3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-04 06:15:46 +00:00

port Grobner

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-10-22 11:48:32 -07:00
parent c2235ef96f
commit 5a2ce93ed7
3 changed files with 68 additions and 11 deletions

View file

@ -253,7 +253,7 @@ nla_grobner::equation* nla_grobner::simplify_using_processed(equation* eq) {
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *eq); tout << "using already processed equalities of size " << m_to_superpose.size() << "\n";);
do {
simplified = false;
for (equation const* p : m_to_superpose) {
for (equation * p : m_to_superpose) {
equation * new_eq = simplify_source_target(p, eq);
if (new_eq) {
result = true;
@ -271,7 +271,7 @@ nla_grobner::equation* nla_grobner::simplify_using_processed(equation* eq) {
}
const nex_mul* nla_grobner::get_highest_monomial(const nex* e) const {
nex_mul* nla_grobner::get_highest_monomial(nex* e) const {
switch (e->type()) {
case expr_type::MUL:
return to_mul(e);
@ -284,7 +284,7 @@ const nex_mul* nla_grobner::get_highest_monomial(const nex* e) const {
// source 3f + k + l = 0, so f = (-k - l)/3
// target 2fg + 3fp + e = 0
// target is replaced by 2(-k/3 - l/3)g + 3(-k/3 - l/3)p + e = -2/3kg -2/3lg - kp -lp + e
bool nla_grobner::simplify_target_monomials(equation const * source, equation * target) {
bool nla_grobner::simplify_target_monomials(equation * source, equation * target) {
const nex_mul * high_mon = get_highest_monomial(source->exp());
if (high_mon == nullptr)
return false;
@ -398,7 +398,7 @@ bool nla_grobner::simplify_target_monomials_sum_j(equation const * source, equat
}
nla_grobner::equation * nla_grobner::simplify_source_target(equation const * source, equation * target) {
nla_grobner::equation * nla_grobner::simplify_source_target(equation * source, equation * target) {
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *target); tout << "using: "; display_equation(tout, *source););
if (source->get_num_monomials() == 0)
return nullptr;
@ -492,13 +492,64 @@ void nla_grobner::simplify_to_process(equation* eq) {
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
void nla_grobner::superpose(equation * eq1, equation * eq2) {
TRACE("grobner", tout << "eq1="; display_equation(tout, *eq1) << "eq2="; display_equation(tout, *eq2););
const nex_mul * ab = get_highest_monomial(eq1->exp());
const nex_mul * ac = get_highest_monomial(eq2->exp());
nex_mul * ab = get_highest_monomial(eq1->exp());
nex_mul * ac = get_highest_monomial(eq2->exp());
nex_mul *b, *c;
TRACE("grobner", tout << "ab=" << *ab << " , " << " ac = " << *ac << "\n";);
NOT_IMPLEMENTED_YET();
if (!find_b_c(ab, ac, b, c)) {
return;
}
}
bool nla_grobner::find_b_c(nex_mul*ab, nex_mul* ac, nex_mul*& b, nex_mul*& c) {
if (!find_b_c_check(ab, ac))
return false;
unsigned i = 0, j = 0; // i points to ab, j points to ac
b = m_nex_creator.mk_mul(); c = m_nex_creator.mk_mul();
nex_pow* bp = ab->begin();
nex_pow* cp = ac->begin();
for (;;) {
if (m_nex_creator.lt(bp->e(), cp->e())) {
b->add_child_in_power(*bp);
if (++bp == ab->end())
break;
} else if (m_nex_creator.lt(cp->e(), bp->e())) {
c->add_child_in_power(*cp);
if (++cp == ac->end())
break;
} else {
NOT_IMPLEMENTED_YET();
}
}
NOT_IMPLEMENTED_YET();
return true;
}
bool nla_grobner::find_b_c_check(const nex_mul*ab, const nex_mul* ac) const {
SASSERT(m_nex_creator.is_simplified(ab) && m_nex_creator.is_simplified(ab));
unsigned i = 0, j = 0; // i points to ab, j points to ac
for (;;) {
if (m_nex_creator.lt((*ab)[i].e(), (*ac)[j].e())) {
i++;
if (i == ab->size())
return false;
} else if (m_nex_creator.lt((*ac)[j].e(), (*ab)[i].e())) {
j++;
if (j == ac->size())
return false;
} else {
TRACE("grobner", tout << "found common " << *(*ac)[j].e() << " in " << *ab << " and " << *ac << "\n";);
return true;
}
}
TRACE("grobner", tout << "not found common " << " in " << *ab << " and " << *ac << "\n";);
return false;
}
void nla_grobner::superpose(equation * eq) {
for (equation * target : m_to_superpose) {
superpose(eq, target);