mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
fix #7029
This commit is contained in:
parent
ed5ab54ab6
commit
5c1e7f7112
|
@ -551,25 +551,10 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
|
|||
}
|
||||
|
||||
if (m_anum_simp) {
|
||||
if (is_numeral(arg1, a1) && m_util.is_irrational_algebraic_numeral(arg2)) {
|
||||
anum_manager & am = m_util.am();
|
||||
scoped_anum v1(am);
|
||||
am.set(v1, a1.to_mpq());
|
||||
anum const & v2 = m_util.to_irrational_algebraic_numeral(arg2);
|
||||
ANUM_LE_GE_EQ();
|
||||
}
|
||||
if (m_util.is_irrational_algebraic_numeral(arg1) && is_numeral(arg2, a2)) {
|
||||
anum_manager & am = m_util.am();
|
||||
anum const & v1 = m_util.to_irrational_algebraic_numeral(arg1);
|
||||
scoped_anum v2(am);
|
||||
am.set(v2, a2.to_mpq());
|
||||
ANUM_LE_GE_EQ();
|
||||
}
|
||||
if (m_util.is_irrational_algebraic_numeral(arg1) && m_util.is_irrational_algebraic_numeral(arg2)) {
|
||||
anum_manager & am = m_util.am();
|
||||
anum const & v1 = m_util.to_irrational_algebraic_numeral(arg1);
|
||||
anum const & v2 = m_util.to_irrational_algebraic_numeral(arg2);
|
||||
ANUM_LE_GE_EQ();
|
||||
auto& am = m_util.am();
|
||||
scoped_anum v1(am), v2(am);
|
||||
if (is_algebraic_numeral(arg1, v1) && is_algebraic_numeral(arg2, v2)) {
|
||||
ANUM_LE_GE_EQ();
|
||||
}
|
||||
}
|
||||
br_status st1 = is_separated(arg1, arg2, kind, result);
|
||||
|
@ -669,6 +654,7 @@ br_status arith_rewriter::mk_le_ge_eq_core(expr * arg1, expr * arg2, op_kind kin
|
|||
return BR_FAILED;
|
||||
}
|
||||
|
||||
|
||||
br_status arith_rewriter::mk_le_core(expr * arg1, expr * arg2, expr_ref & result) {
|
||||
return mk_le_ge_eq_core(arg1, arg2, LE, result);
|
||||
}
|
||||
|
@ -744,18 +730,26 @@ bool arith_rewriter::mk_eq_mod(expr* arg1, expr* arg2, expr_ref& result) {
|
|||
if (g == 1) {
|
||||
expr_ref nb(m_util.mk_numeral(b, true), m);
|
||||
result = m.mk_eq(m_util.mk_mod(u, y),
|
||||
m_util.mk_mod(m_util.mk_mul(nb, arg2), y));
|
||||
m_util.mk_mod(m_util.mk_mul(nb, arg2), y));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
expr_ref arith_rewriter::neg_monomial(expr* e) const {
|
||||
expr_ref arith_rewriter::neg_monomial(expr* e) {
|
||||
expr_ref_vector args(m);
|
||||
rational a1;
|
||||
if (m_util.is_numeral(e, a1))
|
||||
args.push_back(m_util.mk_numeral(-a1, e->get_sort()));
|
||||
else if (m_util.is_irrational_algebraic_numeral(e)) {
|
||||
auto& n = m_util.to_irrational_algebraic_numeral(e);
|
||||
auto& am = m_util.am();
|
||||
scoped_anum new_n(am);
|
||||
am.set(new_n, n);
|
||||
am.neg(new_n);
|
||||
args.push_back(m_util.mk_numeral(am, new_n, m_util.is_int(e)));
|
||||
}
|
||||
else if (is_app(e) && m_util.is_mul(e)) {
|
||||
if (is_numeral(to_app(e)->get_arg(0), a1)) {
|
||||
if (!a1.is_minus_one()) {
|
||||
|
@ -780,7 +774,7 @@ expr_ref arith_rewriter::neg_monomial(expr* e) const {
|
|||
}
|
||||
}
|
||||
|
||||
bool arith_rewriter::is_neg_poly(expr* t, expr_ref& neg) const {
|
||||
bool arith_rewriter::is_neg_poly(expr* t, expr_ref& neg) {
|
||||
rational r;
|
||||
if (m_util.is_mul(t) && is_numeral(to_app(t)->get_arg(0), r) && r.is_neg()) {
|
||||
neg = neg_monomial(t);
|
||||
|
@ -824,6 +818,36 @@ bool arith_rewriter::is_anum_simp_target(unsigned num_args, expr * const * args)
|
|||
return false;
|
||||
}
|
||||
|
||||
bool arith_rewriter::is_algebraic_numeral(expr* n, scoped_anum& a) {
|
||||
auto& am = m_util.am();
|
||||
expr* x, *y;
|
||||
rational r;
|
||||
if (m_util.is_mul(n, x, y)) {
|
||||
scoped_anum ax(am), ay(am);
|
||||
if (is_algebraic_numeral(x, ax) && is_algebraic_numeral(y, ay)) {
|
||||
am.mul(ax, ay, a);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else if (m_util.is_add(n, x, y)) {
|
||||
scoped_anum ax(am), ay(am);
|
||||
if (is_algebraic_numeral(x, ax) && is_algebraic_numeral(y, ay)) {
|
||||
am.add(ax, ay, a);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else if (m_util.is_numeral(n, r)) {
|
||||
am.set(a, r.to_mpq());
|
||||
return true;
|
||||
}
|
||||
else if (m_util.is_irrational_algebraic_numeral(n)) {
|
||||
am.set(a, m_util.to_irrational_algebraic_numeral(n));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
br_status arith_rewriter::mk_add_core(unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
if (is_anum_simp_target(num_args, args)) {
|
||||
expr_ref_buffer new_args(m);
|
||||
|
|
|
@ -21,6 +21,7 @@ Notes:
|
|||
#include "ast/rewriter/poly_rewriter.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "ast/seq_decl_plugin.h"
|
||||
#include "math/polynomial/algebraic_numbers.h"
|
||||
|
||||
class arith_rewriter_core {
|
||||
protected:
|
||||
|
@ -80,6 +81,7 @@ class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
|
|||
void updt_local_params(params_ref const & p);
|
||||
|
||||
bool is_anum_simp_target(unsigned num_args, expr * const * args);
|
||||
bool is_algebraic_numeral(expr* n, scoped_anum& a);
|
||||
|
||||
br_status mk_div_irrat_rat(expr * arg1, expr * arg2, expr_ref & result);
|
||||
br_status mk_div_rat_irrat(expr * arg1, expr * arg2, expr_ref & result);
|
||||
|
@ -97,8 +99,8 @@ class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
|
|||
bool is_2_pi_integer_offset(expr * t, expr * & m);
|
||||
bool is_pi_integer(expr * t);
|
||||
bool is_pi_integer_offset(expr * t, expr * & m);
|
||||
bool is_neg_poly(expr* e, expr_ref& neg) const;
|
||||
expr_ref neg_monomial(expr * e) const;
|
||||
bool is_neg_poly(expr* e, expr_ref& neg);
|
||||
expr_ref neg_monomial(expr * e);
|
||||
expr * mk_sin_value(rational const & k);
|
||||
app * mk_sqrt(rational const & k);
|
||||
bool divides(expr* d, expr* n, expr_ref& result);
|
||||
|
|
Loading…
Reference in a new issue