3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-06 07:15:47 +00:00

wip - adding saturation/propagations

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2022-12-03 15:38:01 -08:00
parent 0288704a59
commit 5b8dcfb801
3 changed files with 208 additions and 27 deletions

View file

@ -26,6 +26,7 @@ TODO: when we check that 'x' is "unary":
#include "math/polysat/saturation.h"
#include "math/polysat/solver.h"
#include "math/polysat/log.h"
#include "math/polysat/umul_ovfl_constraint.h"
namespace polysat {
@ -72,7 +73,12 @@ namespace polysat {
SASSERT(all_of(m_lemma, [this](sat::literal lit) { return s.m_bvars.value(lit) == l_false; }));
// Ensure lemma is a conflict lemma
if (c.bvalue(s) != l_false && !c.is_currently_false(s))
//
// NSB - review is it enough to propagate a new literal even if it is not false?
// unit propagation does not require conflicts.
// it should just avoid redundant propagation on literals that are true
//
if (!is_forced_false(c))
return false;
// TODO: ??? this means that c is already on the search stack, so presumably the lemma won't help. Should check whether this case occurs.
@ -90,6 +96,38 @@ namespace polysat {
return propagate(core, crit1, crit2, c);
}
bool saturation::is_non_overflow(pdd const& x, pdd const& y, signed_constraint& c) {
if (is_non_overflow(x, y)) {
c = ~s.umul_ovfl(x, y);
return true;
}
// TODO: do we really search the stack or can we just create the literal s.umul_ovfl(x, y)
// and check if it is assigned, or not even create the literal but look up whether it is assigned?
// constraint_manager uses m_dedup, alloc
// but to probe whether a literal occurs these are not needed.
// m_dedup.constraints.contains(&c);
for (auto si : s.m_search) {
if (!si.is_boolean())
continue;
if (si.is_resolved())
continue;
auto d = s.lit2cnstr(si.lit());
if (!d->is_umul_ovfl() || !d.is_negative())
continue;
auto const& ovfl = d->to_umul_ovfl();
if (x != ovfl.p() && x != ovfl.q())
continue;
if (y != ovfl.p() && y != ovfl.q())
continue;
c = d;
return true;
}
return false;
}
void saturation::insert_omega(pdd const& x, pdd const& y) {
m_lemma.insert_eval(s.umul_ovfl(x, y));
}
@ -153,6 +191,21 @@ namespace polysat {
return i.rhs() == y && i.lhs() == a * s.var(x) + b;
}
/**
* Match [x] a*x + b <= y, val(y) = 0
*/
bool saturation::is_AxB_eq_0(pvar x, inequality const& i, pdd& a, pdd& b, pdd& y) {
y = i.rhs();
if (!y.is_val() || y.val() != 0)
return false;
pdd aa = a, bb = b;
return i.lhs().degree(x) == 1 && (i.lhs().factor(x, 1, aa, bb), aa == a && bb == b);
}
bool saturation::verify_AxB_eq_0(pvar x, inequality const& i, pdd const& a, pdd const& b, pdd const& y) {
return y.is_val() && y.val() == 0 && i.rhs() == y && i.lhs() == a * s.var(x) + b;
}
/**
* Match [coeff*x] coeff*x*Y where x is a variable
*/
@ -206,6 +259,42 @@ namespace polysat {
return xy.degree(x) == 1 && xy.factor(x, 1, y);
}
//
// overall comment: we use value propagation to check if p is val
// but we could also use literal propagation and establish there is a literal p = 0 that is true.
// in this way the value of p doesn't have to be fixed.
//
// is_forced_diseq already creates a literal.
// is_non_overflow also creates a literal, it is not yet used consistently
//
// The condition that p = val may be indirect.
// it could be a literal
// it could be by propagation of literals
// Example:
// -35: v90 + v89*v43 + -1*v87 != 0 [ l_false bprop@0 pwatched ]
// 36: ovfl*(v43, v89) [ l_false bprop@0 pwatched ]
// -218: v90 + -1*v87 + -1 != 0 [ l_false eval@6 pwatched ]
//
// what should we "pay" to establish this condition?
// or do we just afford us to add this lemma?
//
bool saturation::is_forced_eq(pdd const& p, rational const& val) {
rational pv;
if (s.try_eval(p, pv) && pv == val)
return true;
return false;
}
bool saturation::is_forced_diseq(pdd const& p, int i, signed_constraint& c) {
c = s.eq(p, i);
return is_forced_false(c);
}
bool saturation::is_forced_false(signed_constraint const& c) {
return c.bvalue(s) == l_false || c.is_currently_false(s);
}
/**
* Implement the inferences
* [x] yx < zx ==> Ω*(x,y) \/ y < z
@ -218,6 +307,7 @@ namespace polysat {
pdd z = x;
if (!is_xY_l_xZ(v, xy_l_xz, y, z))
return false;
// TODO - use is_non_overflow(x, y, non_ovfl) instead?
if (!is_non_overflow(x, y))
return false;
if (!xy_l_xz.is_strict() && s.get_value(v).is_zero())
@ -349,21 +439,8 @@ namespace polysat {
}
/**
* TODO - add saturation based on Bench25 and other
* p <= k & p*x + q = 0 & q = 0 => p = 0 or x = 0 or x >= 2^K/k
* p <= k & p*x = 0 => p = 0 or x = 0 or x >= 2^K/k
*
* TODO
* p*x = 0 => p = 0 or even(x)
* Generaly:
* p*x = 0 => p = 0 or x = 0 or parity(x) + parity(y) >= K
* (if we use the convention parity(0) = K, then we can just write
* p*x = 0 => parity(x) + parity(y) >= K)
*
* TODO
* x*y = k & ~ovfl(x,y) & x = j => y = k/j where j is a divisor of k
*/
bool saturation::try_mul_bounds(pvar x, conflict& core, inequality const& axb_l_y) {
set_rule("[x] ax + b <= y & y = 0 & b = 0 & a <= k => x = 0 or a = 0 or x >= 2^K/k");
auto& m = s.var2pdd(x);
@ -371,19 +448,21 @@ namespace polysat {
pdd a = m.zero();
pdd b = m.zero();
pdd k = m.zero();
pdd X = s.var(x);
rational b_val, y_val;
if (!is_AxB_l_Y(x, axb_l_y, a, b, y))
if (!is_AxB_eq_0(x, axb_l_y, a, b, y))
return false;
if (a.is_one())
return false;
if (!s.try_eval(b, b_val))
return false;
if (b_val != 0)
return false;
if (!s.try_eval(y, y_val))
return false;
if (y_val != 0)
if (!is_forced_eq(b, 0))
return false;
#if 0
// we could also use x.val(), a.val() if they exist and enforce bounds
if (s.try_eval(a, a_val) && s.try_eval(X, x_val) && a_val*x_val != 0) {
}
#endif
for (auto si : s.m_search) {
if (!si.is_boolean())
continue;
@ -397,14 +476,96 @@ namespace polysat {
continue;
if (!k.is_val())
continue;
if (k.val() == 0)
if (k.val() <= 1)
continue;
// propagate(core, axb_l_y, a_l_k, b = 0, y = 0 => x = 0 or a = 0 or x >= 2^K/k)
}
//
// TODO: if there are multiple upper bounds, select the smallest?
//
// a bit late in the game to check this.
signed_constraint x_eq_0, a_eq_0;
if (!is_forced_diseq(X, 0, x_eq_0))
return false;
if (!is_forced_diseq(a, 0, a_eq_0))
return false;
m_lemma.reset();
m_lemma.insert(~s.eq(b));
m_lemma.insert(~s.eq(y));
m_lemma.insert(x_eq_0);
m_lemma.insert(a_eq_0);
return propagate(core, axb_l_y, a_l_k, s.ule(ceil(m.two_to_N() / k.val()), X));
// should we check if a = 0, x = 0 evaluate to false?
// given that the lemma is not propagating should we otherwise force case splitting to choose
// x = 0 or x >= 2^K/k
}
return false;
}
/*
* x*y = 1 & ~ovfl(x,y) => x = 1
*/
bool saturation::try_mul_eq_1(pvar x, conflict& core, inequality const& axb_l_y) {
set_rule("[x] ax + b <= y & y = 0 & b = -1 & ~ovfl(a,x) => x = 1");
auto& m = s.var2pdd(x);
pdd y = m.zero();
pdd a = m.zero();
pdd b = m.zero();
rational b_val, y_val;
if (!is_AxB_eq_0(x, axb_l_y, a, b, y))
return false;
if (!is_forced_eq(b, -1))
return false;
pdd X = s.var(x);
signed_constraint non_ovfl;
if (is_non_overflow(a, X, non_ovfl)) {
m_lemma.reset();
m_lemma.insert(~s.eq(b, rational(-1)));
m_lemma.insert(~s.eq(y));
m_lemma.insert(~non_ovfl);
return propagate(core, axb_l_y, axb_l_y, s.eq(X, 1));
}
return false;
}
/**
* a*x = 0 => a = 0 or even(x)
*/
bool saturation::try_mul_odd(pvar x, conflict& core, inequality const& axb_l_y) {
set_rule("[x] ax = 0 => a = 0 or even(x)");
auto& m = s.var2pdd(x);
pdd y = m.zero();
pdd a = m.zero();
pdd b = m.zero();
pdd X = s.var(x);
signed_constraint a_eq_0;
if (!is_AxB_eq_0(x, axb_l_y, a, b, y))
return false;
if (!is_forced_eq(b, 0))
return false;
if (!is_forced_diseq(a, 0, a_eq_0))
return false;
m_lemma.reset();
m_lemma.insert(s.eq(y));
m_lemma.insert(~s.eq(b));
m_lemma.insert(a_eq_0);
return propagate(core, axb_l_y, axb_l_y, s.even(X));
}
/*
* TODO
* Generally:
* p*x = 0 => p = 0 or x = 0 or parity(x) + parity(y) >= K
* (if we use the convention parity(0) = K, then we can just write
* p*x = 0 => parity(x) + parity(y) >= K)
*
* Maybe also
* x*y = k => \/_{j is such that there is j', j*j' = k} x = j
* x*y = k & ~ovfl(x,y) & x = j => y = k/j where j is a divisor of k
*/
/**
* [x] p(x) <= q(x) where value(p) > value(q)
* ==> q <= value(q) => p <= value(q)