3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-05 17:14:07 +00:00

ensure generation is increased #2667

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-11-13 19:18:54 -08:00
parent 12819640b7
commit 5f90e72d85
4 changed files with 52 additions and 86 deletions

View file

@ -20,30 +20,27 @@ Revision History:
#include "util/warning.h"
cost_evaluator::cost_evaluator(ast_manager & m):
m_manager(m),
m(m),
m_util(m) {
}
float cost_evaluator::eval(expr * f) const {
#define E(IDX) eval(to_app(f)->get_arg(IDX))
if (is_app(f)) {
unsigned num_args;
family_id fid = to_app(f)->get_family_id();
if (fid == m_manager.get_basic_family_id()) {
if (fid == m.get_basic_family_id()) {
switch (to_app(f)->get_decl_kind()) {
case OP_TRUE: return 1.0f;
case OP_FALSE: return 0.0f;
case OP_NOT: return E(0) == 0.0f ? 1.0f : 0.0f;
case OP_AND:
num_args = to_app(f)->get_num_args();
for (unsigned i = 0; i < num_args; i++)
if (E(i) == 0.0f)
case OP_AND:
for (expr* arg : *to_app(f))
if (eval(arg) == 0.0f)
return 0.0f;
return 1.0f;
case OP_OR:
num_args = to_app(f)->get_num_args();
for (unsigned i = 0; i < num_args; i++)
if (E(i) != 0.0f)
for (expr* arg : *to_app(f))
if (eval(arg) != 0.0f)
return 1.0f;
return 0.0f;
case OP_ITE: return E(0) != 0.0f ? E(1) : E(2);

View file

@ -23,7 +23,7 @@ Revision History:
#include "ast/arith_decl_plugin.h"
class cost_evaluator {
ast_manager & m_manager;
ast_manager & m;
arith_util m_util;
unsigned m_num_args;
float const * m_args;

View file

@ -16,13 +16,13 @@ Author:
Revision History:
--*/
#include "smt/smt_context.h"
#include "smt/qi_queue.h"
#include "util/warning.h"
#include "util/stats.h"
#include "ast/ast_pp.h"
#include "ast/ast_ll_pp.h"
#include "ast/rewriter/var_subst.h"
#include "util/stats.h"
#include "smt/smt_context.h"
#include "smt/qi_queue.h"
namespace smt {
@ -130,7 +130,7 @@ namespace smt {
// max_top_generation and min_top_generation are not available for computing inc_gen
set_values(q, nullptr, generation, 0, 0, cost);
float r = m_evaluator(m_new_gen_function, m_vals.size(), m_vals.c_ptr());
return static_cast<unsigned>(r);
return std::max(generation + 1, static_cast<unsigned>(r));
}
void qi_queue::insert(fingerprint * f, app * pat, unsigned generation, unsigned min_top_generation, unsigned max_top_generation) {
@ -140,7 +140,7 @@ namespace smt {
tout << "new instance of " << q->get_qid() << ", weight " << q->get_weight()
<< ", generation: " << generation << ", scope_level: " << m_context.get_scope_level() << ", cost: " << cost << "\n";
for (unsigned i = 0; i < f->get_num_args(); i++) {
tout << "#" << f->get_arg(i)->get_owner_id() << " ";
tout << "#" << f->get_arg(i)->get_owner_id() << " d:" << f->get_arg(i)->get_owner()->get_depth() << " ";
}
tout << "\n";);
TRACE("new_entries_bug", tout << "[qi:insert]\n";);
@ -201,7 +201,7 @@ namespace smt {
ent.m_instantiated = true;
TRACE("qi_queue_profile", tout << q->get_qid() << ", gen: " << generation << " " << *f;);
TRACE("qi_queue_profile", tout << q->get_qid() << ", gen: " << generation << " " << *f << " cost: " << ent.m_cost << "\n";);
if (m_checker.is_sat(q->get_expr(), num_bindings, bindings)) {
TRACE("checker", tout << "instance already satisfied\n";);

View file

@ -780,9 +780,27 @@ namespace smtfd {
{}
void check_term(expr* t, unsigned round) override {
sort* s = m.get_sort(t);
if (round == 0 && is_uf(t)) {
TRACE("smtfd_verbose", tout << "check-term: " << mk_bounded_pp(t, m, 2) << "\n";);
enforce_congruence(to_app(t)->get_decl(), to_app(t), m.get_sort(t));
enforce_congruence(to_app(t)->get_decl(), to_app(t), s);
}
else if (round == 1 && sort_covered(s) && m.is_value(t)) {
expr_ref v = eval_abs(t);
val2elem_t& v2e = get_table(s);
expr* e;
if (v2e.find(v, e)) {
if (e != t) {
m_context.add(m.mk_not(m.mk_eq(e, t)), __FUNCTION__);
}
}
else {
m_pinned.push_back(v);
v2e.insert(v, t);
}
}
if (m.is_value(t)) {
// std::cout << mk_bounded_pp(t, m, 2) << " " << eval_abs(t) << " " << mk_pp(s, m) << "\n";
}
}
@ -797,7 +815,7 @@ namespace smtfd {
}
}
check_term(t, 0);
return is_uf(t) || is_uninterp_const(t);
return is_uf(t) || is_uninterp_const(t) || sort_covered(s);
}
bool sort_covered(sort* s) override {
@ -1352,7 +1370,10 @@ namespace smtfd {
if (!m_model->eval_expr(q->get_expr(), tmp, true)) {
return l_undef;
}
if (m.is_true(tmp)) {
if (is_forall(q) && m.is_true(tmp)) {
return l_false;
}
if (is_exists(q) && m.is_false(tmp)) {
return l_false;
}
TRACE("smtfd",
@ -1664,27 +1685,31 @@ namespace smtfd {
m_context.reset(m_model);
expr_ref_vector terms(core);
terms.append(m_axioms);
TRACE("smtfd", tout << "axioms: " << m_axioms << "\n";);
for (expr* t : subterms(core)) {
if (is_forall(t) || is_exists(t)) {
has_q = true;
}
}
for (expr* t : subterms(terms)) {
if (!m_context.term_covered(t) || !m_context.sort_covered(m.get_sort(t))) {
if (!is_forall(t) && !is_exists(t) && (!m_context.term_covered(t) || !m_context.sort_covered(m.get_sort(t)))) {
is_decided = l_false;
}
}
m_context.populate_model(m_model, terms);
TRACE("smtfd",
for (expr* a : subterms(terms)) {
expr_ref val0 = (*m_model)(a);
expr_ref val1 = (*m_model)(abs(a));
if (val0 != val1 && m.get_sort(val0) == m.get_sort(val1)) {
tout << mk_bounded_pp(a, m, 2) << " := " << val0 << " " << val1 << "\n";
}
});
TRACE("smtfd", tout << "has quantifier: " << has_q << "\n" << core << "\n";);
tout << "axioms: " << m_axioms << "\n";
for (expr* a : subterms(terms)) {
expr_ref val0 = (*m_model)(a);
expr_ref val1 = (*m_model)(abs(a));
if (val0 != val1 && m.get_sort(val0) == m.get_sort(val1)) {
tout << mk_bounded_pp(a, m, 2) << " := " << val0 << " " << val1 << "\n";
}
if (!is_forall(a) && !is_exists(a) && (!m_context.term_covered(a) || !m_context.sort_covered(m.get_sort(a)))) {
tout << "not covered: " << mk_pp(a, m) << " " << mk_pp(m.get_sort(a), m) << " ";
tout << m_context.term_covered(a) << " " << m_context.sort_covered(m.get_sort(a)) << "\n";
}
}
tout << "has quantifier: " << has_q << "\n" << core << "\n";);
if (!has_q) {
return is_decided;
}
@ -1850,59 +1875,6 @@ namespace smtfd {
TRACE("smtfd", tout << "block:\n" << mk_bounded_pp(fml, m, 3) << "\n" << mk_bounded_pp(abs(fml), m, 3) << "\n";);
assert_fd(fml);
}
#if 0
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
init();
flush_assertions();
lbool r;
expr_ref_vector core(m);
while (true) {
IF_VERBOSE(1, verbose_stream() << "(smtfd-check-sat :rounds " << m_stats.m_num_rounds << " lemmas: " << m_stats.m_num_lemmas << " :qi " << m_stats.m_num_mbqi << ")\n");
m_stats.m_num_rounds++;
checkpoint();
// phase 1: check sat of abs
r = check_abs(num_assumptions, assumptions);
if (r != l_true) {
return r;
}
// phase 2: find prime implicate over FD (abstraction)
r = get_prime_implicate(num_assumptions, assumptions, core);
if (r != l_false) {
return r;
}
// phase 3: prime implicate over SMT
r = check_smt(core);
if (r == l_true) {
return r;
}
// phase 4: add theory lemmas
if (r == l_false) {
block_core(core);
}
if (add_theory_axioms(core)) {
continue;
}
if (r != l_undef) {
continue;
}
switch (is_decided_sat(core)) {
case l_true:
return l_true;
case l_undef:
break;
case l_false:
// m_max_conflicts = UINT_MAX;
break;
}
}
return l_undef;
}
#else
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
init();
@ -2008,9 +1980,6 @@ namespace smtfd {
return r;
}
#endif
void updt_params(params_ref const & p) override {
::solver::updt_params(p);
if (m_fd_sat_solver) {