3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-12 06:00:53 +00:00

Spacer engine for HORN logic

The algorithms implemented in the engine are described in the following papers

Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan:
Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015: 89-96

Nikolaj Bjørner, Arie Gurfinkel:
Property Directed Polyhedral Abstraction. VMCAI 2015: 263-281

Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki:
SMT-Based Model Checking for Recursive Programs. CAV 2014: 17-34
This commit is contained in:
Arie Gurfinkel 2017-07-31 15:33:41 -04:00
parent 9f9dc5e19f
commit 5b9bf74787
54 changed files with 18050 additions and 3 deletions

View file

@ -0,0 +1,294 @@
/*++
Copyright (c) 2017 Microsoft Corporation and Arie Gurfinkel
Module Name:
spacer_generalizers.cpp
Abstract:
Lemma generalizers.
Author:
Nikolaj Bjorner (nbjorner) 2011-11-20.
Arie Gurfinkel
Revision History:
--*/
#include "spacer_context.h"
#include "spacer_generalizers.h"
#include "expr_abstract.h"
#include "var_subst.h"
#include "for_each_expr.h"
#include "obj_equiv_class.h"
namespace spacer {
void lemma_sanity_checker::operator()(lemma_ref &lemma) {
unsigned uses_level;
expr_ref_vector cube(lemma->get_ast_manager());
cube.append(lemma->get_cube());
ENSURE(lemma->get_pob()->pt().check_inductive(lemma->level(),
cube, uses_level));
}
// ------------------------
// lemma_bool_inductive_generalizer
/// Inductive generalization by dropping and expanding literals
void lemma_bool_inductive_generalizer::operator()(lemma_ref &lemma) {
if (lemma->get_cube().empty()) return;
m_st.count++;
scoped_watch _w_(m_st.watch);
unsigned uses_level;
pred_transformer &pt = lemma->get_pob()->pt();
ast_manager &m = pt.get_ast_manager();
expr_ref_vector cube(m);
cube.append(lemma->get_cube());
bool dirty = false;
expr_ref true_expr(m.mk_true(), m);
ptr_vector<expr> processed;
expr_ref_vector extra_lits(m);
unsigned i = 0, num_failures = 0;
while (i < cube.size() &&
(!m_failure_limit || num_failures < m_failure_limit)) {
expr_ref lit(m);
lit = cube.get(i);
cube[i] = true_expr;
if (cube.size() > 1 &&
pt.check_inductive(lemma->level(), cube, uses_level)) {
num_failures = 0;
dirty = true;
for (i = 0; i < cube.size() &&
processed.contains(cube.get(i)); ++i);
} else {
// check if the literal can be expanded and any single
// literal in the expansion can replace it
extra_lits.reset();
extra_lits.push_back(lit);
expand_literals(m, extra_lits);
SASSERT(extra_lits.size() > 0);
bool found = false;
if (extra_lits.get(0) != lit) {
SASSERT(extra_lits.size() > 1);
for (unsigned j = 0, sz = extra_lits.size(); !found && j < sz; ++j) {
cube[i] = extra_lits.get(j);
if (pt.check_inductive(lemma->level(), cube, uses_level)) {
num_failures = 0;
dirty = true;
found = true;
processed.push_back(extra_lits.get(j));
for (i = 0; i < cube.size() &&
processed.contains(cube.get(i)); ++i);
}
}
}
if (!found) {
cube[i] = lit;
processed.push_back(lit);
++num_failures;
++m_st.num_failures;
++i;
}
}
}
if (dirty) {
TRACE("spacer",
tout << "Generalized from:\n" << mk_and(lemma->get_cube())
<< "\ninto\n" << mk_and(cube) << "\n";);
lemma->update_cube(lemma->get_pob(), cube);
SASSERT(uses_level >= lemma->level());
lemma->set_level(uses_level);
}
}
void lemma_bool_inductive_generalizer::collect_statistics(statistics &st) const
{
st.update("time.spacer.solve.reach.gen.bool_ind", m_st.watch.get_seconds());
st.update("bool inductive gen", m_st.count);
st.update("bool inductive gen failures", m_st.num_failures);
}
void unsat_core_generalizer::operator()(lemma_ref &lemma)
{
m_st.count++;
scoped_watch _w_(m_st.watch);
ast_manager &m = lemma->get_ast_manager();
pred_transformer &pt = lemma->get_pob()->pt();
unsigned old_sz = lemma->get_cube().size();
unsigned old_level = lemma->level();
unsigned uses_level;
expr_ref_vector core(m);
bool r;
r = pt.is_invariant(lemma->level(), lemma->get_expr(), uses_level, &core);
SASSERT(r);
CTRACE("spacer", old_sz > core.size(),
tout << "unsat core reduced lemma from: "
<< old_sz << " to " << core.size() << "\n";);
CTRACE("spacer", old_level < uses_level,
tout << "unsat core moved lemma up from: "
<< old_level << " to " << uses_level << "\n";);
if (old_sz > core.size()) {
lemma->update_cube(lemma->get_pob(), core);
lemma->set_level(uses_level);
}
}
void unsat_core_generalizer::collect_statistics(statistics &st) const
{
st.update("time.spacer.solve.reach.gen.unsat_core", m_st.watch.get_seconds());
st.update("gen.unsat_core.cnt", m_st.count);
st.update("gen.unsat_core.fail", m_st.num_failures);
}
namespace {
class collect_array_proc {
array_util m_au;
func_decl_set &m_symbs;
sort *m_sort;
public:
collect_array_proc(ast_manager &m, func_decl_set& s) :
m_au(m), m_symbs(s), m_sort(NULL) {}
void operator()(app* a)
{
if (a->get_family_id() == null_family_id && m_au.is_array(a)) {
if (m_sort && m_sort != get_sort(a)) { return; }
if (!m_sort) { m_sort = get_sort(a); }
m_symbs.insert(a->get_decl());
}
}
void operator()(var*) {}
void operator()(quantifier*) {}
};
}
void lemma_array_eq_generalizer::operator() (lemma_ref &lemma)
{
TRACE("core_array_eq", tout << "Looking for equalities\n";);
// -- find array constants
ast_manager &m = lemma->get_ast_manager();
manager &pm = m_ctx.get_manager();
expr_ref_vector core(m);
expr_ref v(m);
func_decl_set symb;
collect_array_proc cap(m, symb);
core.append (lemma->get_cube());
v = mk_and(core);
for_each_expr(cap, v);
TRACE("core_array_eq",
tout << "found " << symb.size() << " array variables in: \n"
<< mk_pp(v, m) << "\n";);
// too few constants
if (symb.size() <= 1) { return; }
// too many constants, skip this
if (symb.size() >= 8) { return; }
// -- for every pair of variables, try an equality
typedef func_decl_set::iterator iterator;
ptr_vector<func_decl> vsymbs;
for (iterator it = symb.begin(), end = symb.end();
it != end; ++it)
{ vsymbs.push_back(*it); }
expr_ref_vector eqs(m);
for (unsigned i = 0, sz = vsymbs.size(); i < sz; ++i)
for (unsigned j = i + 1; j < sz; ++j)
{ eqs.push_back(m.mk_eq(m.mk_const(vsymbs.get(i)),
m.mk_const(vsymbs.get(j)))); }
smt::kernel solver(m, m_ctx.get_manager().fparams2());
expr_ref_vector lits(m);
for (unsigned i = 0, core_sz = core.size(); i < core_sz; ++i) {
SASSERT(lits.size() == i);
solver.push();
solver.assert_expr(core.get(i));
for (unsigned j = 0, eqs_sz = eqs.size(); j < eqs_sz; ++j) {
solver.push();
solver.assert_expr(eqs.get(j));
lbool res = solver.check();
solver.pop(1);
if (res == l_false) {
TRACE("core_array_eq",
tout << "strengthened " << mk_pp(core.get(i), m)
<< " with " << mk_pp(m.mk_not(eqs.get(j)), m) << "\n";);
lits.push_back(m.mk_not(eqs.get(j)));
break;
}
}
solver.pop(1);
if (lits.size() == i) { lits.push_back(core.get(i)); }
}
/**
HACK: if the first 3 arguments of pt are boolean, assume
they correspond to SeaHorn encoding and condition the equality on them.
*/
// pred_transformer &pt = n.pt ();
// if (pt.sig_size () >= 3 &&
// m.is_bool (pt.sig (0)->get_range ()) &&
// m.is_bool (pt.sig (1)->get_range ()) &&
// m.is_bool (pt.sig (2)->get_range ()))
// {
// lits.push_back (m.mk_const (pm.o2n(pt.sig (0), 0)));
// lits.push_back (m.mk_not (m.mk_const (pm.o2n(pt.sig (1), 0))));
// lits.push_back (m.mk_not (m.mk_const (pm.o2n(pt.sig (2), 0))));
// }
TRACE("core_array_eq", tout << "new possible core "
<< mk_pp(pm.mk_and(lits), m) << "\n";);
pred_transformer &pt = lemma->get_pob()->pt();
// -- check if it is consistent with the transition relation
unsigned uses_level1;
if (pt.check_inductive(lemma->level(), lits, uses_level1)) {
TRACE("core_array_eq", tout << "Inductive!\n";);
lemma->update_cube(lemma->get_pob(),lits);
lemma->set_level(uses_level1);
return;
} else
{ TRACE("core_array_eq", tout << "Not-Inductive!\n";);}
}
void lemma_eq_generalizer::operator() (lemma_ref &lemma)
{
TRACE("core_eq", tout << "Transforming equivalence classes\n";);
ast_manager &m = m_ctx.get_ast_manager();
expr_ref_vector core(m);
core.append (lemma->get_cube());
bool dirty;
expr_equiv_class eq_classes(m);
factor_eqs(core, eq_classes);
// create all possible equalities to allow for simple inductive generalization
dirty = equiv_to_expr_full(eq_classes, core);
if (dirty) {
lemma->update_cube(lemma->get_pob(), core);
}
}
};