3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00

create hnf cuts too, when gomory_cut_period is 2

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2018-07-07 16:18:42 -07:00
parent 3c230727bb
commit 5cfc3591d2

View file

@ -40,7 +40,7 @@ def_module_params(module_name='smt',
('bv.reflect', BOOL, True, 'create enode for every bit-vector term'), ('bv.reflect', BOOL, True, 'create enode for every bit-vector term'),
('bv.enable_int2bv', BOOL, True, 'enable support for int2bv and bv2int operators'), ('bv.enable_int2bv', BOOL, True, 'enable support for int2bv and bv2int operators'),
('arith.random_initial_value', BOOL, False, 'use random initial values in the simplex-based procedure for linear arithmetic'), ('arith.random_initial_value', BOOL, False, 'use random initial values in the simplex-based procedure for linear arithmetic'),
('arith.solver', UINT, 6, 'arithmetic solver: 0 - no solver, 1 - bellman-ford based solver (diff. logic only), 2 - simplex based solver, 3 - floyd-warshall based solver (diff. logic only) and no theory combination 4 - utvpi, 5 - infinitary lra, 6 - lra solver'), ('arith.solver', UINT, 2, 'arithmetic solver: 0 - no solver, 1 - bellman-ford based solver (diff. logic only), 2 - simplex based solver, 3 - floyd-warshall based solver (diff. logic only) and no theory combination 4 - utvpi, 5 - infinitary lra, 6 - lra solver'),
('arith.nl', BOOL, True, '(incomplete) nonlinear arithmetic support based on Groebner basis and interval propagation'), ('arith.nl', BOOL, True, '(incomplete) nonlinear arithmetic support based on Groebner basis and interval propagation'),
('arith.nl.gb', BOOL, True, 'groebner Basis computation, this option is ignored when arith.nl=false'), ('arith.nl.gb', BOOL, True, 'groebner Basis computation, this option is ignored when arith.nl=false'),
('arith.nl.branching', BOOL, True, 'branching on integer variables in non linear clusters'), ('arith.nl.branching', BOOL, True, 'branching on integer variables in non linear clusters'),