setup the add_clause callback for axioms
 | ||||||
|         std::function<void(expr_ref_vector const &)> add_clause_fn =  |         std::function<void(theory_axiom const &)> add_clause_fn = | ||||||
|             [this](expr_ref_vector const& clause) { |             [this](theory_axiom const &ax) { | ||||||
|                 this->add_clause(clause); |                 this->add_clause(ax); | ||||||
|             }; |             }; | ||||||
|         m_axioms.set_add_clause(add_clause_fn); |         m_axioms.set_add_clause(add_clause_fn); | ||||||
|     } |     } | ||||||
|  | @ -101,7 +101,7 @@ namespace smt { | ||||||
|                 ctx.push_trail(push_back_trail(m_var_data[v]->m_parent_setops)); |                 ctx.push_trail(push_back_trail(m_var_data[v]->m_parent_setops)); | ||||||
|             } |             } | ||||||
|         } |         } | ||||||
|         else if (u.is_map(e) || u.is_select(e)) { |         else if (u.is_map(e) || u.is_filter(e)) { | ||||||
|             NOT_IMPLEMENTED_YET(); |             NOT_IMPLEMENTED_YET(); | ||||||
|         } |         } | ||||||
|         return r; |         return r; | ||||||
|  | @ -322,7 +322,8 @@ namespace smt { | ||||||
|         for (unsigned i = 0; i < m_clauses.watch[idx].size(); ++i) { |         for (unsigned i = 0; i < m_clauses.watch[idx].size(); ++i) { | ||||||
|             TRACE(finite_set, tout << " watch[" << i << "] size: " << m_clauses.watch[i].size() << "\n";); |             TRACE(finite_set, tout << " watch[" << i << "] size: " << m_clauses.watch[i].size() << "\n";); | ||||||
|             auto clause_idx = m_clauses.watch[idx][i]; |             auto clause_idx = m_clauses.watch[idx][i]; | ||||||
|             auto &clause = m_clauses.axioms[clause_idx]; |             auto &ax = m_clauses.axioms[clause_idx]; | ||||||
|  |             auto &clause = ax.clause; | ||||||
|             if (any_of(clause, [&](expr *lit) { return ctx.find_assignment(lit) == l_true; })) { |             if (any_of(clause, [&](expr *lit) { return ctx.find_assignment(lit) == l_true; })) { | ||||||
|                 TRACE(finite_set, tout << "  satisfied\n";); |                 TRACE(finite_set, tout << "  satisfied\n";); | ||||||
|                 m_clauses.watch[idx][j++] = clause_idx; |                 m_clauses.watch[idx][j++] = clause_idx; | ||||||
|  | @ -398,7 +399,8 @@ namespace smt { | ||||||
| 
 | 
 | ||||||
|     void theory_finite_set::activate_clause(unsigned clause_idx) { |     void theory_finite_set::activate_clause(unsigned clause_idx) { | ||||||
|         TRACE(finite_set, tout << "activate_clause: " << clause_idx << "\n";); |         TRACE(finite_set, tout << "activate_clause: " << clause_idx << "\n";); | ||||||
|         auto &clause = m_clauses.axioms[clause_idx]; |         auto &ax = m_clauses.axioms[clause_idx]; | ||||||
|  |         auto &clause = ax.clause; | ||||||
|         if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; })) |         if (any_of(clause, [&](expr *e) { return ctx.find_assignment(e) == l_true; })) | ||||||
|             return; |             return; | ||||||
|         if (clause.size() <= 1) { |         if (clause.size() <= 1) { | ||||||
|  | @ -444,7 +446,8 @@ namespace smt { | ||||||
|             unsigned index; |             unsigned index; | ||||||
|             unwatch_clause(theory_finite_set &th, unsigned index) : th(th), index(index) {} |             unwatch_clause(theory_finite_set &th, unsigned index) : th(th), index(index) {} | ||||||
|             void undo() override { |             void undo() override { | ||||||
|                 auto &clause = th.m_clauses.axioms[index]; |                 auto &ax = th.m_clauses.axioms[index]; | ||||||
|  |                 auto &clause = ax.clause; | ||||||
|                 expr *w1 = clause.get(0); |                 expr *w1 = clause.get(0); | ||||||
|                 expr *w2 = clause.get(1); |                 expr *w2 = clause.get(1); | ||||||
|                 bool w1neg = th.m.is_not(w1, w1); |                 bool w1neg = th.m.is_not(w1, w1); | ||||||
|  | @ -566,10 +569,10 @@ namespace smt { | ||||||
|         }         |         }         | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     void theory_finite_set::add_clause(expr_ref_vector const& clause) { |     void theory_finite_set::add_clause(theory_axiom const& ax) { | ||||||
|         TRACE(finite_set, tout << "add_clause: " << clause << "\n"); |         TRACE(finite_set, tout << "add_clause: " << ax << "\n"); | ||||||
|         ctx.push_trail(push_back_vector(m_clauses.axioms)); |         ctx.push_trail(push_back_vector(m_clauses.axioms)); | ||||||
|         m_clauses.axioms.push_back(clause); |         m_clauses.axioms.push_back(ax); | ||||||
|         m_stats.m_num_axioms_created++; |         m_stats.m_num_axioms_created++; | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|  | @ -689,7 +692,8 @@ namespace smt { | ||||||
|         return false; |         return false; | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|     bool theory_finite_set::assert_clause(expr_ref_vector const &clause) { |     bool theory_finite_set::assert_clause(theory_axiom const &ax) { | ||||||
|  |         auto const &clause = ax.clause; | ||||||
|         expr *unit = nullptr; |         expr *unit = nullptr; | ||||||
|         unsigned undef_count = 0; |         unsigned undef_count = 0; | ||||||
|         for (auto e : clause) { |         for (auto e : clause) { | ||||||
|  | @ -708,14 +712,28 @@ namespace smt { | ||||||
|         if (undef_count == 1) { |         if (undef_count == 1) { | ||||||
|             TRACE(finite_set, tout << " propagate unit: " << mk_pp(unit, m) << "\n" << clause << "\n";); |             TRACE(finite_set, tout << " propagate unit: " << mk_pp(unit, m) << "\n" << clause << "\n";); | ||||||
|             auto lit = mk_literal(unit); |             auto lit = mk_literal(unit); | ||||||
|             literal_vector core; |             literal_vector antecedent; | ||||||
|             for (auto e : clause) { |             for (auto e : clause) { | ||||||
|                 if (e != unit) |                 if (e != unit) | ||||||
|                     core.push_back(~mk_literal(e)); |                     antecedent.push_back(~mk_literal(e)); | ||||||
|             } |             } | ||||||
|             m_stats.m_num_axioms_propagated++; |             m_stats.m_num_axioms_propagated++; | ||||||
|             ctx.assign(lit, ctx.mk_justification( |             enode_pair_vector eqs; | ||||||
|                                 theory_propagation_justification(get_id(), ctx, core.size(), core.data(), lit))); |             auto just = ext_theory_propagation_justification(get_id(), ctx, antecedent.size(), antecedent.data(), eqs.size(), eqs.data(), lit, ax.params.size(), | ||||||
|  |                                                        ax.params.data()); | ||||||
|  |             auto bjust = ctx.mk_justification(just); | ||||||
|  |             if (ctx.clause_proof_active()) { | ||||||
|  |                 // assume all justifications is a non-empty list of symbol parameters
 | ||||||
|  |                 proof_ref pr(m); | ||||||
|  |                 expr_ref_vector args(m); | ||||||
|  |                 for (unsigned i = 1; i < ax.params.size(); ++i)  | ||||||
|  |                     args.push_back(m.mk_app(ax.params[i].get_symbol(), 0, nullptr, m.mk_proof_sort()));                     | ||||||
|  |                 pr = m.mk_app(ax.params[0].get_symbol(), args.size(), args.data(), m.mk_proof_sort()); | ||||||
|  |                 justification_proof_wrapper jp(ctx, pr.get(), false); | ||||||
|  |                 ctx.get_clause_proof().propagate(lit, jp, antecedent); | ||||||
|  |                 jp.del_eh(m); | ||||||
|  |             } | ||||||
|  |             ctx.assign(lit, bjust);                                 | ||||||
|             return true; |             return true; | ||||||
|         } |         } | ||||||
|         bool is_conflict = (undef_count == 0); |         bool is_conflict = (undef_count == 0); | ||||||
|  | @ -727,7 +745,7 @@ namespace smt { | ||||||
|         literal_vector lclause; |         literal_vector lclause; | ||||||
|         for (auto e : clause) |         for (auto e : clause) | ||||||
|             lclause.push_back(mk_literal(e)); |             lclause.push_back(mk_literal(e)); | ||||||
|         ctx.mk_th_axiom(get_id(), lclause); |         ctx.mk_th_axiom(get_id(), lclause, ax.params.size(), ax.params.data()); | ||||||
|         return true; |         return true; | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
|  | @ -107,7 +107,7 @@ namespace smt { | ||||||
|         }; |         }; | ||||||
| 
 | 
 | ||||||
|         struct theory_clauses { |         struct theory_clauses { | ||||||
|             vector<expr_ref_vector> axioms;            // vector of created theory axioms
 |             vector<theory_axiom>    axioms;            // vector of created theory axioms
 | ||||||
|             unsigned                aqhead = 0;        // queue head of created axioms
 |             unsigned                aqhead = 0;        // queue head of created axioms
 | ||||||
|             unsigned_vector         squeue;            // propagation queue of axioms to be added to the solver
 |             unsigned_vector         squeue;            // propagation queue of axioms to be added to the solver
 | ||||||
|             unsigned                sqhead = 0;        // head into propagation queue axioms to be added to solver
 |             unsigned                sqhead = 0;        // head into propagation queue axioms to be added to solver
 | ||||||
|  | @ -172,8 +172,8 @@ namespace smt { | ||||||
| 
 | 
 | ||||||
|         // Helper methods for axiom instantiation
 |         // Helper methods for axiom instantiation
 | ||||||
|         void add_membership_axioms(expr* elem, expr* set); |         void add_membership_axioms(expr* elem, expr* set); | ||||||
|         void add_clause(expr_ref_vector const& clause); |         void add_clause(theory_axiom const& ax); | ||||||
|         bool assert_clause(expr_ref_vector const &clause); |         bool assert_clause(theory_axiom const &ax); | ||||||
|         void activate_clause(unsigned index); |         void activate_clause(unsigned index); | ||||||
|         bool activate_unasserted_clause(); |         bool activate_unasserted_clause(); | ||||||
|         void add_immediate_axioms(app *atom); |         void add_immediate_axioms(app *atom); | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue