mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 17:45:32 +00:00
optimizations, fixes, TODO items
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
444084f396
commit
6478e789e9
6 changed files with 87 additions and 28 deletions
|
@ -34,6 +34,7 @@ namespace dd {
|
|||
s = mod2_e;
|
||||
m_semantics = s;
|
||||
m_mod2N = rational::power_of_two(power_of_2);
|
||||
m_max_value = m_mod2N - 1;
|
||||
m_power_of_2 = power_of_2;
|
||||
unsigned_vector l2v;
|
||||
for (unsigned i = 0; i < num_vars; ++i) l2v.push_back(i);
|
||||
|
@ -1650,6 +1651,20 @@ namespace dd {
|
|||
return *this;
|
||||
}
|
||||
|
||||
pdd& pdd::operator=(rational const& k) {
|
||||
m.dec_ref(root);
|
||||
root = m.mk_val(k).root;
|
||||
m.inc_ref(root);
|
||||
return *this;
|
||||
}
|
||||
|
||||
rational const& pdd::leading_coefficient() const {
|
||||
pdd p = *this;
|
||||
while (!p.is_val())
|
||||
p = p.hi();
|
||||
return p.val();
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, pdd const& b) { return b.display(out); }
|
||||
|
||||
void pdd_iterator::next() {
|
||||
|
|
|
@ -205,8 +205,9 @@ namespace dd {
|
|||
unsigned_vector m_free_values;
|
||||
rational m_freeze_value;
|
||||
rational m_mod2N;
|
||||
unsigned m_power_of_2 { 0 };
|
||||
unsigned m_gc_generation { 0 }; ///< will be incremented on each GC
|
||||
unsigned m_power_of_2 = 0;
|
||||
rational m_max_value;
|
||||
unsigned m_gc_generation = 0; ///< will be incremented on each GC
|
||||
|
||||
void reset_op_cache();
|
||||
void init_nodes(unsigned_vector const& l2v);
|
||||
|
@ -364,6 +365,8 @@ namespace dd {
|
|||
unsigned num_vars() const { return m_var2pdd.size(); }
|
||||
|
||||
unsigned power_of_2() const { return m_power_of_2; }
|
||||
rational const& max_value() const { return m_max_value; }
|
||||
rational const& two_to_N() const { return m_mod2N; }
|
||||
|
||||
unsigned_vector const& free_vars(pdd const& p);
|
||||
|
||||
|
@ -387,12 +390,14 @@ namespace dd {
|
|||
pdd(pdd && other) noexcept : root(0), m(other.m) { std::swap(root, other.root); }
|
||||
pdd& operator=(pdd const& other);
|
||||
pdd& operator=(unsigned k);
|
||||
pdd& operator=(rational const& k);
|
||||
~pdd() { m.dec_ref(root); }
|
||||
pdd lo() const { return pdd(m.lo(root), m); }
|
||||
pdd hi() const { return pdd(m.hi(root), m); }
|
||||
unsigned index() const { return root; }
|
||||
unsigned var() const { return m.var(root); }
|
||||
rational const& val() const { SASSERT(is_val()); return m.val(root); }
|
||||
rational const& leading_coefficient() const;
|
||||
bool is_val() const { return m.is_val(root); }
|
||||
bool is_one() const { return m.is_one(root); }
|
||||
bool is_zero() const { return m.is_zero(root); }
|
||||
|
@ -472,10 +477,13 @@ namespace dd {
|
|||
|
||||
inline pdd& operator&=(pdd & p, pdd const& q) { p = p & q; return p; }
|
||||
inline pdd& operator^=(pdd & p, pdd const& q) { p = p ^ q; return p; }
|
||||
inline pdd& operator*=(pdd & p, pdd const& q) { p = p * q; return p; }
|
||||
inline pdd& operator|=(pdd & p, pdd const& q) { p = p | q; return p; }
|
||||
inline pdd& operator*=(pdd & p, pdd const& q) { p = p * q; return p; }
|
||||
inline pdd& operator-=(pdd & p, pdd const& q) { p = p - q; return p; }
|
||||
inline pdd& operator+=(pdd & p, pdd const& q) { p = p + q; return p; }
|
||||
inline pdd& operator*=(pdd & p, rational const& q) { p = p * q; return p; }
|
||||
inline pdd& operator-=(pdd & p, rational const& q) { p = p - q; return p; }
|
||||
inline pdd& operator+=(pdd & p, rational const& q) { p = p + q; return p; }
|
||||
|
||||
inline void swap(pdd& p, pdd& q) { p.swap(q); }
|
||||
|
||||
|
|
|
@ -16,9 +16,18 @@ Notes:
|
|||
|
||||
TODO: try a final core reduction step or other core minimization
|
||||
|
||||
TODO: If we have e.g. 4x+y=2 and y=0, then we have a conflict no matter the value of x, so we should drop x=? from the core.
|
||||
(works currently if x is unassigned; for other cases we would need extra info from constraint::is_currently_false)
|
||||
TODO: If we have e.g. 4x+y=2 and y=0, then we have a conflict no matter the value of x, so we should drop x=? from the core.
|
||||
(works currently if x is unassigned; for other cases we would need extra info from constraint::is_currently_false)
|
||||
|
||||
TODO: keep is buggy. The assert
|
||||
SASSERT(premise.is_currently_true(s()) || premise.bvalue(s()) == l_true);
|
||||
does not necessarily hold. A saturation premise could be inserted that is a resolvent that evaluates to false
|
||||
and therefore not a current Boolean literal on the search stack.
|
||||
|
||||
TODO: revert(pvar v) is too weak.
|
||||
It should apply saturation rules currently only available for for propagated values.
|
||||
|
||||
TODO: dependency tracking for constraints evaluating to false should be minimized.
|
||||
--*/
|
||||
|
||||
#include "math/polysat/conflict.h"
|
||||
|
|
|
@ -94,48 +94,47 @@ namespace polysat {
|
|||
void inf_saturate::push_omega_bisect(vector<signed_constraint>& new_constraints, pdd const& x, rational x_max, pdd const& y, rational y_max) {
|
||||
rational x_val, y_val;
|
||||
auto& pddm = x.manager();
|
||||
unsigned bit_size = pddm.power_of_2();
|
||||
rational bound = rational::power_of_two(bit_size);
|
||||
rational bound = pddm.max_value();
|
||||
VERIFY(s().try_eval(x, x_val));
|
||||
VERIFY(s().try_eval(y, y_val));
|
||||
SASSERT(x_val * y_val < bound);
|
||||
SASSERT(x_val * y_val <= bound);
|
||||
|
||||
rational x_lo = x_val, x_hi = x_max, y_lo = y_val, y_hi = y_max;
|
||||
rational two(2);
|
||||
while (x_lo < x_hi || y_lo < y_hi) {
|
||||
rational x_mid = div(x_hi + x_lo, two);
|
||||
rational y_mid = div(y_hi + y_lo, two);
|
||||
if (x_mid * y_mid >= bound)
|
||||
if (x_mid * y_mid > bound)
|
||||
x_hi = x_mid - 1, y_hi = y_mid - 1;
|
||||
else
|
||||
x_lo = x_mid, y_lo = y_mid;
|
||||
}
|
||||
SASSERT(x_hi == x_lo && y_hi == y_lo);
|
||||
SASSERT(x_lo * y_lo < bound);
|
||||
SASSERT((x_lo + 1) * (y_lo + 1) >= bound);
|
||||
if ((x_lo + 1) * y_lo < bound) {
|
||||
SASSERT(x_lo * y_lo <= bound);
|
||||
SASSERT((x_lo + 1) * (y_lo + 1) > bound);
|
||||
if ((x_lo + 1) * y_lo <= bound) {
|
||||
x_hi = x_max;
|
||||
while (x_lo < x_hi) {
|
||||
rational x_mid = div(x_hi + x_lo, two);
|
||||
if (x_mid * y_lo >= bound)
|
||||
if (x_mid * y_lo > bound)
|
||||
x_hi = x_mid - 1;
|
||||
else
|
||||
x_lo = x_mid;
|
||||
}
|
||||
}
|
||||
else if (x_lo * (y_lo + 1) < bound) {
|
||||
else if (x_lo * (y_lo + 1) <= bound) {
|
||||
y_hi = y_max;
|
||||
while (y_lo < y_hi) {
|
||||
rational y_mid = div(y_hi + y_lo, two);
|
||||
if (y_mid * x_lo >= bound)
|
||||
if (y_mid * x_lo > bound)
|
||||
y_hi = y_mid - 1;
|
||||
else
|
||||
y_lo = y_mid;
|
||||
}
|
||||
}
|
||||
SASSERT(x_lo * y_lo < bound);
|
||||
SASSERT((x_lo + 1) * y_lo >= bound);
|
||||
SASSERT(x_lo * (y_lo + 1) >= bound);
|
||||
SASSERT(x_lo * y_lo <= bound);
|
||||
SASSERT((x_lo + 1) * y_lo > bound);
|
||||
SASSERT(x_lo * (y_lo + 1) > bound);
|
||||
|
||||
// inequalities are justified by current assignments to x, y
|
||||
// conflict resolution should be able to pick up this as a valid justification.
|
||||
|
@ -151,17 +150,15 @@ namespace polysat {
|
|||
// then extract premises for a non-worst-case bound.
|
||||
void inf_saturate::push_omega(vector<signed_constraint>& new_constraints, pdd const& x, pdd const& y) {
|
||||
auto& pddm = x.manager();
|
||||
unsigned bit_size = pddm.power_of_2();
|
||||
rational bound = rational::power_of_two(bit_size);
|
||||
rational x_max = bound - 1;
|
||||
rational y_max = bound - 1;
|
||||
|
||||
rational x_max = pddm.max_value();
|
||||
rational y_max = pddm.max_value();
|
||||
|
||||
if (x.is_var())
|
||||
x_max = s().m_viable.max_viable(x.var());
|
||||
if (y.is_var())
|
||||
y_max = s().m_viable.max_viable(y.var());
|
||||
|
||||
if (x_max * y_max >= bound)
|
||||
if (x_max * y_max > pddm.max_value())
|
||||
push_omega_bisect(new_constraints, x, x_max, y, y_max);
|
||||
else {
|
||||
for (auto c : s().m_cjust[y.var()])
|
||||
|
|
|
@ -12,15 +12,16 @@ Author:
|
|||
|
||||
Notes:
|
||||
|
||||
TODO: add rewrite rules to simplify expressions
|
||||
Rewrite rules to simplify expressions
|
||||
|
||||
- k1 <= k2 ==> 0 <= 0 if k1 <= k2
|
||||
- k1 <= k2 ==> 1 <= 0 if k1 > k2
|
||||
- 0 <= p ==> 0 <= 0
|
||||
- p <= -1 ==> 0 <= 0
|
||||
- k*p <= 0 ==> p <= 0 if k is odd
|
||||
- k*2^n*p <= 0 ==> 2^n*p <= 0 if k is odd, leading coeffient is always a power of 2.
|
||||
- k <= p ==> p - k <= - k - 1
|
||||
|
||||
- k <= p ==> p - k <= k - 1
|
||||
TODO:
|
||||
- p <= p + q ==> p <= -q - 1
|
||||
- p + k <= p ==> p + k <= k - 1 for k > 0
|
||||
|
||||
|
@ -45,11 +46,35 @@ namespace polysat {
|
|||
}
|
||||
|
||||
void ule_constraint::simplify() {
|
||||
if (m_lhs.is_zero()) {
|
||||
m_rhs = 0;
|
||||
return;
|
||||
}
|
||||
if (m_rhs.is_val() && m_rhs.val() == m_rhs.manager().max_value()) {
|
||||
m_lhs = 0, m_rhs = 0;
|
||||
return;
|
||||
}
|
||||
if (m_lhs.is_val() && m_rhs.is_val()) {
|
||||
if (m_lhs.val() <= m_rhs.val())
|
||||
m_lhs = m_rhs = 0;
|
||||
else
|
||||
m_lhs = 1, m_rhs = 0;
|
||||
return;
|
||||
}
|
||||
// k <= p => p - k <= - k - 1
|
||||
if (m_lhs.is_val()) {
|
||||
pdd k = m_lhs;
|
||||
m_lhs = m_rhs - k;
|
||||
m_rhs = - k - 1;
|
||||
}
|
||||
// normalize leading coefficient to be a power of 2
|
||||
if (m_rhs.is_zero() && !m_lhs.leading_coefficient().is_power_of_two()) {
|
||||
rational lc = m_lhs.leading_coefficient();
|
||||
rational x, y;
|
||||
gcd(lc, m_lhs.manager().two_to_N(), x, y);
|
||||
if (x.is_neg())
|
||||
x = mod(x, m_lhs.manager().two_to_N());
|
||||
m_lhs *= x;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -339,7 +339,12 @@ public:
|
|||
|
||||
static rational power_of_two(unsigned k);
|
||||
|
||||
bool is_power_of_two(unsigned & shift) {
|
||||
bool is_power_of_two(unsigned & shift) const {
|
||||
return m().is_power_of_two(m_val, shift);
|
||||
}
|
||||
|
||||
bool is_power_of_two() const {
|
||||
unsigned shift = 0;
|
||||
return m().is_power_of_two(m_val, shift);
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue