3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 21:38:44 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-09-29 13:27:49 -07:00
parent ee909b6374
commit 5df2715064
10 changed files with 458 additions and 15 deletions

View file

@ -23,6 +23,8 @@ z3_add_component(sat_smt
euf_proof.cpp
euf_relevancy.cpp
euf_solver.cpp
q_mbi.cpp
q_solver.cpp
sat_dual_solver.cpp
sat_th.cpp
user_solver.cpp

View file

@ -89,15 +89,12 @@ namespace array {
app* select = r.select->get_app();
SASSERT(a.is_select(select));
SASSERT(can_beta_reduce(r.n));
//std::cout << mk_bounded_pp(child, m) << " " << ctx.is_relevant(child) << " " << mk_bounded_pp(select, m) << "\n";
if (!ctx.is_relevant(child))
return false;
for (unsigned i = 1; i < select->get_num_args(); ++i)
if (!ctx.is_relevant(select->get_arg(i)))
return false;
TRACE("array", tout << "select-axiom: " << mk_bounded_pp(select, m, 2) << " " << mk_bounded_pp(child, m, 2) << "\n";);
// if (r.select->get_arg(0)->get_root() != r.n->get_root())
// std::cout << "delayed: " << r.m_delayed << "\n";
if (get_config().m_array_delay_exp_axiom && r.select->get_arg(0)->get_root() != r.n->get_root() && !r.m_delayed) {
IF_VERBOSE(11, verbose_stream() << "delay: " << mk_bounded_pp(child, m) << " " << mk_bounded_pp(select, m) << "\n");
ctx.push(set_delay_bit(*this, idx));
@ -117,7 +114,7 @@ namespace array {
else if (is_lambda(child))
return assert_select_lambda_axiom(select, child);
else
UNREACHABLE();
UNREACHABLE();
return false;
}

View file

@ -88,7 +88,6 @@ namespace array {
for (euf::enode* p : euf::enode_parents(n)) {
if (a.is_select(p->get_expr()) && p->get_arg(0)->get_root() == n->get_root()) {
// std::cout << "parent " << mk_bounded_pp(p->get_expr(), m) << "\n";
expr* value = values.get(p->get_root_id());
if (!value || value == fi->get_else())
continue;

View file

@ -61,6 +61,11 @@ also currently, as a base-line it is eager:
-------------------------------
A = B => forall i . M[i] = B[i]
A hypothetical refinement could use some limited HO pattern unification steps.
For example
lambda x y z . Y z y x = lambda x y z . X x z y
-> Y = lambda x y z . X ....
--*/
#include "ast/ast_ll_pp.h"
@ -191,17 +196,12 @@ namespace array {
push_axiom(congruence_axiom(n1, n2));
}
void solver::tracked_push(euf::enode_vector& v, euf::enode* n) {
v.push_back(n);
ctx.push(push_back_trail<euf::solver, euf::enode*, false>(v));
}
void solver::add_parent_select(theory_var v_child, euf::enode* select) {
SASSERT(a.is_select(select->get_expr()));
SASSERT(m.get_sort(select->get_arg(0)->get_expr()) == m.get_sort(var2expr(v_child)));
v_child = find(v_child);
tracked_push(get_var_data(v_child).m_parent_selects, select);
ctx.push_vec(get_var_data(v_child).m_parent_selects, select);
euf::enode* child = var2enode(v_child);
if (can_beta_reduce(child) && child != select->get_arg(0))
push_axiom(select_axiom(select, child));
@ -212,7 +212,7 @@ namespace array {
auto& d = get_var_data(find(v));
if (should_set_prop_upward(d))
set_prop_upward(d);
tracked_push(d.m_lambdas, lambda);
ctx.push_vec(d.m_lambdas, lambda);
if (should_set_prop_upward(d)) {
set_prop_upward(lambda);
propagate_select_axioms(d, lambda);
@ -222,7 +222,7 @@ namespace array {
void solver::add_parent_lambda(theory_var v_child, euf::enode* lambda) {
SASSERT(can_beta_reduce(lambda));
auto& d = get_var_data(find(v_child));
tracked_push(d.m_parent_lambdas, lambda);
ctx.push_vec(d.m_parent_lambdas, lambda);
if (should_set_prop_upward(d))
propagate_select_axioms(d, lambda);
}

View file

@ -211,8 +211,6 @@ namespace array {
void apply_sort_cnstr(euf::enode* n, sort* s) override;
bool is_shared(theory_var v) const override;
void tracked_push(euf::enode_vector& v, euf::enode* n);
void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2);
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) {}
void unmerge_eh(theory_var v1, theory_var v2) {}

View file

@ -215,6 +215,16 @@ namespace euf {
egraph& get_egraph() { return m_egraph; }
template <typename C>
void push(C const& c) { m_trail.push(c); }
template <typename V>
void push_vec(ptr_vector<V>& vec, V* val) {
vec.push_back(val);
push(push_back_trail<solver, V*, false>(vec));
}
template <typename V>
void push_vec(svector<V>& vec, V val) {
vec.push_back(val);
push(push_back_trail<solver, V, false>(vec));
}
euf_trail_stack& get_trail_stack() { return m_trail; }
void updt_params(params_ref const& p);

200
src/sat/smt/q_mbi.cpp Normal file
View file

@ -0,0 +1,200 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_mbi.cpp
Abstract:
Model-based quantifier instantiation plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#pragma once
#include "ast/ast_trail.h"
#include "ast/rewriter/var_subst.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/q_mbi.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/euf_solver.h"
namespace q {
mbqi::mbqi(euf::solver& ctx, solver& s):
ctx(ctx), qs(s), m(s.get_manager()) {}
void mbqi::restrict_to_universe(expr * sk, ptr_vector<expr> const & universe) {
SASSERT(!universe.empty());
expr_ref_vector eqs(m);
for (expr * e : universe) {
eqs.push_back(m.mk_eq(sk, e));
}
expr_ref fml(m.mk_or(eqs), m);
m_solver->assert_expr(fml);
}
void mbqi::register_value(expr* e) {
sort* s = m.get_sort(e);
obj_hashtable<expr>* values = nullptr;
if (!m_fresh.find(s, values)) {
values = alloc(obj_hashtable<expr>);
m_fresh.insert(s, values);
m_values.push_back(values);
}
if (!values->contains(e)) {
NOT_IMPLEMENTED_YET();
#if 0
for (expr* b : *values) {
m_context.add(m.mk_not(m.mk_eq(e, b)), __FUNCTION__);
}
#endif
values->insert(e);
#if 0
m_fresh_trail.push_back(e);
#endif
}
}
// sort -> [ value -> expr ]
// for fixed value return expr
// new fixed value is distinct from other expr
expr_ref mbqi::replace_model_value(expr* e) {
if (m.is_model_value(e)) {
register_value(e);
expr_ref r(e, m);
return r;
}
if (is_app(e) && to_app(e)->get_num_args() > 0) {
expr_ref_vector args(m);
for (expr* arg : *to_app(e)) {
args.push_back(replace_model_value(arg));
}
return expr_ref(m.mk_app(to_app(e)->get_decl(), args.size(), args.c_ptr()), m);
}
return expr_ref(e, m);
}
lbool mbqi::check_forall(quantifier* q) {
expr_ref_vector vars(m);
expr_ref body = specialize(q, vars);
init_solver();
::solver::scoped_push _sp(*m_solver);
m_solver->assert_expr(body);
lbool r = m_solver->check_sat(0, nullptr);
if (r == l_undef)
return r;
if (r == l_false)
return l_true;
model_ref mdl;
m_solver->get_model(mdl);
expr_ref proj = project(*mdl, q, vars);
if (!proj)
return l_undef;
if (is_forall(q))
qs.add_clause(~ctx.expr2literal(q), ctx.b_internalize(proj));
else
qs.add_clause(ctx.expr2literal(q), ~ctx.b_internalize(proj));
return l_true;
}
expr_ref mbqi::specialize(quantifier* q, expr_ref_vector& vars) {
expr_ref tmp(m);
unsigned sz = q->get_num_decls();
if (!m_model->eval_expr(q->get_expr(), tmp, true))
return expr_ref(m);
vars.resize(sz, nullptr);
for (unsigned i = 0; i < sz; ++i) {
sort* s = q->get_decl_sort(i);
vars[i] = m.mk_fresh_const(q->get_decl_name(i), s, false);
if (m_model->has_uninterpreted_sort(s))
restrict_to_universe(vars.get(i), m_model->get_universe(s));
}
var_subst subst(m);
expr_ref body = subst(tmp, vars.size(), vars.c_ptr());
if (is_forall(q))
body = m.mk_not(body);
return body;
}
expr_ref mbqi::project(model& mdl, quantifier* q, expr_ref_vector& vars) {
return basic_project(mdl, q, vars);
}
/**
* A most rudimentary projection operator that only tries to find proxy terms from the set of existing terms.
* Refinements:
* - grammar based from MBQI paper
* - quantifier elimination based on projection operators defined in qe.
*/
expr_ref mbqi::basic_project(model& mdl, quantifier* q, expr_ref_vector& vars) {
unsigned sz = q->get_num_decls();
expr_ref_vector vals(m);
vals.resize(sz, nullptr);
for (unsigned i = 0; i < sz; ++i) {
app* v = to_app(vars.get(i));
func_decl* f = v->get_decl();
expr_ref val(mdl.get_some_const_interp(f), m);
if (!val)
return expr_ref(m);
expr* t = nullptr;
NOT_IMPLEMENTED_YET();
#if 0
if (m_val2term.find(val, m.get_sort(v), t)) {
val = t;
}
else {
val = replace_model_value(val);
}
vals[i] = val;
#endif
}
var_subst subst(m);
expr_ref body = subst(q->get_expr(), vals.size(), vals.c_ptr());
return body;
}
lbool mbqi::operator()() {
lbool result = l_true;
m_model = nullptr;
for (sat::literal lit : qs.m_universal) {
quantifier* q = to_quantifier(ctx.bool_var2expr(lit.var()));
if (!ctx.is_relevant(q))
continue;
init_model();
switch (check_forall(q)) {
case l_false:
result = l_false;
break;
case l_undef:
if (result == l_true)
result = l_undef;
break;
default:
break;
}
}
return result;
}
void mbqi::init_model() {
if (m_model)
return;
m_model = alloc(model, m);
ctx.update_model(m_model);
}
void mbqi::init_solver() {
if (m_solver)
return;
NOT_IMPLEMENTED_YET();
}
}

56
src/sat/smt/q_mbi.h Normal file
View file

@ -0,0 +1,56 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_mbi.h
Abstract:
Model-based quantifier instantiation plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#pragma once
#include "sat/smt/sat_th.h"
#include "solver/solver.h"
namespace euf {
class solver;
}
namespace q {
class solver;
class mbqi {
euf::solver& ctx;
solver& qs;
ast_manager& m;
model_ref m_model;
ref<::solver> m_solver;
obj_map<sort, obj_hashtable<expr>*> m_fresh;
scoped_ptr_vector<obj_hashtable<expr>> m_values;
void restrict_to_universe(expr * sk, ptr_vector<expr> const & universe);
void register_value(expr* e);
expr_ref replace_model_value(expr* e);
lbool check_forall(quantifier* q);
expr_ref specialize(quantifier* q, expr_ref_vector& vars);
expr_ref project(model& mdl, quantifier* q, expr_ref_vector& vars);
expr_ref basic_project(model& mdl, quantifier* q, expr_ref_vector& vars);
void init_model();
void init_solver();
public:
mbqi(euf::solver& ctx, solver& s);
lbool operator()();
};
}

110
src/sat/smt/q_solver.cpp Normal file
View file

@ -0,0 +1,110 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
a_solver.cpp
Abstract:
Quantifier solver plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#pragma once
#include "ast/rewriter/var_subst.h"
#include "sat/smt/q_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/sat_th.h"
namespace q {
solver::solver(euf::solver& ctx):
th_euf_solver(ctx, ctx.get_manager().get_family_id("quant")),
m_mbqi(ctx, *this)
{}
void solver::asserted(sat::literal l) {
expr* e = bool_var2expr(l.var());
SASSERT(is_forall(e) || is_exists(e));
if (l.sign() == is_forall(e)) {
// existential force
add_clause(~l, skolemize(to_quantifier(e)));
}
else {
// universal force
add_clause(~l, uskolemize(to_quantifier(e)));
ctx.push_vec(m_universal, l);
}
}
sat::check_result solver::check() {
switch (m_mbqi()) {
case l_true: return sat::check_result::CR_DONE;
case l_false: return sat::check_result::CR_CONTINUE;
case l_undef: return sat::check_result::CR_GIVEUP;
}
return sat::check_result::CR_GIVEUP;
}
std::ostream& solver::display(std::ostream& out) const {
return out;
}
void solver::collect_statistics(statistics& st) const {
st.update("quantifier inst", m_stats.m_num_inst);
}
euf::th_solver* solver::clone(sat::solver* s, euf::solver& ctx) {
return alloc(solver, ctx);
}
bool solver::unit_propagate() {
return false;
}
euf::theory_var solver::mk_var(euf::enode* n) {
SASSERT(is_forall(n->get_expr()) || is_exists(n->get_expr()));
auto v = euf::th_euf_solver::mk_var(n);
ctx.attach_th_var(n, this, v);
return v;
}
sat::literal solver::skolemize(quantifier* q) {
sat::literal sk;
if (m_skolems.find(q, sk))
return sk;
expr_ref tmp(m);
expr_ref_vector vars(m);
unsigned sz = q->get_num_decls();
vars.resize(sz, nullptr);
for (unsigned i = 0; i < sz; ++i) {
vars[i] = m.mk_fresh_const(q->get_decl_name(i), q->get_decl_sort(i));
}
var_subst subst(m);
expr_ref body = subst(q->get_expr(), vars.size(), vars.c_ptr());
ctx.get_rewriter()(body);
sk = b_internalize(body);
if (is_forall(q))
sk.neg();
m_skolems.insert(q, sk);
// TODO find a different way than rely on backtrack stack, e,g., save body/q in ref-counted stack
ctx.push(insert_map<euf::solver, skolem_table, quantifier*>(m_skolems, q));
return sk;
}
/*
* Find initial values to instantiate quantifier with so to make it as hard as possible for solver
* to find values to free variables.
*/
sat::literal solver::uskolemize(quantifier* q) {
NOT_IMPLEMENTED_YET();
return sat::null_literal;
}
}

71
src/sat/smt/q_solver.h Normal file
View file

@ -0,0 +1,71 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
a_solver.h
Abstract:
Quantifier solver plugin
Author:
Nikolaj Bjorner (nbjorner) 2020-09-29
--*/
#pragma once
#include "util/obj_hashtable.h"
#include "ast/ast_trail.h"
#include "sat/smt/sat_th.h"
#include "sat/smt/q_mbi.h"
namespace euf {
class solver;
}
namespace q {
class solver : public euf::th_euf_solver {
typedef obj_map<quantifier, sat::literal> skolem_table;
friend class mbqi;
struct stats {
unsigned m_num_inst;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
stats m_stats;
mbqi m_mbqi;
skolem_table m_skolems;
sat::literal_vector m_universal;
sat::literal skolemize(quantifier* q);
sat::literal uskolemize(quantifier* q);
public:
solver(euf::solver& ctx);
~solver() override {}
bool is_external(sat::bool_var v) override { return false; }
void get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) override {}
void asserted(sat::literal l) override;
sat::check_result check() override;
std::ostream& display(std::ostream& out) const override;
std::ostream& display_justification(std::ostream& out, sat::ext_justification_idx idx) const override { UNREACHABLE(); return out; }
std::ostream& display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const override { UNREACHABLE(); return out; }
void collect_statistics(statistics& st) const override;
euf::th_solver* clone(sat::solver* s, euf::solver& ctx) override;
bool unit_propagate() override;
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override { UNREACHABLE(); return sat::null_literal; }
void internalize(expr* e, bool redundant) override { UNREACHABLE(); }
euf::theory_var mk_var(euf::enode* n) override;
ast_manager& get_manager() { return m; }
};
}