3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-05 09:37:44 +00:00

Spacer engine for HORN logic

The algorithms implemented in the engine are described in the following papers

Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan:
Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015: 89-96

Nikolaj Bjørner, Arie Gurfinkel:
Property Directed Polyhedral Abstraction. VMCAI 2015: 263-281

Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki:
SMT-Based Model Checking for Recursive Programs. CAV 2014: 17-34
This commit is contained in:
Arie Gurfinkel 2017-07-31 15:33:41 -04:00
parent 9f9dc5e19f
commit 5b9bf74787
54 changed files with 18050 additions and 3 deletions

View file

@ -0,0 +1,459 @@
/*++
Copyright (c) 2017 Arie Gurfinkel
Module Name:
spacer_antiunify.cpp
Abstract:
Antiunification utilities
Author:
Bernhard Gleiss
Arie Gurfinkel
Revision History:
--*/
#include"spacer_antiunify.h"
#include"ast.h"
#include"rewriter.h"
#include"rewriter_def.h"
#include"arith_decl_plugin.h"
#include"ast_util.h"
#include"expr_abstract.h"
namespace spacer {
// Abstracts numeric values by variables
struct var_abs_rewriter : public default_rewriter_cfg {
ast_manager &m;
arith_util m_util;
ast_mark m_seen;
ast_mark m_has_num;
unsigned m_var_index;
expr_ref_vector m_pinned;
obj_map<expr, expr*>& m_substitution;
ptr_vector<expr> m_stack;
var_abs_rewriter (ast_manager &manager, obj_map<expr, expr*>& substitution,
unsigned k = 0) :
m(manager), m_util(m), m_var_index(k),
m_pinned(m), m_substitution(substitution) {}
void reset(unsigned k = 0) {
m_pinned.reset();
m_var_index = k;
}
bool pre_visit(expr * t) {
bool r = (!m_seen.is_marked(t) || m_has_num.is_marked(t));
// only unify if convex closure will not contain non-linear multiplication
if (m_util.is_mul(t))
{
bool contains_const_child = false;
app* a = to_app(t);
for (unsigned i=0, sz = a->get_num_args(); i < sz; ++i) {
if (m_util.is_numeral(a->get_arg(i))) {
contains_const_child = true;
}
}
if (!contains_const_child) {r = false;}
}
if (r) {m_stack.push_back (t);}
return r;
}
br_status reduce_app (func_decl * f, unsigned num, expr * const * args,
expr_ref & result, proof_ref & result_pr) {
expr *s;
s = m_stack.back();
m_stack.pop_back();
if (is_app(s)) {
app *a = to_app(s);
for (unsigned i=0, sz = a->get_num_args(); i < sz; ++i) {
if (m_has_num.is_marked(a->get_arg(i))) {
m_has_num.mark(a,true);
return BR_FAILED;
}
}
}
return BR_FAILED;
}
bool cache_all_results() const { return false; }
bool cache_results() const { return false; }
bool get_subst(expr * s, expr * & t, proof * & t_pr) {
if (m_util.is_numeral(s)) {
t = m.mk_var(m_var_index++, m.get_sort(s));
m_substitution.insert(t, s);
m_pinned.push_back(t);
m_has_num.mark(s, true);
m_seen.mark(t, true);
return true;
}
return false;
}
};
/*
* construct m_g, which is a generalization of t, where every constant
* is replaced by a variable for any variable in m_g, remember the
* substitution to get back t and save it in m_substitutions
*/
anti_unifier::anti_unifier(expr* t, ast_manager& man) : m(man), m_pinned(m), m_g(m)
{
m_pinned.push_back(t);
obj_map<expr, expr*> substitution;
var_abs_rewriter var_abs_cfg(m, substitution);
rewriter_tpl<var_abs_rewriter> var_abs_rw (m, false, var_abs_cfg);
var_abs_rw (t, m_g);
m_substitutions.push_back(substitution); //TODO: refactor into vector, remove k
}
/* traverses m_g and t in parallel. if they only differ in constants
* (i.e. m_g contains a variable, where t contains a constant), then
* add the substitutions, which need to be applied to m_g to get t, to
* m_substitutions.
*/
bool anti_unifier::add_term(expr* t) {
m_pinned.push_back(t);
ptr_vector<expr> todo;
ptr_vector<expr> todo2;
todo.push_back(m_g);
todo2.push_back(t);
ast_mark visited;
arith_util util(m);
obj_map<expr, expr*> substitution;
while (!todo.empty()) {
expr* current = todo.back();
todo.pop_back();
expr* current2 = todo2.back();
todo2.pop_back();
if (!visited.is_marked(current)) {
visited.mark(current, true);
if (is_var(current)) {
// TODO: for now we don't allow variables in the terms we want to antiunify
SASSERT(m_substitutions[0].contains(current));
if (util.is_numeral(current2)) {
substitution.insert(current, current2);
}
else {return false;}
}
else {
SASSERT(is_app(current));
if (is_app(current2) &&
to_app(current)->get_decl() == to_app(current2)->get_decl() &&
to_app(current)->get_num_args() == to_app(current2)->get_num_args()) {
// TODO: what to do for numerals here? E.g. if we
// have 1 and 2, do they have the same decl or are
// the decls already different?
SASSERT (!util.is_numeral(current) || current == current2);
for (unsigned i = 0, num_args = to_app(current)->get_num_args();
i < num_args; ++i) {
todo.push_back(to_app(current)->get_arg(i));
todo2.push_back(to_app(current2)->get_arg(i));
}
}
else {
return false;
}
}
}
}
// we now know that the terms can be anti-unified, so add the cached substitution
m_substitutions.push_back(substitution);
return true;
}
/*
* returns m_g, where additionally any variable, which has only equal
* substitutions, is substituted with that substitution
*/
void anti_unifier::finalize() {
ptr_vector<expr> todo;
todo.push_back(m_g);
ast_mark visited;
obj_map<expr, expr*> generalization;
arith_util util(m);
// post-order traversel which ignores constants and handles them
// directly when the enclosing term of the constant is handled
while (!todo.empty()) {
expr* current = todo.back();
SASSERT(is_app(current));
// if we haven't already visited current
if (!visited.is_marked(current)) {
bool existsUnvisitedParent = false;
for (unsigned i = 0, sz = to_app(current)->get_num_args(); i < sz; ++i) {
expr* argument = to_app(current)->get_arg(i);
if (!is_var(argument)) {
SASSERT(is_app(argument));
// if we haven't visited the current parent yet
if(!visited.is_marked(argument)) {
// add it to the stack
todo.push_back(argument);
existsUnvisitedParent = true;
}
}
}
// if we already visited all parents, we can visit current too
if (!existsUnvisitedParent) {
visited.mark(current, true);
todo.pop_back();
ptr_buffer<expr> arg_list;
for (unsigned i = 0, num_args = to_app(current)->get_num_args();
i < num_args; ++i) {
expr* argument = to_app(current)->get_arg(i);
if (is_var(argument)) {
// compute whether there are different
// substitutions for argument
bool containsDifferentSubstitutions = false;
for (unsigned i=0, sz = m_substitutions.size(); i+1 < sz; ++i) {
SASSERT(m_substitutions[i].contains(argument));
SASSERT(m_substitutions[i+1].contains(argument));
// TODO: how to check equality?
if (m_substitutions[i][argument] !=
m_substitutions[i+1][argument])
{
containsDifferentSubstitutions = true;
break;
}
}
// if yes, use the variable
if (containsDifferentSubstitutions) {
arg_list.push_back(argument);
}
// otherwise use the concrete value instead
// and remove the substitutions
else
{
arg_list.push_back(m_substitutions[0][argument]);
for (unsigned i=0, sz = m_substitutions.size(); i < sz; ++i) {
SASSERT(m_substitutions[i].contains(argument));
m_substitutions[i].remove(argument);
}
}
}
else {
SASSERT(generalization.contains(argument));
arg_list.push_back(generalization[argument]);
}
}
SASSERT(to_app(current)->get_num_args() == arg_list.size());
expr_ref application(m.mk_app(to_app(current)->get_decl(),
to_app(current)->get_num_args(),
arg_list.c_ptr()), m);
m_pinned.push_back(application);
generalization.insert(current, application);
}
}
else {
todo.pop_back();
}
}
m_g = generalization[m_g];
}
class ncc_less_than_key
{
public:
ncc_less_than_key(arith_util& util) : m_util(util) {}
bool operator() (const expr*& e1, const expr*& e2) {
rational val1;
rational val2;
if (m_util.is_numeral(e1, val1) && m_util.is_numeral(e2, val2))
{
return val1 < val2;
}
else
{
SASSERT(false);
return false;
}
}
arith_util m_util;
};
/*
* if there is a single interval which exactly captures each of the
* substitutions, return the corresponding closure, otherwise do
* nothing
*/
bool naive_convex_closure::compute_closure(anti_unifier& au, ast_manager& m,
expr_ref& result) {
arith_util util(m);
SASSERT(au.get_num_substitutions() > 0);
if (au.get_substitution(0).size() == 0) {
result = au.get_generalization();
return true;
}
// check that all substitutions have the same size
for (unsigned i=0, sz = au.get_num_substitutions(); i+1 < sz; ++i) {
if (au.get_substitution(i).size() != au.get_substitution(i+1).size()) {
return false;
}
}
// for each substitution entry
bool is_first_key = true;
unsigned lower_bound;
unsigned upper_bound;
for (const auto& pair : au.get_substitution(0)) {
// construct vector
expr* key = &pair.get_key();
vector<unsigned> entries;
rational val;
for (unsigned i=0, sz = au.get_num_substitutions(); i < sz; ++i)
{
if (util.is_numeral(au.get_substitution(i)[key], val) &&
val.is_unsigned()) {
entries.push_back(val.get_unsigned());
}
else {
return false;
}
}
// check whether vector represents interval
unsigned current_lower_bound;
unsigned current_upper_bound;
// if vector represents interval
if (get_range(entries, current_lower_bound, current_upper_bound)) {
// if interval is the same as previous interval
if (is_first_key) {
is_first_key = false;
lower_bound = current_lower_bound;
upper_bound = current_upper_bound;
}
else {
if (current_lower_bound != lower_bound ||
current_upper_bound != upper_bound) {
return false;
}
}
}
// otherwise we don't do a convex closure
else {
return false;
}
}
// we finally know that we can express the substitutions using a
// single interval, so build the expression 1. construct const
expr_ref const_ref(m.mk_const(symbol("scti!0"), util.mk_int()), m);
// 2. construct body with const
expr_ref lit1(util.mk_le(util.mk_int(lower_bound), const_ref), m);
expr_ref lit2(util.mk_le(const_ref, util.mk_int(upper_bound)), m);
expr_ref lit3(m);
substitute_vars_by_const(m, au.get_generalization(), const_ref, lit3);
expr_ref_vector args(m);
args.push_back(lit1);
args.push_back(lit2);
args.push_back(lit3);
expr_ref body_with_consts = mk_and(args);
// 3. replace const by var
ptr_vector<expr> vars;
vars.push_back(const_ref);
expr_ref body(m);
expr_abstract(m, 0, vars.size(), (expr*const*)vars.c_ptr(), body_with_consts, body);
// 4. introduce quantifier
ptr_vector<sort> sorts;
sorts.push_back(util.mk_int());
svector<symbol> names;
names.push_back(symbol("scti!0"));
result = expr_ref(m.mk_exists(vars.size(), sorts.c_ptr(), names.c_ptr(), body),m);
return true;
}
bool naive_convex_closure::get_range(vector<unsigned int>& v,
unsigned int& lower_bound, unsigned int& upper_bound)
{
// sort substitutions
std::sort(v.begin(), v.end());
// check that numbers are consecutive
for (unsigned i=0; i+1 < v.size(); ++i) {
if (v[i] + 1 != v[i+1]) {
return false;
}
}
SASSERT(v.size() > 0);
lower_bound = v[0];
upper_bound = v.back();
return true;
}
struct subs_rewriter_cfg : public default_rewriter_cfg {
ast_manager &m;
expr_ref m_c;
subs_rewriter_cfg (ast_manager &manager, expr* c) : m(manager), m_c(c, m) {}
bool reduce_var(var * t, expr_ref & result, proof_ref & result_pr) {
result = m_c;
result_pr = 0;
return true;
}
};
void naive_convex_closure::substitute_vars_by_const(ast_manager& m, expr* t,
expr* c, expr_ref& res) {
subs_rewriter_cfg subs_cfg(m, c);
rewriter_tpl<subs_rewriter_cfg> subs_rw (m, false, subs_cfg);
subs_rw (t, res);
}
}
template class rewriter_tpl<spacer::var_abs_rewriter>;
template class rewriter_tpl<spacer::subs_rewriter_cfg>;