mirror of
https://github.com/Z3Prover/z3
synced 2025-08-11 05:30:51 +00:00
Spacer engine for HORN logic
The algorithms implemented in the engine are described in the following papers Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan: Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015: 89-96 Nikolaj Bjørner, Arie Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015: 263-281 Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014: 17-34
This commit is contained in:
parent
9f9dc5e19f
commit
5b9bf74787
54 changed files with 18050 additions and 3 deletions
355
src/muz/spacer/spacer_itp_solver.cpp
Normal file
355
src/muz/spacer/spacer_itp_solver.cpp
Normal file
|
@ -0,0 +1,355 @@
|
|||
/**
|
||||
Copyright (c) 2017 Arie Gurfinkel
|
||||
|
||||
Module Name:
|
||||
|
||||
spacer_itp_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
A solver that produces interpolated unsat cores
|
||||
|
||||
Author:
|
||||
|
||||
Arie Gurfinkel
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include"spacer_itp_solver.h"
|
||||
#include"ast.h"
|
||||
#include"spacer_util.h"
|
||||
#include"spacer_farkas_learner.h"
|
||||
#include"expr_replacer.h"
|
||||
#include "spacer_unsat_core_learner.h"
|
||||
#include "spacer_unsat_core_plugin.h"
|
||||
|
||||
namespace spacer {
|
||||
void itp_solver::push ()
|
||||
{
|
||||
m_defs.push_back (def_manager (*this));
|
||||
m_solver.push ();
|
||||
}
|
||||
|
||||
void itp_solver::pop (unsigned n)
|
||||
{
|
||||
m_solver.pop (n);
|
||||
unsigned lvl = m_defs.size ();
|
||||
SASSERT (n <= lvl);
|
||||
unsigned new_lvl = lvl-n;
|
||||
while (m_defs.size() > new_lvl) {
|
||||
m_num_proxies -= m_defs.back ().m_defs.size ();
|
||||
m_defs.pop_back ();
|
||||
}
|
||||
}
|
||||
|
||||
app* itp_solver::fresh_proxy ()
|
||||
{
|
||||
if (m_num_proxies == m_proxies.size()) {
|
||||
std::stringstream name;
|
||||
name << "spacer_proxy!" << m_proxies.size ();
|
||||
app_ref res(m);
|
||||
res = m.mk_const (symbol (name.str ().c_str ()),
|
||||
m.mk_bool_sort ());
|
||||
m_proxies.push_back (res);
|
||||
|
||||
// -- add the new proxy to proxy eliminator
|
||||
proof_ref pr(m);
|
||||
pr = m.mk_asserted (m.mk_true ());
|
||||
m_elim_proxies_sub.insert (res, m.mk_true (), pr);
|
||||
|
||||
}
|
||||
return m_proxies.get (m_num_proxies++);
|
||||
}
|
||||
|
||||
app* itp_solver::mk_proxy (expr *v)
|
||||
{
|
||||
{
|
||||
expr *e = v;
|
||||
m.is_not (v, e);
|
||||
if (is_uninterp_const(e)) { return to_app(v); }
|
||||
}
|
||||
|
||||
def_manager &def = m_defs.size () > 0 ? m_defs.back () : m_base_defs;
|
||||
return def.mk_proxy (v);
|
||||
}
|
||||
|
||||
bool itp_solver::mk_proxies (expr_ref_vector &v, unsigned from)
|
||||
{
|
||||
bool dirty = false;
|
||||
for (unsigned i = from, sz = v.size(); i < sz; ++i) {
|
||||
app *p = mk_proxy (v.get (i));
|
||||
dirty |= (v.get (i) != p);
|
||||
v[i] = p;
|
||||
}
|
||||
return dirty;
|
||||
}
|
||||
|
||||
void itp_solver::push_bg (expr *e)
|
||||
{
|
||||
if (m_assumptions.size () > m_first_assumption)
|
||||
{ m_assumptions.shrink(m_first_assumption); }
|
||||
m_assumptions.push_back (e);
|
||||
m_first_assumption = m_assumptions.size ();
|
||||
}
|
||||
|
||||
void itp_solver::pop_bg (unsigned n)
|
||||
{
|
||||
if (n == 0) { return; }
|
||||
|
||||
if (m_assumptions.size () > m_first_assumption)
|
||||
{ m_assumptions.shrink(m_first_assumption); }
|
||||
m_first_assumption = m_first_assumption > n ? m_first_assumption - n : 0;
|
||||
m_assumptions.shrink (m_first_assumption);
|
||||
}
|
||||
|
||||
unsigned itp_solver::get_num_bg () {return m_first_assumption;}
|
||||
|
||||
lbool itp_solver::check_sat (unsigned num_assumptions, expr * const *assumptions)
|
||||
{
|
||||
// -- remove any old assumptions
|
||||
if (m_assumptions.size () > m_first_assumption)
|
||||
{ m_assumptions.shrink(m_first_assumption); }
|
||||
|
||||
// -- replace theory literals in background assumptions with proxies
|
||||
mk_proxies (m_assumptions);
|
||||
// -- in case mk_proxies added new literals, they are all background
|
||||
m_first_assumption = m_assumptions.size ();
|
||||
|
||||
m_assumptions.append (num_assumptions, assumptions);
|
||||
m_is_proxied = mk_proxies (m_assumptions, m_first_assumption);
|
||||
|
||||
lbool res;
|
||||
res = m_solver.check_sat (m_assumptions.size (), m_assumptions.c_ptr ());
|
||||
set_status (res);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
app* itp_solver::def_manager::mk_proxy (expr *v)
|
||||
{
|
||||
app* r;
|
||||
if (m_expr2proxy.find(v, r)) { return r; }
|
||||
|
||||
ast_manager &m = m_parent.m;
|
||||
app_ref proxy(m);
|
||||
app_ref def(m);
|
||||
proxy = m_parent.fresh_proxy ();
|
||||
def = m.mk_or (m.mk_not (proxy), v);
|
||||
m_defs.push_back (def);
|
||||
m_expr2proxy.insert (v, proxy);
|
||||
m_proxy2def.insert (proxy, def);
|
||||
|
||||
m_parent.assert_expr (def.get ());
|
||||
return proxy;
|
||||
}
|
||||
|
||||
bool itp_solver::def_manager::is_proxy (app *k, app_ref &def)
|
||||
{
|
||||
app *r = NULL;
|
||||
bool found = m_proxy2def.find (k, r);
|
||||
def = r;
|
||||
return found;
|
||||
}
|
||||
|
||||
void itp_solver::def_manager::reset ()
|
||||
{
|
||||
m_expr2proxy.reset ();
|
||||
m_proxy2def.reset ();
|
||||
m_defs.reset ();
|
||||
}
|
||||
|
||||
bool itp_solver::def_manager::is_proxy_def (expr *v)
|
||||
{
|
||||
// XXX This might not be the most robust way to check
|
||||
return m_defs.contains (v);
|
||||
}
|
||||
|
||||
bool itp_solver::is_proxy(expr *e, app_ref &def)
|
||||
{
|
||||
if (!is_uninterp_const(e)) { return false; }
|
||||
|
||||
app *a = to_app (e);
|
||||
|
||||
for (int i = m_defs.size (); i > 0; --i)
|
||||
if (m_defs[i-1].is_proxy (a, def))
|
||||
{ return true; }
|
||||
|
||||
if (m_base_defs.is_proxy (a, def))
|
||||
{ return true; }
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void itp_solver::collect_statistics (statistics &st) const
|
||||
{
|
||||
m_solver.collect_statistics (st);
|
||||
st.update ("time.itp_solver.itp_core", m_itp_watch.get_seconds ());
|
||||
}
|
||||
|
||||
void itp_solver::reset_statistics ()
|
||||
{
|
||||
m_itp_watch.reset ();
|
||||
}
|
||||
|
||||
void itp_solver::get_unsat_core (ptr_vector<expr> &core)
|
||||
{
|
||||
m_solver.get_unsat_core (core);
|
||||
undo_proxies_in_core (core);
|
||||
}
|
||||
void itp_solver::undo_proxies_in_core (ptr_vector<expr> &r)
|
||||
{
|
||||
app_ref e(m);
|
||||
expr_fast_mark1 bg;
|
||||
for (unsigned i = 0; i < m_first_assumption; ++i)
|
||||
{ bg.mark(m_assumptions.get(i)); }
|
||||
|
||||
// expand proxies
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0, sz = r.size(); i < sz; ++i) {
|
||||
// skip background assumptions
|
||||
if (bg.is_marked(r[i])) { continue; }
|
||||
|
||||
// -- undo proxies, but only if they were introduced in check_sat
|
||||
if (m_is_proxied && is_proxy(r[i], e)) {
|
||||
SASSERT (m.is_or (e));
|
||||
r[j] = e->get_arg (1);
|
||||
} else if (i != j) { r[j] = r[i]; }
|
||||
j++;
|
||||
}
|
||||
r.shrink (j);
|
||||
}
|
||||
|
||||
void itp_solver::undo_proxies (expr_ref_vector &r)
|
||||
{
|
||||
app_ref e(m);
|
||||
// expand proxies
|
||||
for (unsigned i = 0, sz = r.size (); i < sz; ++i)
|
||||
if (is_proxy(r.get(i), e)) {
|
||||
SASSERT (m.is_or (e));
|
||||
r[i] = e->get_arg (1);
|
||||
}
|
||||
}
|
||||
|
||||
void itp_solver::get_unsat_core (expr_ref_vector &_core)
|
||||
{
|
||||
ptr_vector<expr> core;
|
||||
get_unsat_core (core);
|
||||
_core.append (core.size (), core.c_ptr ());
|
||||
}
|
||||
|
||||
void itp_solver::elim_proxies (expr_ref_vector &v)
|
||||
{
|
||||
expr_ref f = mk_and (v);
|
||||
scoped_ptr<expr_replacer> rep = mk_expr_simp_replacer (m);
|
||||
rep->set_substitution (&m_elim_proxies_sub);
|
||||
(*rep) (f);
|
||||
v.reset ();
|
||||
flatten_and (f, v);
|
||||
}
|
||||
|
||||
void itp_solver::get_itp_core (expr_ref_vector &core)
|
||||
{
|
||||
scoped_watch _t_ (m_itp_watch);
|
||||
|
||||
typedef obj_hashtable<expr> expr_set;
|
||||
expr_set B;
|
||||
for (unsigned i = m_first_assumption, sz = m_assumptions.size(); i < sz; ++i) {
|
||||
expr *a = m_assumptions.get (i);
|
||||
app_ref def(m);
|
||||
if (is_proxy(a, def)) { B.insert(def.get()); }
|
||||
B.insert (a);
|
||||
}
|
||||
|
||||
proof_ref pr(m);
|
||||
pr = get_proof ();
|
||||
|
||||
if (!m_new_unsat_core) {
|
||||
// old code
|
||||
farkas_learner learner_old;
|
||||
learner_old.set_split_literals(m_split_literals);
|
||||
|
||||
learner_old.get_lemmas (pr, B, core);
|
||||
elim_proxies (core);
|
||||
simplify_bounds (core); // XXX potentially redundant
|
||||
} else {
|
||||
// new code
|
||||
unsat_core_learner learner(m);
|
||||
|
||||
if (m_farkas_optimized) {
|
||||
if (true) // TODO: proper options
|
||||
{
|
||||
unsat_core_plugin_farkas_lemma_optimized* plugin_farkas_lemma_optimized = alloc(unsat_core_plugin_farkas_lemma_optimized, learner,m);
|
||||
learner.register_plugin(plugin_farkas_lemma_optimized);
|
||||
}
|
||||
else
|
||||
{
|
||||
unsat_core_plugin_farkas_lemma_bounded* plugin_farkas_lemma_bounded = alloc(unsat_core_plugin_farkas_lemma_bounded, learner,m);
|
||||
learner.register_plugin(plugin_farkas_lemma_bounded);
|
||||
}
|
||||
|
||||
} else {
|
||||
unsat_core_plugin_farkas_lemma* plugin_farkas_lemma = alloc(unsat_core_plugin_farkas_lemma, learner, m_split_literals, m_farkas_a_const);
|
||||
learner.register_plugin(plugin_farkas_lemma);
|
||||
}
|
||||
|
||||
if (m_minimize_unsat_core) {
|
||||
unsat_core_plugin_min_cut* plugin_min_cut = alloc(unsat_core_plugin_min_cut, learner, m);
|
||||
learner.register_plugin(plugin_min_cut);
|
||||
} else {
|
||||
unsat_core_plugin_lemma* plugin_lemma = alloc(unsat_core_plugin_lemma, learner);
|
||||
learner.register_plugin(plugin_lemma);
|
||||
}
|
||||
|
||||
learner.compute_unsat_core(pr, B, core);
|
||||
|
||||
elim_proxies (core);
|
||||
simplify_bounds (core); // XXX potentially redundant
|
||||
|
||||
// // debug
|
||||
// expr_ref_vector core2(m);
|
||||
// unsat_core_learner learner2(m);
|
||||
//
|
||||
// unsat_core_plugin_farkas_lemma* plugin_farkas_lemma2 = alloc(unsat_core_plugin_farkas_lemma, learner2, m_split_literals);
|
||||
// learner2.register_plugin(plugin_farkas_lemma2);
|
||||
// unsat_core_plugin_lemma* plugin_lemma2 = alloc(unsat_core_plugin_lemma, learner2);
|
||||
// learner2.register_plugin(plugin_lemma2);
|
||||
// learner2.compute_unsat_core(pr, B, core2);
|
||||
//
|
||||
// elim_proxies (core2);
|
||||
// simplify_bounds (core2);
|
||||
//
|
||||
// IF_VERBOSE(2,
|
||||
// verbose_stream () << "Itp Core:\n"
|
||||
// << mk_pp (mk_and (core), m) << "\n";);
|
||||
// IF_VERBOSE(2,
|
||||
// verbose_stream () << "Itp Core2:\n"
|
||||
// << mk_pp (mk_and (core2), m) << "\n";);
|
||||
//SASSERT(mk_and (core) == mk_and (core2));
|
||||
}
|
||||
|
||||
IF_VERBOSE(2,
|
||||
verbose_stream () << "Itp Core:\n"
|
||||
<< mk_pp (mk_and (core), m) << "\n";);
|
||||
|
||||
}
|
||||
|
||||
void itp_solver::refresh ()
|
||||
{
|
||||
// only refresh in non-pushed state
|
||||
SASSERT (m_defs.size () == 0);
|
||||
expr_ref_vector assertions (m);
|
||||
for (unsigned i = 0, e = m_solver.get_num_assertions(); i < e; ++i) {
|
||||
expr* a = m_solver.get_assertion (i);
|
||||
if (!m_base_defs.is_proxy_def(a)) { assertions.push_back(a); }
|
||||
|
||||
}
|
||||
m_base_defs.reset ();
|
||||
NOT_IMPLEMENTED_YET ();
|
||||
// solver interface does not have a reset method. need to introduce it somewhere.
|
||||
// m_solver.reset ();
|
||||
for (unsigned i = 0, e = assertions.size (); i < e; ++i)
|
||||
{ m_solver.assert_expr(assertions.get(i)); }
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue