3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 17:45:32 +00:00

separate into self-contained mod interval

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-05-11 11:22:55 -07:00
parent 04c0db75bf
commit 62b7719d5a
8 changed files with 193 additions and 150 deletions

View file

@ -39,9 +39,9 @@ add_subdirectory(math/polynomial)
add_subdirectory(math/dd)
add_subdirectory(math/hilbert)
add_subdirectory(math/simplex)
add_subdirectory(math/interval)
add_subdirectory(math/polysat)
add_subdirectory(math/automata)
add_subdirectory(math/interval)
add_subdirectory(math/realclosure)
add_subdirectory(math/subpaving)
add_subdirectory(ast)

View file

@ -0,0 +1,67 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
mod_interval.h
Abstract:
Intervals over fixed precision modular arithmetic
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
template<typename Numeral>
struct pp {
Numeral n;
pp(Numeral const& n):n(n) {}
};
template<typename Numeral>
inline std::ostream& operator<<(std::ostream& out, pp<Numeral> const& p) {
if ((0 - p.n) < p.n)
return out << "-" << (0 - p.n);
return out << p.n;
}
template<typename Numeral>
struct mod_interval {
bool emp { false };
Numeral lo { 0 };
Numeral hi { 0 };
mod_interval() {}
mod_interval(Numeral const& l, Numeral const& h): lo(l), hi(h) {}
static mod_interval free() { return mod_interval(0, 0); }
static mod_interval empty() { mod_interval i(0, 0); i.emp = true; return i; }
bool is_free() const { return !emp && lo == hi; }
bool is_empty() const { return emp; }
bool contains(Numeral const& n) const;
mod_interval operator&(mod_interval const& other) const;
mod_interval operator+(mod_interval const& other) const;
mod_interval operator-(mod_interval const& other) const;
mod_interval operator*(mod_interval const& other) const;
mod_interval operator-() const;
mod_interval operator*(Numeral const& n) const;
mod_interval operator+(Numeral const& n) const { return mod_interval(lo + n, hi + n); }
mod_interval operator-(Numeral const& n) const { return mod_interval(lo - n, hi - n); }
mod_interval& operator+=(mod_interval const& other) { *this = *this + other; return *this; }
std::ostream& display(std::ostream& out) const {
if (is_empty()) return out << "empty";
if (is_free()) return out << "free";
return out << "[" << pp(lo) << ", " << pp(hi) << "[";
}
};
template<typename Numeral>
inline std::ostream& operator<<(std::ostream& out, mod_interval<Numeral> const& i) {
return i.display(out);
}

View file

@ -0,0 +1,111 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
mod_interval_def.h
Abstract:
Intervals over fixed precision modular arithmetic
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "math/interval/mod_interval.h"
template<typename Numeral>
bool mod_interval<Numeral>::contains(Numeral const& n) const {
if (is_empty())
return false;
if (is_free())
return true;
if (lo < hi)
return lo <= n && n < hi;
else
return lo <= n || n < hi;
}
template<typename Numeral>
mod_interval<Numeral> mod_interval<Numeral>::operator+(mod_interval<Numeral> const& other) const {
if (is_empty())
return *this;
if (other.is_empty())
return other;
if (is_free())
return *this;
if (other.is_free())
return other;
Numeral sz = (hi - lo) + (other.hi - other.lo);
if (sz < (hi - lo))
return mod_interval::free();
return mod_interval(lo + other.lo, hi + other.hi);
}
template<typename Numeral>
mod_interval<Numeral> mod_interval<Numeral>::operator-(mod_interval<Numeral> const& other) const {
return *this + (-other);
}
template<typename Numeral>
mod_interval<Numeral> mod_interval<Numeral>::operator-() const {
if (is_empty())
return *this;
if (is_free())
return *this;
return mod_interval(1 - hi, 1 - lo);
}
template<typename Numeral>
mod_interval<Numeral> mod_interval<Numeral>::operator*(Numeral const& n) const {
if (is_empty())
return *this;
if (n == 0)
return mod_interval(0, 1);
if (n == 1)
return *this;
if (is_free())
return *this;
Numeral sz = hi - lo;
if (0 - n < n) {
Numeral mn = 0 - n;
Numeral mz = mn * sz;
if (mz / mn != sz)
return mod_interval::free();
return mod_interval((hi - 1) * n, n * lo + 1);
}
else {
Numeral mz = n * sz;
if (mz / n != sz)
return mod_interval::free();
return mod_interval(n * lo, n * (hi - 1) + 1);
}
}
template<typename Numeral>
mod_interval<Numeral> mod_interval<Numeral>::operator&(mod_interval const& other) const {
Numeral l, h;
if (is_free() || other.is_empty())
return other;
if (other.is_free() || is_empty())
return *this;
if (contains(other.lo))
l = other.lo;
else if (other.contains(lo))
l = lo;
else
return mod_interval::empty();
if (contains(other.hi - 1))
h = other.hi;
else if (other.contains(hi - 1))
h = hi;
else
return mod_interval::empty();
return mod_interval(l, h);
}

View file

@ -12,4 +12,5 @@ z3_add_component(polysat
util
dd
simplex
interval
)

View file

@ -20,6 +20,7 @@ Author:
#include <limits>
#include "math/simplex/sparse_matrix.h"
#include "math/interval/mod_interval.h"
#include "util/heap.h"
#include "util/map.h"
#include "util/lbool.h"
@ -29,54 +30,6 @@ namespace polysat {
typedef unsigned var_t;
template<typename Numeral>
struct pp {
Numeral n;
pp(Numeral const& n):n(n) {}
};
template<typename Numeral>
inline std::ostream& operator<<(std::ostream& out, pp<Numeral> const& p) {
if ((0 - p.n) < p.n)
return out << "-" << (0 - p.n);
return out << p.n;
}
/**
* Modular interval arithmetic
*/
template<typename Numeral>
struct interval {
bool emp { false };
Numeral lo { 0 };
Numeral hi { 0 };
interval() {}
interval(Numeral const& l, Numeral const& h): lo(l), hi(h) {}
static interval free() { return interval(0, 0); }
static interval empty() { interval i(0, 0); i.emp = true; return i; }
bool is_free() const { return !emp && lo == hi; }
bool is_empty() const { return emp; }
bool contains(Numeral const& n) const;
interval operator&(interval const& other) const;
interval operator+(interval const& other) const;
interval operator-(interval const& other) const;
interval operator*(interval const& other) const;
interval operator-() const;
interval operator*(Numeral const& n) const;
interval operator+(Numeral const& n) const { return interval(lo + n, hi + n); }
interval operator-(Numeral const& n) const { return interval(lo - n, hi - n); }
interval& operator+=(interval const& other) { *this = *this + other; return *this; }
std::ostream& display(std::ostream& out) const {
if (is_empty()) return out << "empty";
if (is_free()) return out << "free";
return out << "[" << pp(lo) << ", " << pp(hi) << "[";
}
};
template<typename Numeral>
inline std::ostream& operator<<(std::ostream& out, interval<Numeral> const& i) {
return i.display(out);
}
template<typename Ext>
class fixplex {
@ -111,7 +64,7 @@ namespace polysat {
S_DEFAULT
};
struct var_info : public interval<numeral> {
struct var_info : public mod_interval<numeral> {
unsigned m_base2row:29;
unsigned m_is_base:1;
numeral m_value { 0 };
@ -119,8 +72,8 @@ namespace polysat {
m_base2row(0),
m_is_base(false)
{}
var_info& operator&=(interval<numeral> const& range) {
interval<numeral>::operator=(range);
var_info& operator&=(mod_interval<numeral> const& range) {
mod_interval<numeral>::operator=(range);
return *this;
}
};
@ -215,7 +168,7 @@ namespace polysat {
void fixed_var_eh(row const& r, var_t x);
void eq_eh(var_t x, var_t y, row const& r1, row const& r2);
void propagate_bounds(row const& r);
void new_bound(row const& r, var_t x, interval<numeral> const& range);
void new_bound(row const& r, var_t x, mod_interval<numeral> const& range);
void pivot(var_t x_i, var_t x_j, numeral const& b, numeral const& value);
numeral value2delta(var_t v, numeral const& new_value) const;
void update_value(var_t v, numeral const& delta);
@ -224,7 +177,7 @@ namespace polysat {
var_t select_pivot_core(var_t x, numeral const& new_value, numeral& out_b);
bool in_bounds(var_t v) const { return in_bounds(v, value(v)); }
bool in_bounds(var_t v, numeral const& b) const { return in_bounds(b, m_vars[v]); }
bool in_bounds(numeral const& val, interval<numeral> const& range) const { return range.contains(val); }
bool in_bounds(numeral const& val, mod_interval<numeral> const& range) const { return range.contains(val); }
bool is_free(var_t v) const { return lo(v) == hi(v); }
bool is_non_free(var_t v) const { return !is_free(v); }
bool is_fixed(var_t v) const { return lo(v) + 1 == hi(v); }

View file

@ -20,99 +20,10 @@ Author:
#include "math/polysat/fixplex.h"
#include "math/simplex/sparse_matrix_def.h"
#include "math/interval/mod_interval_def.h"
namespace polysat {
template<typename Numeral>
bool interval<Numeral>::contains(Numeral const& n) const {
if (is_empty())
return false;
if (is_free())
return true;
if (lo < hi)
return lo <= n && n < hi;
else
return lo <= n || n < hi;
}
template<typename Numeral>
interval<Numeral> interval<Numeral>::operator+(interval<Numeral> const& other) const {
if (is_empty())
return *this;
if (other.is_empty())
return other;
if (is_free())
return *this;
if (other.is_free())
return other;
Numeral sz = (hi - lo) + (other.hi - other.lo);
if (sz < (hi - lo))
return interval::free();
return interval(lo + other.lo, hi + other.hi);
}
template<typename Numeral>
interval<Numeral> interval<Numeral>::operator-(interval<Numeral> const& other) const {
return *this + (-other);
}
template<typename Numeral>
interval<Numeral> interval<Numeral>::operator-() const {
if (is_empty())
return *this;
if (is_free())
return *this;
return interval(1 - hi, 1 - lo);
}
template<typename Numeral>
interval<Numeral> interval<Numeral>::operator*(Numeral const& n) const {
if (is_empty())
return *this;
if (n == 0)
return interval(0, 1);
if (n == 1)
return *this;
if (is_free())
return *this;
Numeral sz = hi - lo;
if (0 - n < n) {
Numeral mn = 0 - n;
Numeral mz = mn * sz;
if (mz / mn != sz)
return interval::free();
return interval((hi - 1) * n, n * lo + 1);
}
else {
Numeral mz = n * sz;
if (mz / n != sz)
return interval::free();
return interval(n * lo, n * (hi - 1) + 1);
}
}
template<typename Numeral>
interval<Numeral> interval<Numeral>::operator&(interval const& other) const {
Numeral l, h;
if (is_free() || other.is_empty())
return other;
if (other.is_free() || is_empty())
return *this;
if (contains(other.lo))
l = other.lo;
else if (other.contains(lo))
l = lo;
else
return interval::empty();
if (contains(other.hi - 1))
h = other.hi;
else if (other.contains(hi - 1))
h = hi;
else
return interval::empty();
return interval(l, h);
}
template<typename Ext>
fixplex<Ext>::~fixplex() {
reset();
@ -513,7 +424,7 @@ namespace polysat {
bool fixplex<Ext>::is_infeasible_row(var_t x) {
SASSERT(is_base(x));
auto r = base2row(x);
interval<numeral> range(0, 1);
mod_interval<numeral> range(0, 1);
for (auto const& e : M.row_entries(row(r))) {
var_t v = e.var();
numeral const& c = e.coeff();
@ -915,7 +826,7 @@ namespace polysat {
template<typename Ext>
void fixplex<Ext>::propagate_bounds(row const& r) {
interval<numeral> range(0, 1);
mod_interval<numeral> range(0, 1);
numeral free_c = 0;
var_t free_v = null_var;
for (auto const& e : M.row_entries(r)) {
@ -949,7 +860,7 @@ namespace polysat {
}
template<typename Ext>
void fixplex<Ext>::new_bound(row const& r, var_t x, interval<numeral> const& range) {
void fixplex<Ext>::new_bound(row const& r, var_t x, mod_interval<numeral> const& range) {
if (range.is_free())
return;
m_vars[x] &= range;

View file

@ -115,8 +115,8 @@ namespace polysat {
static void test_interval() {
interval<uint64_t> i1(1, 2);
interval<uint64_t> i2(3, 6);
mod_interval<uint64_t> i1(1, 2);
mod_interval<uint64_t> i2(3, 6);
std::cout << i1 << " " << i2 << "\n";
std::cout << i1 << " * 4 := " << (i1 * 4) << "\n";
std::cout << i2 << " * 3 := " << (i2 * 3) << "\n";