3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

adding pdd-grobner

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-12-18 12:03:13 -08:00
parent ca0a52c930
commit 5e0799225d
6 changed files with 441 additions and 2 deletions

View file

@ -338,6 +338,56 @@ namespace dd {
}
}
/*
* Compare leading monomials.
* The pdd format makes lexicographic comparison easy: compare based on
* the top variable and descend depending on whether hi(x) == hi(y)
*/
bool pdd_manager::lt(pdd const& a, pdd const& b) {
PDD x = a.root;
PDD y = b.root;
if (x == y) return false;
while (true) {
SASSERT(x != y);
if (is_val(x))
return !is_val(y) || val(x) < val(y);
if (is_val(y))
return false;
if (level(x) == level(y)) {
if (hi(x) == hi(y)) {
x = lo(x);
y = lo(y);
}
else {
x = hi(x);
y = hi(y);
}
}
else {
return level(x) > level(y);
}
}
}
/**
Compare leading terms of pdds
*/
bool pdd_manager::different_leading_term(pdd const& a, pdd const& b) {
PDD x = a.root;
PDD y = b.root;
while (true) {
if (x == y) return false;
if (is_val(x) || is_val(y)) return true;
if (level(x) == level(y)) {
x = hi(x);
y = hi(y);
}
else {
return false;
}
}
}
void pdd_manager::push(PDD b) {
m_pdd_stack.push_back(b);
}

View file

@ -141,7 +141,6 @@ namespace dd {
small_object_allocator m_alloc;
mutable svector<unsigned> m_mark;
mutable unsigned m_mark_level;
mutable svector<double> m_count;
mutable svector<PDD> m_todo;
bool m_disable_gc;
bool m_is_new_node;
@ -230,6 +229,8 @@ namespace dd {
pdd mul(rational const& c, pdd const& b);
pdd reduce(pdd const& a, pdd const& b);
bool try_spoly(pdd const& a, pdd const& b, pdd& r);
bool lt(pdd const& a, pdd const& b);
bool different_leading_term(pdd const& a, pdd const& b);
std::ostream& display(std::ostream& out);
std::ostream& display(std::ostream& out, pdd const& b);
@ -243,7 +244,8 @@ namespace dd {
pdd_manager* m;
pdd(unsigned root, pdd_manager* m): root(root), m(m) { m->inc_ref(root); }
public:
pdd(pdd & other): root(other.root), m(other.m) { m->inc_ref(root); }
pdd(pdd_manager& pm): root(0), m(&pm) { SASSERT(is_zero()); }
pdd(pdd const& other): root(other.root), m(other.m) { m->inc_ref(root); }
pdd(pdd && other): root(0), m(other.m) { std::swap(root, other.root); }
pdd& operator=(pdd const& other);
~pdd() { m->dec_ref(root); }
@ -252,6 +254,7 @@ namespace dd {
unsigned var() const { return m->var(root); }
rational const& val() const { SASSERT(is_val()); return m->val(root); }
bool is_val() const { return m->is_val(root); }
bool is_zero() const { return m->is_zero(root); }
pdd operator+(pdd const& other) const { return m->add(*this, other); }
pdd operator-(pdd const& other) const { return m->sub(*this, other); }
@ -259,10 +262,13 @@ namespace dd {
pdd operator*(rational const& other) const { return m->mul(other, *this); }
pdd operator+(rational const& other) const { return m->add(other, *this); }
pdd reduce(pdd const& other) const { return m->reduce(*this, other); }
bool different_leading_term(pdd const& other) const { return m->different_leading_term(*this, other); }
std::ostream& display(std::ostream& out) const { return m->display(out, *this); }
bool operator==(pdd const& other) const { return root == other.root; }
bool operator!=(pdd const& other) const { return root != other.root; }
bool operator<(pdd const& b) const { return m->lt(*this, b); }
unsigned size() const { return m->pdd_size(*this); }
};
@ -276,6 +282,7 @@ namespace dd {
inline pdd operator-(pdd const& b, int x) { return b + (-rational(x)); }
std::ostream& operator<<(std::ostream& out, pdd const& b);
}

View file

@ -1,6 +1,7 @@
z3_add_component(grobner
SOURCES
grobner.cpp
pdd_grobner.cpp
COMPONENT_DEPENDENCIES
ast
)

View file

@ -0,0 +1,253 @@
/*++
Copyright (c) 2019 Microsoft Corporation
Abstract:
Grobner core based on pdd representation of polynomials
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
--*/
#include "math/grobner/pdd_grobner.h"
namespace dd {
/***
The main algorithm maintains two sets (S, A),
where S is m_processed, and A is m_to_simplify.
Initially S is empty and A contains the initial equations.
Each step proceeds as follows:
- pick a in A, and remove a from A
- simplify a using S
- simplify S using a
- for s in S:
b = superpose(a, s)
add b to A
- add a to S
- simplify A using a
*/
grobner::grobner(reslimit& lim, pdd_manager& m) :
m(m),
m_limit(lim),
m_conflict(false)
{}
grobner::~grobner() {
del_equations(0);
}
void grobner::compute_basis() {
while (!done() && compute_basis_step()) {
TRACE("grobner", display(tout););
}
}
bool grobner::compute_basis_step() {
m_stats.m_compute_steps++;
equation* e = pick_next();
if (!e) return false;
equation& eq = *e;
SASSERT(!eq.is_processed());
if (!simplify_using(eq, m_processed)) return false;
if (eliminate(eq)) return true;
if (check_conflict(eq)) return false;
if (!simplify_using(m_processed, eq)) return false;
TRACE("grobner", tout << "eq = "; display_equation(tout, eq););
superpose(eq);
toggle_processed(eq);
return simplify_using(m_to_simplify, eq);
}
grobner::equation* grobner::pick_next() {
equation* eq = nullptr;
ptr_buffer<equation> to_delete;
for (auto* curr : m_to_simplify) {
if (!eq|| is_simpler(*curr, *eq)) {
eq = curr;
}
}
for (auto* e : to_delete)
del_equation(e);
if (eq)
m_to_simplify.erase(eq);
return eq;
}
void grobner::superpose(equation const & eq) {
for (equation * target : m_processed) {
superpose(eq, *target);
}
}
bool grobner::simplify_using(equation& eq, equation_set const& eqs) {
bool simplified, changed_leading_term;
TRACE("grobner", tout << "simplifying: "; display_equation(tout, eq); tout << "using equalities of size " << eqs.size() << "\n";);
do {
simplified = false;
for (equation* p : eqs) {
if (simplify_source_target(*p, eq, changed_leading_term)) {
simplified = true;
}
if (canceled() || eq.poly().is_val()) {
break;
}
}
}
while (simplified && !eq.poly().is_val());
TRACE("grobner", tout << "simplification result: "; display_equation(tout, eq););
check_conflict(eq);
return !done();
}
/*
Use the given equation to simplify equations in set
*/
bool grobner::simplify_using(equation_set& set, equation const& eq) {
TRACE("grobner", tout << "poly " << eq.poly() << "\n";);
ptr_buffer<equation> to_delete;
ptr_buffer<equation> to_move;
bool changed_leading_term = false;
for (equation* target : set) {
if (canceled())
return false;
if (simplify_source_target(eq, *target, changed_leading_term)) {
if (is_trivial(*target))
to_delete.push_back(target);
else if (check_conflict(*target))
return false;
else if (changed_leading_term && target->is_processed()) {
to_move.push_back(target);
}
}
}
for (equation* eq : to_delete)
del_equation(eq);
for (equation* eq : to_move)
toggle_processed(*eq);
return true;
}
// return true iff simplified
bool grobner::simplify_source_target(equation const& source, equation& target, bool& changed_leading_term) {
TRACE("grobner", tout << "simplifying: " << target.poly() << "\nusing: " << source.poly() << "\n";);
m_stats.m_simplified++;
pdd r = source.poly().reduce(target.poly());
if (r == source.poly()) {
return false;
}
changed_leading_term = target.is_processed() && m.different_leading_term(r, source.poly());
target = r;
target = m_dep_manager.mk_join(target.dep(), source.dep());
update_stats_max_degree_and_size(target);
TRACE("grobner", tout << "simplified " << target.poly() << "\n";);
return true;
}
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
void grobner::superpose(equation const& eq1, equation const& eq2) {
TRACE("grobner_d", tout << "eq1="; display_equation(tout, eq1) << "eq2="; display_equation(tout, eq2););
pdd r(m);
if (!m.try_spoly(eq1.poly(), eq2.poly(), r)) return;
m_stats.m_superposed++;
if (r.is_zero()) return;
unsigned idx = m_equations.size();
equation* eq = alloc(equation, r, m_dep_manager.mk_join(eq1.dep(), eq2.dep()), idx);
update_stats_max_degree_and_size(*eq);
if (r.is_val()) set_conflict();
m_to_simplify.insert(eq);
}
void grobner::toggle_processed(equation& eq) {
if (eq.is_processed()) {
m_to_simplify.insert(&eq);
m_processed.erase(&eq);
}
else {
m_processed.insert(&eq);
m_to_simplify.erase(&eq);
}
eq.set_processed(!eq.is_processed());
}
grobner::equation_set const& grobner::equations() {
m_all_eqs.reset();
for (equation* eq : m_equations) if (eq) m_all_eqs.insert(eq);
return m_all_eqs;
}
void grobner::reset() {
del_equations(0);
SASSERT(m_equations.empty());
m_processed.reset();
m_to_simplify.reset();
m_stats.reset();
m_conflict = false;
}
void grobner::add(pdd const& p, u_dependency * dep) {
if (p.is_zero()) return;
if (p.is_val()) set_conflict();
equation * eq = alloc(equation, p, dep, m_equations.size());
m_equations.push_back(eq);
m_to_simplify.insert(eq);
}
void grobner::del_equations(unsigned old_size) {
for (unsigned i = m_equations.size(); i-- > old_size; ) {
del_equation(m_equations[i]);
}
m_equations.shrink(old_size);
}
void grobner::del_equation(equation* eq) {
if (!eq) return;
unsigned idx = eq->idx();
m_processed.erase(eq);
m_to_simplify.erase(eq);
dealloc(m_equations[idx]);
m_equations[idx] = nullptr;
}
bool grobner::canceled() {
return m_limit.get_cancel_flag();
}
bool grobner::done() {
return m_to_simplify.size() + m_processed.size() >= m_config.m_eqs_threshold || canceled() || m_conflict;
}
void grobner::update_stats_max_degree_and_size(const equation& e) {
// TBD m_stats.m_max_expr_size = std::max(m_stats.m_max_expr_size, e.poly().size());
// TBD m_stats.m_max_expr_degree = std::max(m_stats.m_max_expr_degree, e.poly.degree());
}
std::ostream& grobner::print_stats(std::ostream & out) const {
return out << "stats:\nsteps = " << m_stats.m_compute_steps << "\nsimplified: " <<
m_stats.m_simplified << "\nsuperposed: " <<
m_stats.m_superposed << "\nexpr degree: " << m_stats.m_max_expr_degree <<
"\nexpr size: " << m_stats.m_max_expr_size << "\n";
}
std::ostream& grobner::display_equation(std::ostream & out, const equation & eq) const {
out << "expr = " << eq.poly() << "\n";
m_print_dep(eq.dep(), out);
return out;
}
std::ostream& grobner::display(std::ostream& out) const {
out << "processed\n"; for (auto e : m_processed) display_equation(out, *e);
out << "to_simplify\n"; for (auto e : m_to_simplify) display_equation(out, *e);
return out;
}
}

View file

@ -0,0 +1,126 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "math/dd/dd_pdd.h"
#include "util/dependency.h"
#include "util/obj_hashtable.h"
#include "util/region.h"
#include "util/rlimit.h"
namespace dd {
class grobner {
public:
struct stats {
unsigned m_simplified;
unsigned m_max_expr_size;
unsigned m_max_expr_degree;
unsigned m_superposed;
unsigned m_compute_steps;
void reset() { memset(this, 0, sizeof(*this)); }
};
struct config {
unsigned m_eqs_threshold;
};
private:
class equation {
bool m_processed; //!< state
unsigned m_idx; //!< position at m_equations
pdd m_poly; // simplified expressionted monomials
u_dependency * m_dep; //!< justification for the equality
public:
equation(pdd const& p, u_dependency* d, unsigned idx):
m_processed(false),
m_idx(idx),
m_poly(p),
m_dep(d)
{}
const pdd& poly() const { return m_poly; }
u_dependency * dep() const { return m_dep; }
unsigned hash() const { return m_idx; }
unsigned idx() const { return m_idx; }
void operator=(pdd& p) { m_poly = p; }
void operator=(u_dependency* d) { m_dep = d; }
bool is_processed() const { return m_processed; }
void set_processed(bool p) { m_processed = p; }
};
typedef obj_hashtable<equation> equation_set;
typedef ptr_vector<equation> equation_vector;
typedef std::function<void (u_dependency* d, std::ostream& out)> print_dep_t;
pdd_manager& m;
reslimit& m_limit;
stats m_stats;
config m_config;
print_dep_t m_print_dep;
equation_vector m_equations;
equation_set m_processed;
equation_set m_to_simplify;
mutable u_dependency_manager m_dep_manager;
equation_set m_all_eqs;
bool m_conflict;
public:
grobner(reslimit& lim, pdd_manager& m);
~grobner();
void operator=(print_dep_t& pd) { m_print_dep = pd; }
void operator=(config const& c) { m_config = c; }
void reset();
void compute_basis();
void add(pdd const&, u_dependency * dep);
equation_set const& equations();
u_dependency_manager& dep() const { return m_dep_manager; }
std::ostream& display_equation(std::ostream& out, const equation& eq) const;
std::ostream& display(std::ostream& out) const;
private:
bool compute_basis_step();
equation* pick_next();
bool canceled();
bool done();
void superpose(equation const& eq1, equation const& eq2);
void superpose(equation const& eq);
bool simplify_source_target(equation const& source, equation& target, bool& changed_leading_term);
bool simplify_using(equation_set& set, equation const& eq);
bool simplify_using(equation& eq, equation_set const& eqs);
void toggle_processed(equation& eq);
bool eliminate(equation& eq) { return is_trivial(eq) && (del_equation(&eq), true); }
bool is_trivial(equation const& eq) const { return eq.poly().is_zero(); }
bool is_simpler(equation const& eq1, equation const& eq2) { return eq1.poly() < eq2.poly(); }
bool check_conflict(equation const& eq) { return eq.poly().is_val() && !is_trivial(eq) && (set_conflict(), true); }
void set_conflict() { m_conflict = true; }
void del_equations(unsigned old_size);
void del_equation(equation* eq);
void update_stats_max_degree_and_size(const equation& e);
std::ostream& print_stats(std::ostream&) const;
};
}

View file

@ -321,6 +321,8 @@ public:
// Implement old dependency manager used by interval and groebner
typedef scoped_dependency_manager<void*> v_dependency_manager;
typedef scoped_dependency_manager<void*>::dependency v_dependency;
typedef scoped_dependency_manager<unsigned> u_dependency_manager;
typedef scoped_dependency_manager<unsigned>::dependency u_dependency;
#endif /* DEPENDENCY_H_ */