mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
moving to maxres consolidation
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
6a4c08c7cb
commit
622d8b5cd1
2 changed files with 0 additions and 486 deletions
|
@ -1,454 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dual_maxsres.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-27-7
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "solver.h"
|
||||
#include "maxsmt.h"
|
||||
#include "dual_maxres.h"
|
||||
#include "ast_pp.h"
|
||||
#include "mus.h"
|
||||
|
||||
using namespace opt;
|
||||
|
||||
|
||||
class dual_maxres : public maxsmt_solver_base {
|
||||
expr_ref_vector m_B;
|
||||
expr_ref_vector m_asms;
|
||||
obj_map<expr, rational> m_asm2weight;
|
||||
obj_map<expr, expr*> m_soft2asm;
|
||||
ptr_vector<expr> m_new_core;
|
||||
mus m_mus;
|
||||
expr_ref_vector m_trail;
|
||||
|
||||
public:
|
||||
dual_maxres(ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft):
|
||||
maxsmt_solver_base(s, m, p, ws, soft),
|
||||
m_B(m), m_asms(m),
|
||||
m_mus(m_s, m),
|
||||
m_trail(m)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~dual_maxres() {}
|
||||
|
||||
bool is_literal(expr* l) {
|
||||
return
|
||||
is_uninterp_const(l) ||
|
||||
(m.is_not(l, l) && is_uninterp_const(l));
|
||||
}
|
||||
|
||||
void add_soft(expr* e, rational const& w) {
|
||||
TRACE("opt", tout << mk_pp(e, m) << "\n";);
|
||||
expr_ref asum(m), fml(m);
|
||||
expr* f;
|
||||
if (m_soft2asm.find(e, f)) {
|
||||
m_asm2weight.find(f) += w;
|
||||
return;
|
||||
}
|
||||
if (is_literal(e)) {
|
||||
asum = e;
|
||||
}
|
||||
else {
|
||||
asum = mk_fresh_bool("soft");
|
||||
fml = m.mk_iff(asum, e);
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
m_soft2asm.insert(e, asum);
|
||||
new_assumption(asum, w);
|
||||
m_upper += w;
|
||||
}
|
||||
|
||||
void new_assumption(expr* e, rational const& w) {
|
||||
m_asm2weight.insert(e, w);
|
||||
m_asms.push_back(e);
|
||||
m_trail.push_back(e);
|
||||
}
|
||||
|
||||
lbool operator()() {
|
||||
solver::scoped_push _sc(*m_s.get());
|
||||
init();
|
||||
init_local();
|
||||
enable_bvsat();
|
||||
enable_sls();
|
||||
lbool was_sat = l_false;
|
||||
ptr_vector<expr> soft_compl;
|
||||
vector<ptr_vector<expr> > cores;
|
||||
while (m_lower < m_upper) {
|
||||
TRACE("opt",
|
||||
display_vec(tout, m_asms.size(), m_asms.c_ptr());
|
||||
m_s->display(tout);
|
||||
tout << "\n";
|
||||
display(tout);
|
||||
);
|
||||
lbool is_sat = m_s->check_sat(0, 0);
|
||||
if (m_cancel) {
|
||||
return l_undef;
|
||||
}
|
||||
if (is_sat == l_true) {
|
||||
was_sat = l_true;
|
||||
is_sat = extend_model(soft_compl);
|
||||
switch (is_sat) {
|
||||
case l_undef:
|
||||
break;
|
||||
case l_false:
|
||||
is_sat = get_cores(cores);
|
||||
for (unsigned i = 0; is_sat == l_true && i < cores.size(); ++i) {
|
||||
is_sat = process_unsat(cores[i]);
|
||||
}
|
||||
break;
|
||||
case l_true:
|
||||
is_sat = process_sat(soft_compl);
|
||||
break;
|
||||
}
|
||||
}
|
||||
switch (is_sat) {
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
case l_false:
|
||||
m_lower = m_upper;
|
||||
return was_sat;
|
||||
case l_true:
|
||||
break;
|
||||
}
|
||||
}
|
||||
return was_sat;
|
||||
}
|
||||
|
||||
lbool process_sat(ptr_vector<expr>& softc) {
|
||||
expr_ref fml(m), tmp(m);
|
||||
TRACE("opt", display_vec(tout << "softc: ", softc.size(), softc.c_ptr()););
|
||||
SASSERT(!softc.empty()); // we should somehow stop if all soft are satisfied.
|
||||
if (softc.empty()) {
|
||||
return l_false;
|
||||
}
|
||||
|
||||
remove_soft(softc);
|
||||
rational w = split_soft(softc);
|
||||
TRACE("opt", display_vec(tout << " softc: ", softc.size(), softc.c_ptr()););
|
||||
dual_max_resolve(softc, w);
|
||||
return l_true;
|
||||
}
|
||||
|
||||
//
|
||||
// Retrieve a set of disjoint cores over the current assumptions.
|
||||
// TBD: when the remaining are satisfiable, then extend the
|
||||
// satisfying model to improve upper bound.
|
||||
//
|
||||
lbool get_cores(vector<ptr_vector<expr> >& cores) {
|
||||
// assume m_s is unsat.
|
||||
lbool is_sat = l_false;
|
||||
expr_ref_vector asms(m);
|
||||
asms.append(m_asms.size(), m_asms.c_ptr());
|
||||
cores.reset();
|
||||
ptr_vector<expr> core;
|
||||
while (is_sat == l_false) {
|
||||
core.reset();
|
||||
m_s->get_unsat_core(core);
|
||||
is_sat = minimize_core(core);
|
||||
if (is_sat != l_true) {
|
||||
break;
|
||||
}
|
||||
cores.push_back(core);
|
||||
break;
|
||||
//
|
||||
// TBD: multiple core refinement
|
||||
// produces unsound results.
|
||||
// what is a sound variant?
|
||||
//
|
||||
remove_soft(core, asms);
|
||||
is_sat = m_s->check_sat(asms.size(), asms.c_ptr());
|
||||
|
||||
}
|
||||
TRACE("opt",
|
||||
tout << "num cores: " << cores.size() << "\n";
|
||||
for (unsigned i = 0; i < cores.size(); ++i) {
|
||||
for (unsigned j = 0; j < cores[i].size(); ++j) {
|
||||
tout << mk_pp(cores[i][j], m) << " ";
|
||||
}
|
||||
tout << "\n";
|
||||
}
|
||||
tout << "num satisfying: " << asms.size() << "\n";);
|
||||
|
||||
return is_sat;
|
||||
}
|
||||
|
||||
lbool process_unsat(ptr_vector<expr>& core) {
|
||||
expr_ref fml(m);
|
||||
SASSERT(!core.empty());
|
||||
if (core.empty()) {
|
||||
return l_false;
|
||||
}
|
||||
remove_soft(core);
|
||||
rational w = split_soft(core);
|
||||
TRACE("opt", display_vec(tout << "core: ", core.size(), core.c_ptr());
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
tout << get_weight(core[i]) << " ";
|
||||
}
|
||||
tout << "min-weight: " << w << "\n";);
|
||||
max_resolve(core, w);
|
||||
m_lower += w;
|
||||
IF_VERBOSE(1, verbose_stream() <<
|
||||
"(opt.dual_max_res [" << m_lower << ":" << m_upper << "])\n";);
|
||||
return l_true;
|
||||
}
|
||||
|
||||
//
|
||||
// The hard constraints are satisfiable.
|
||||
// Extend the current model to satisfy as many
|
||||
// soft constraints as possible until either
|
||||
// hitting an unsatisfiable subset of size < 1/2*#assumptions,
|
||||
// or producing a maximal satisfying assignment exceeding
|
||||
// number of soft constraints >= 1/2*#assumptions.
|
||||
// In both cases, soft constraints that are not satisfied
|
||||
// is <= 1/2*#assumptions. In this way, the new modified assumptions
|
||||
// account for at most 1/2 of the current assumptions.
|
||||
// The core reduction algorithms also need to take into account
|
||||
// at most 1/2 of the assumptions for minimization.
|
||||
//
|
||||
|
||||
lbool extend_model(ptr_vector<expr>& soft_compl) {
|
||||
ptr_vector<expr> asms;
|
||||
model_ref mdl;
|
||||
expr_ref tmp(m);
|
||||
m_s->get_model(mdl);
|
||||
unsigned num_true = update_model(mdl, asms, soft_compl);
|
||||
for (unsigned j = 0; j < m_asms.size(); ++j) {
|
||||
expr* fml = m_asms[j].get();
|
||||
VERIFY(mdl->eval(fml, tmp));
|
||||
if (m.is_false(tmp)) {
|
||||
asms.push_back(fml);
|
||||
lbool is_sat = m_s->check_sat(asms.size(), asms.c_ptr());
|
||||
asms.pop_back();
|
||||
switch (is_sat) {
|
||||
case l_false:
|
||||
if (num_true*2 < m_asms.size()) {
|
||||
return l_false;
|
||||
}
|
||||
break;
|
||||
case l_true:
|
||||
m_s->get_model(mdl);
|
||||
num_true = update_model(mdl, asms, soft_compl);
|
||||
break;
|
||||
case l_undef:
|
||||
return l_undef;
|
||||
}
|
||||
}
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
unsigned update_model(model_ref& mdl, ptr_vector<expr>& asms, ptr_vector<expr>& soft_compl) {
|
||||
expr_ref tmp(m);
|
||||
asms.reset();
|
||||
soft_compl.reset();
|
||||
rational weight = m_lower;
|
||||
unsigned num_true = 0;
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
expr* fml = m_asms[i].get();
|
||||
VERIFY(mdl->eval(fml, tmp));
|
||||
SASSERT(m.is_false(tmp) || m.is_true(tmp));
|
||||
if (m.is_false(tmp)) {
|
||||
weight += get_weight(fml);
|
||||
soft_compl.push_back(fml);
|
||||
}
|
||||
else {
|
||||
++num_true;
|
||||
asms.push_back(fml);
|
||||
}
|
||||
}
|
||||
if (weight < m_upper) {
|
||||
m_upper = weight;
|
||||
m_model = mdl;
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
expr_ref tmp(m);
|
||||
VERIFY(m_model->eval(m_soft[i].get(), tmp));
|
||||
m_assignment[i] = m.is_true(tmp);
|
||||
}
|
||||
IF_VERBOSE(1, verbose_stream() <<
|
||||
"(opt.dual_max_res [" << m_lower << ":" << m_upper << "])\n";);
|
||||
}
|
||||
return num_true;
|
||||
}
|
||||
|
||||
lbool minimize_core(ptr_vector<expr>& core) {
|
||||
if (m_sat_enabled) {
|
||||
return l_true;
|
||||
}
|
||||
m_mus.reset();
|
||||
for (unsigned i = 0; i < core.size(); ++i) {
|
||||
m_mus.add_soft(core[i]);
|
||||
}
|
||||
unsigned_vector mus_idx;
|
||||
lbool is_sat = m_mus.get_mus(mus_idx);
|
||||
if (is_sat != l_true) {
|
||||
return is_sat;
|
||||
}
|
||||
m_new_core.reset();
|
||||
for (unsigned i = 0; i < mus_idx.size(); ++i) {
|
||||
m_new_core.push_back(core[mus_idx[i]]);
|
||||
}
|
||||
core.reset();
|
||||
core.append(m_new_core);
|
||||
return l_true;
|
||||
}
|
||||
|
||||
rational get_weight(expr* e) {
|
||||
return m_asm2weight.find(e);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// find the minimal weight.
|
||||
// soft clauses with weight larger than the minimal weight
|
||||
// are (re)added as soft clauses where the weight is updated
|
||||
// to subtract the minimal weight.
|
||||
//
|
||||
rational split_soft(ptr_vector<expr> const& soft) {
|
||||
|
||||
SASSERT(!soft.empty());
|
||||
rational w = get_weight(soft[0]);
|
||||
for (unsigned i = 1; i < soft.size(); ++i) {
|
||||
rational w2 = get_weight(soft[i]);
|
||||
if (w2 < w) {
|
||||
w = w2;
|
||||
}
|
||||
}
|
||||
// add fresh soft clauses for weights that are above w.
|
||||
for (unsigned i = 0; i < soft.size(); ++i) {
|
||||
rational w2 = get_weight(soft[i]);
|
||||
if (w2 > w) {
|
||||
new_assumption(soft[i], w2 - w);
|
||||
}
|
||||
}
|
||||
return w;
|
||||
}
|
||||
|
||||
void display_vec(std::ostream& out, unsigned sz, expr* const* args) {
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
out << mk_pp(args[i], m) << " ";
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
void display(std::ostream& out) {
|
||||
for (unsigned i = 0; i < m_asms.size(); ++i) {
|
||||
expr* a = m_asms[i].get();
|
||||
out << mk_pp(a, m) << " : " << get_weight(a) << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void max_resolve(ptr_vector<expr>& core, rational const& w) {
|
||||
SASSERT(!core.empty());
|
||||
expr_ref fml(m), asum(m);
|
||||
app_ref cls(m), d(m);
|
||||
m_B.reset();
|
||||
m_B.append(core.size(), core.c_ptr());
|
||||
d = m.mk_true();
|
||||
//
|
||||
// d_0 := true
|
||||
// d_i := b_{i-1} and d_{i-1} for i = 1...sz-1
|
||||
// soft (b_i or !d_i)
|
||||
// == (b_i or !(!b_{i-1} or d_{i-1}))
|
||||
// == (b_i or b_0 & b_1 & ... & b_{i-1})
|
||||
//
|
||||
// Soft constraint is satisfied if previous soft constraint
|
||||
// holds or if it is the first soft constraint to fail.
|
||||
//
|
||||
// Soundness of this rule can be established using MaxRes
|
||||
//
|
||||
for (unsigned i = 1; i < core.size(); ++i) {
|
||||
expr* b_i = m_B[i-1].get();
|
||||
expr* b_i1 = m_B[i].get();
|
||||
d = m.mk_and(b_i, d);
|
||||
asum = mk_fresh_bool("a");
|
||||
cls = m.mk_or(b_i1, d);
|
||||
fml = m.mk_iff(asum, cls);
|
||||
new_assumption(asum, w);
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
fml = m.mk_not(m.mk_and(m_B.size(), m_B.c_ptr()));
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
|
||||
// satc are the complements of a (maximal) satisfying assignment.
|
||||
void dual_max_resolve(ptr_vector<expr>& satc, rational const& w) {
|
||||
SASSERT(!satc.empty());
|
||||
expr_ref fml(m), asum(m);
|
||||
app_ref cls(m), d(m);
|
||||
m_B.reset();
|
||||
m_B.append(satc.size(), satc.c_ptr());
|
||||
d = m.mk_false();
|
||||
//
|
||||
// d_0 := false
|
||||
// d_i := b_{i-1} or d_{i-1} for i = 1...sz-1
|
||||
// soft (b_i and d_i)
|
||||
// == (b_i and (b_0 or b_1 or ... or b_{i-1}))
|
||||
//
|
||||
for (unsigned i = 1; i < satc.size(); ++i) {
|
||||
expr* b_i = m_B[i-1].get();
|
||||
expr* b_i1 = m_B[i].get();
|
||||
d = m.mk_or(b_i, d);
|
||||
asum = mk_fresh_bool("a");
|
||||
cls = m.mk_and(b_i1, d);
|
||||
fml = m.mk_iff(asum, cls);
|
||||
new_assumption(asum, w);
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
fml = m.mk_or(m_B.size(), m_B.c_ptr());
|
||||
m_s->assert_expr(fml);
|
||||
}
|
||||
|
||||
void remove_soft(ptr_vector<expr> const& soft, expr_ref_vector& asms) {
|
||||
for (unsigned i = 0; i < asms.size(); ++i) {
|
||||
if (soft.contains(asms[i].get())) {
|
||||
asms[i] = asms.back();
|
||||
asms.pop_back();
|
||||
--i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void remove_soft(ptr_vector<expr> const& soft) {
|
||||
remove_soft(soft, m_asms);
|
||||
}
|
||||
|
||||
virtual void set_cancel(bool f) {
|
||||
maxsmt_solver_base::set_cancel(f);
|
||||
m_mus.set_cancel(f);
|
||||
}
|
||||
|
||||
void init_local() {
|
||||
m_upper.reset();
|
||||
m_lower.reset();
|
||||
m_asm2weight.reset();
|
||||
m_soft2asm.reset();
|
||||
m_trail.reset();
|
||||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
add_soft(m_soft[i].get(), m_weights[i]);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
opt::maxsmt_solver_base* opt::mk_dual_maxres(
|
||||
ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft) {
|
||||
return alloc(dual_maxres, m, s, p, ws, soft);
|
||||
}
|
||||
|
|
@ -1,32 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
dual_maxsres.h
|
||||
|
||||
Abstract:
|
||||
|
||||
MaxRes (weighted) max-sat algorithm
|
||||
based on dual refinement of bounds.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2014-27-7
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef _DUAL_MAXRES_H_
|
||||
#define _DUAL_MAXRES_H_
|
||||
|
||||
namespace opt {
|
||||
maxsmt_solver_base* mk_dual_maxres(
|
||||
ast_manager& m, opt_solver* s, params_ref& p,
|
||||
vector<rational> const& ws, expr_ref_vector const& soft);
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue