3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 17:45:32 +00:00

use N for consistency

This commit is contained in:
Jakob Rath 2023-03-06 15:57:49 +01:00
parent be0c7aeb09
commit 5a8c0ce9c0

View file

@ -218,14 +218,15 @@ namespace polysat {
/**
* Enforce basic axioms for r == p >> q:
*
* q >= K -> r = 0
* q >= k -> r[i] = 0 for K - k <= i < K (bit indices range from 0 to K-1, inclusive)
* q >= k -> r <= 2^{K-k} - 1
* q = k -> r[i] = p[i+k] for 0 <= i < K - k
* q >= N -> r = 0
* q >= k -> r[i] = 0 for N - k <= i < N (bit indices range from 0 to N-1, inclusive)
* q >= k -> r <= 2^{N-k} - 1
* q = k -> r[i] = p[i+k] for 0 <= i < N - k
* r <= p
* q != 0 -> r <= p (subsumed by previous axiom)
* q != 0 /\ p > 0 -> r < p
* q = 0 -> r = p
* p = q -> r = 0
*
* when q is a constant, several axioms can be enforced at activation time.
*
@ -241,30 +242,32 @@ namespace polysat {
auto const pv = a.apply_to(p());
auto const qv = a.apply_to(q());
auto const rv = a.apply_to(r());
unsigned const K = m.power_of_2();
unsigned const N = m.power_of_2();
signed_constraint const lshr(this, true);
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
// r <= p
return s.mk_clause(~lshr, s.ule(r(), p()), true);
else if (qv.is_val() && qv.val() >= K && rv.is_val() && !rv.is_zero())
// q >= K -> r = 0
return s.mk_clause(~lshr, ~s.ule(K, q()), s.eq(r()), true);
else if (qv.is_val() && qv.val() >= N && rv.is_val() && !rv.is_zero())
// TODO: instead of rv.is_val() && !rv.is_zero(), we should use !is_forced_zero(r) which checks whether eval(r) = 0 or bvalue(r=0) = true; see saturation.cpp
// q >= N -> r = 0
return s.mk_clause(~lshr, ~s.ule(N, q()), s.eq(r()), true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv)
// q = 0 -> p = r
return s.mk_clause(~lshr, ~s.eq(q()), s.eq(p(), r()), true);
else if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && rv.val() >= pv.val())
// q != 0 & p > 0 -> r < p
return s.mk_clause(~lshr, s.eq(q()), s.ule(p(), 0), s.ult(r(), p()), true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < K && rv.is_val() &&
rv.val() > rational::power_of_two(K - qv.val().get_unsigned()) - 1)
// q >= k -> r <= 2^{K-k} - 1
return s.mk_clause(~lshr, ~s.ule(qv.val(), q()), s.ule(r(), rational::power_of_two(K - qv.val().get_unsigned()) - 1), true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < N && rv.is_val() && rv.val() > rational::power_of_two(N - qv.val().get_unsigned()) - 1)
// q >= k -> r <= 2^{N-k} - 1
return s.mk_clause(~lshr, ~s.ule(qv.val(), q()), s.ule(r(), rational::power_of_two(N - qv.val().get_unsigned()) - 1), true);
// else if (pv == qv && !rv.is_zero())
// return s.mk_clause(~lshr, ~s.eq(p(), q()), s.eq(r()), true);
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned k = qv.val().get_unsigned();
// q = k -> r[i] = p[i+k] for 0 <= i < K - k
for (unsigned i = 0; i < K - k; ++i) {
// q = k -> r[i] = p[i+k] for 0 <= i < N - k
for (unsigned i = 0; i < N - k; ++i) {
if (rv.val().get_bit(i) && !pv.val().get_bit(i + k)) {
return s.mk_clause(~lshr, ~s.eq(q(), k), ~s.bit(r(), i), s.bit(p(), i + k), true);
}
@ -466,10 +469,10 @@ namespace polysat {
else if (yv == 0)
s.add_clause(~andc, s.eq(r()), false);
else {
unsigned K = m.power_of_2();
unsigned N = m.power_of_2();
unsigned k = yv.get_num_bits();
SASSERT(k < K);
rational exp = rational::power_of_two(K - k);
SASSERT(k < N);
rational exp = rational::power_of_two(N - k);
s.add_clause(~andc, s.eq(x * exp, r() * exp), false);
s.add_clause(~andc, s.ule(r(), y), false); // maybe always activate these constraints regardless?
}