mirror of
https://github.com/Z3Prover/z3
synced 2025-04-25 10:05:32 +00:00
push outline of using cjust for overflow premise
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
a5b7f9d77b
commit
611c28fc47
8 changed files with 101 additions and 15 deletions
|
@ -332,5 +332,35 @@ namespace dd {
|
|||
return true;
|
||||
}
|
||||
|
||||
rational fdd::max(bdd b) const {
|
||||
SASSERT(!b.is_false());
|
||||
rational result(0);
|
||||
for (unsigned i = num_bits(); i-- > 0; ) {
|
||||
unsigned v = m_pos2var[i];
|
||||
bdd w = m->mk_var(v);
|
||||
bdd hi = b.cofactor(w);
|
||||
if (!hi.is_false()) {
|
||||
b = hi;
|
||||
result += rational::power_of_two(i);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
rational fdd::min(bdd b) const {
|
||||
SASSERT(!b.is_false());
|
||||
rational result(0);
|
||||
for (unsigned i = num_bits(); i-- > 0; ) {
|
||||
unsigned v = m_pos2var[i];
|
||||
bdd nw = m->mk_nvar(v);
|
||||
bdd lo = b.cofactor(nw);
|
||||
if (lo.is_false())
|
||||
result += rational::power_of_two(i);
|
||||
else
|
||||
b = lo;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -78,26 +78,31 @@ namespace dd {
|
|||
/** Like find, but returns hint if it is contained in the BDD. */
|
||||
find_t find_hint(bdd b, rational const& hint, rational& out_val) const;
|
||||
|
||||
/*
|
||||
* find largest value at lo or above such that bdd b evaluates to true
|
||||
* at lo and all values between.
|
||||
* dually, find smallest value below hi that evaluates b to true
|
||||
* and all values between the value and hi also evaluate b to true.
|
||||
* \param b - a bdd using variables from this
|
||||
* \param lo/hi - bound to be traversed.
|
||||
* \return false if b is false at lo/hi
|
||||
* \pre variables in b are a subset of variables from the fdd
|
||||
*/
|
||||
bool sup(bdd const& b, bool_vector& lo) const;
|
||||
|
||||
|
||||
/*
|
||||
* find largest value at lo or above such that bdd b evaluates to true
|
||||
* at lo and all values between.
|
||||
* dually, find smallest value below hi that evaluates b to true
|
||||
* and all values between the value and hi also evaluate b to true.
|
||||
* \param b - a bdd using variables from this
|
||||
* \param lo/hi - bound to be traversed.
|
||||
* \return false if b is false at lo/hi
|
||||
* \pre variables in b are a subset of variables from the fdd
|
||||
*/
|
||||
bool sup(bdd const& b, bool_vector& lo) const;
|
||||
|
||||
bool inf(bdd const& b, bool_vector& hi) const;
|
||||
bool inf(bdd const& b, bool_vector& hi) const;
|
||||
|
||||
bool sup(bdd const& b, rational& lo) const;
|
||||
|
||||
bool inf(bdd const& b, rational& hi) const;
|
||||
|
||||
|
||||
/*
|
||||
* Find the min-max satisfying assignment.
|
||||
* \pre b is not false.
|
||||
*/
|
||||
rational max(bdd b) const;
|
||||
|
||||
rational min(bdd b) const;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -246,6 +246,7 @@ namespace dd {
|
|||
inline bool is_one(PDD p) const { return p == one_pdd; }
|
||||
inline bool is_val(PDD p) const { return m_nodes[p].is_val(); }
|
||||
inline bool is_internal(PDD p) const { return m_nodes[p].is_internal(); }
|
||||
inline bool is_var(PDD p) const { return !is_val(p) && is_zero(lo(p)) && is_one(hi(p)); }
|
||||
bool is_never_zero(PDD p);
|
||||
inline unsigned level(PDD p) const { return m_nodes[p].m_level; }
|
||||
inline unsigned var(PDD p) const { return m_level2var[level(p)]; }
|
||||
|
@ -388,6 +389,7 @@ namespace dd {
|
|||
bool is_one() const { return m.is_one(root); }
|
||||
bool is_zero() const { return m.is_zero(root); }
|
||||
bool is_linear() const { return m.is_linear(root); }
|
||||
bool is_var() const { return m.is_var(root); }
|
||||
/** Polynomial is of the form: a * x + b */
|
||||
bool is_unilinear() const { return !is_val() && lo().is_val() && hi().is_val(); }
|
||||
bool is_unary() const { return !is_val() && lo().is_zero() && hi().is_val(); }
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue