mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 11:42:28 +00:00 
			
		
		
		
	adding proof hint output
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
		
							parent
							
								
									eb10ab1633
								
							
						
					
					
						commit
						6485808b49
					
				
					 6 changed files with 191 additions and 137 deletions
				
			
		|  | @ -24,6 +24,11 @@ Revision History: | |||
| #include "ast/array_decl_plugin.h" | ||||
| #include "ast/rewriter/finite_set_axioms.h" | ||||
| 
 | ||||
| 
 | ||||
| std::ostream& operator<<(std::ostream& out, theory_axiom const& ax) { | ||||
|     return out << "axiom"; | ||||
| } | ||||
| 
 | ||||
| // a ~ set.empty => not (x in a)
 | ||||
| // x is an element, generate axiom that x is not in any empty set of x's type
 | ||||
| void finite_set_axioms::in_empty_axiom(expr *x) { | ||||
|  | @ -33,9 +38,9 @@ void finite_set_axioms::in_empty_axiom(expr *x) { | |||
|     expr_ref empty_set(u.mk_empty(elem_sort), m); | ||||
|     expr_ref x_in_empty(u.mk_in(x, empty_set), m); | ||||
|      | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(m.mk_not(x_in_empty)); | ||||
|     m_add_clause(clause); | ||||
|     theory_axiom ax(m, "finite-set", "in-empty"); | ||||
|     ax.clause.push_back(m.mk_not(x_in_empty)); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| // a := set.union(b, c) 
 | ||||
|  | @ -44,30 +49,29 @@ void finite_set_axioms::in_union_axiom(expr *x, expr *a) { | |||
|     expr* b = nullptr, *c = nullptr; | ||||
|     if (!u.is_union(a, b, c)) | ||||
|         return; | ||||
|      | ||||
|     expr_ref_vector clause(m); | ||||
| 
 | ||||
|     theory_axiom ax(m, "finite-set", "in-union"); | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
|     expr_ref x_in_b(u.mk_in(x, b), m); | ||||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b) or (x in c)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     clause1.push_back(x_in_c); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     ax.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax.clause.push_back(x_in_b); | ||||
|     ax.clause.push_back(x_in_c); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     // (x in b) => (x in a)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_b)); | ||||
|     clause2.push_back(x_in_a); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     theory_axiom ax2(m, "finite-set", "in-union"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax2.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in c) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_c)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
|     theory_axiom ax3(m, "finite-set", "in-union"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
| } | ||||
| 
 | ||||
| // a := set.intersect(b, c)
 | ||||
|  | @ -82,23 +86,23 @@ void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) { | |||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     theory_axiom ax1(m, "finite-set", "in-intersect"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in a) => (x in c)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(x_in_c); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     theory_axiom ax2(m, "finite-set", "in-intersect"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(x_in_c); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in b) and (x in c) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_b)); | ||||
|     clause3.push_back(m.mk_not(x_in_c)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
|     theory_axiom ax3(m, "finite-set", "in-intersect"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_c)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
| } | ||||
| 
 | ||||
| // a := set.difference(b, c)
 | ||||
|  | @ -113,23 +117,23 @@ void finite_set_axioms::in_difference_axiom(expr *x, expr *a) { | |||
|     expr_ref x_in_c(u.mk_in(x, c), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     m_add_clause(clause1); | ||||
|     theory_axiom ax1(m, "finite-set", "in-difference"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
|      | ||||
|     // (x in a) => not (x in c)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(m.mk_not(x_in_c)); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     theory_axiom ax2(m, "finite-set", "in-difference"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_c)); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in b) and not (x in c) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_b)); | ||||
|     clause3.push_back(x_in_c); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
|     theory_axiom ax3(m, "finite-set", "in-difference"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3.clause.push_back(x_in_c); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
| } | ||||
| 
 | ||||
| // a := set.singleton(b)
 | ||||
|  | @ -141,27 +145,27 @@ void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) { | |||
|      | ||||
|     expr_ref x_in_a(u.mk_in(x, a), m); | ||||
| 
 | ||||
|     theory_axiom ax(m, "finite-set", "in-singleton"); | ||||
|     if (x == b) { | ||||
|         // If x and b are syntactically identical, then (x in a) is always true
 | ||||
|         expr_ref_vector clause(m); | ||||
|         clause.push_back(x_in_a); | ||||
|         m_add_clause(clause); | ||||
| 
 | ||||
|         ax.clause.push_back(x_in_a); | ||||
|         m_add_clause(ax); | ||||
|         return; | ||||
|     } | ||||
| 
 | ||||
|     expr_ref x_eq_b(m.mk_eq(x, b), m); | ||||
|      | ||||
|     // (x in a) => (x == b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_eq_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     ax.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax.clause.push_back(x_eq_b); | ||||
|     m_add_clause(ax); | ||||
|     ax.clause.reset(); | ||||
| 
 | ||||
|     // (x == b) => (x in a)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_eq_b)); | ||||
|     clause2.push_back(x_in_a); | ||||
|     m_add_clause(clause2); | ||||
|     ax.clause.push_back(m.mk_not(x_eq_b)); | ||||
|     ax.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| // a := set.range(lo, hi)
 | ||||
|  | @ -177,23 +181,23 @@ void finite_set_axioms::in_range_axiom(expr *x, expr *a) { | |||
|     expr_ref x_le_hi(arith.mk_le(x, hi), m); | ||||
|      | ||||
|     // (x in a) => (lo <= x)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(lo_le_x); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     theory_axiom ax1(m, "finite-set", "in-range"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(lo_le_x); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in a) => (x <= hi)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(x_le_hi); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     theory_axiom ax2(m, "finite-set", "in-range"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(x_le_hi); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (lo <= x) and (x <= hi) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(lo_le_x)); | ||||
|     clause3.push_back(m.mk_not(x_le_hi)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
|     theory_axiom ax3(m, "finite-set", "in-range"); | ||||
|     ax3.clause.push_back(m.mk_not(lo_le_x)); | ||||
|     ax3.clause.push_back(m.mk_not(x_le_hi)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
| } | ||||
| 
 | ||||
| // a := set.map(f, b)
 | ||||
|  | @ -224,10 +228,10 @@ void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) { | |||
|     expr_ref fx_in_a(u.mk_in(fx, a), m); | ||||
|      | ||||
|     // (x in b) => f(x) in a
 | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(m.mk_not(x_in_b)); | ||||
|     clause.push_back(fx_in_a); | ||||
|     m_add_clause(clause); | ||||
|     theory_axiom ax(m, "finite-set", "in-map-image"); | ||||
|     ax.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax.clause.push_back(fx_in_a); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| // a := set.filter(p, b)
 | ||||
|  | @ -245,23 +249,23 @@ void finite_set_axioms::in_filter_axiom(expr *x, expr *a) { | |||
|     expr_ref px(autil.mk_select(p, x), m); | ||||
|      | ||||
|     // (x in a) => (x in b)
 | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(x_in_a)); | ||||
|     clause1.push_back(x_in_b); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     theory_axiom ax1(m, "finite-set", "in-filter"); | ||||
|     ax1.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax1.clause.push_back(x_in_b); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     // (x in a) => p(x)
 | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(m.mk_not(x_in_a)); | ||||
|     clause2.push_back(px); | ||||
|     m_add_clause(clause2); | ||||
|      | ||||
|     theory_axiom ax2(m, "finite-set", "in-filter"); | ||||
|     ax2.clause.push_back(m.mk_not(x_in_a)); | ||||
|     ax2.clause.push_back(px); | ||||
|     m_add_clause(ax2); | ||||
| 
 | ||||
|     // (x in b) and p(x) => (x in a)
 | ||||
|     expr_ref_vector clause3(m); | ||||
|     clause3.push_back(m.mk_not(x_in_b)); | ||||
|     clause3.push_back(m.mk_not(px)); | ||||
|     clause3.push_back(x_in_a); | ||||
|     m_add_clause(clause3); | ||||
|     theory_axiom ax3(m, "finite-set", "in-filter"); | ||||
|     ax3.clause.push_back(m.mk_not(x_in_b)); | ||||
|     ax3.clause.push_back(m.mk_not(px)); | ||||
|     ax3.clause.push_back(x_in_a); | ||||
|     m_add_clause(ax3); | ||||
| } | ||||
| 
 | ||||
| // a := set.singleton(b)
 | ||||
|  | @ -275,10 +279,10 @@ void finite_set_axioms::size_singleton_axiom(expr *a) { | |||
|     expr_ref size_a(u.mk_size(a), m); | ||||
|     expr_ref one(arith.mk_int(1), m); | ||||
|     expr_ref eq(m.mk_eq(size_a, one), m); | ||||
|      | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(eq); | ||||
|     m_add_clause(clause); | ||||
| 
 | ||||
|     theory_axiom ax(m, "finite-set", "size-singleton"); | ||||
|     ax.clause.push_back(eq); | ||||
|     m_add_clause(ax); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::subset_axiom(expr* a) { | ||||
|  | @ -288,16 +292,16 @@ void finite_set_axioms::subset_axiom(expr* a) { | |||
|      | ||||
|     expr_ref intersect_bc(u.mk_intersect(b, c), m); | ||||
|     expr_ref eq(m.mk_eq(intersect_bc, b), m); | ||||
|      | ||||
|     expr_ref_vector clause1(m); | ||||
|     clause1.push_back(m.mk_not(a)); | ||||
|     clause1.push_back(eq); | ||||
|     m_add_clause(clause1); | ||||
|      | ||||
|     expr_ref_vector clause2(m); | ||||
|     clause2.push_back(a); | ||||
|     clause2.push_back(m.mk_not(eq)); | ||||
|     m_add_clause(clause2); | ||||
| 
 | ||||
|     theory_axiom ax1(m, "finite-set", "subset"); | ||||
|     ax1.clause.push_back(m.mk_not(a)); | ||||
|     ax1.clause.push_back(eq); | ||||
|     m_add_clause(ax1); | ||||
| 
 | ||||
|     theory_axiom ax2(m, "finite-set", "subset"); | ||||
|     ax2.clause.push_back(a); | ||||
|     ax2.clause.push_back(m.mk_not(eq)); | ||||
|     m_add_clause(ax2); | ||||
| } | ||||
| 
 | ||||
| void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | ||||
|  | @ -309,8 +313,15 @@ void finite_set_axioms::extensionality_axiom(expr *a, expr* b) { | |||
|     expr_ref diff_in_b(u.mk_in(diff_ab, b), m); | ||||
|      | ||||
|     // (a != b) => (x in diff_ab != x in diff_ba)
 | ||||
|     expr_ref_vector clause(m); | ||||
|     clause.push_back(a_eq_b); | ||||
|     clause.push_back(m.mk_not(m.mk_iff(diff_in_a, diff_in_b))); | ||||
|     m_add_clause(clause);    | ||||
|     theory_axiom ax(m, "finite-set", "extensionality"); | ||||
|     ax.clause.push_back(a_eq_b); | ||||
|     ax.clause.push_back(m.mk_not(diff_in_a)); | ||||
|     ax.clause.push_back(m.mk_not(diff_in_b)); | ||||
|     m_add_clause(ax); | ||||
| 
 | ||||
|     theory_axiom ax2(m, "finite-set", "extensionality"); | ||||
|     ax2.clause.push_back(m.mk_not(a_eq_b)); | ||||
|     ax2.clause.push_back(diff_in_a); | ||||
|     ax2.clause.push_back(diff_in_b); | ||||
|     m_add_clause(ax2); | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue