mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
Merge pull request #1715 from levnach/master
merge lar_solver/int_solver
This commit is contained in:
commit
5a2a8d7d5c
159 changed files with 14144 additions and 9250 deletions
|
@ -534,3 +534,4 @@ inline app_ref operator>(app_ref const& x, app_ref const& y) {
|
|||
}
|
||||
|
||||
#endif /* ARITH_DECL_PLUGIN_H_ */
|
||||
|
||||
|
|
|
@ -801,106 +801,104 @@ br_status arith_rewriter::mk_idiv_core(expr * arg1, expr * arg2, expr_ref & resu
|
|||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_one()) {
|
||||
result = arg1;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_zero()) {
|
||||
return BR_FAILED;
|
||||
}
|
||||
if (arg1 == arg2) {
|
||||
expr_ref zero(m_util.mk_int(0), m());
|
||||
result = m().mk_ite(m().mk_eq(arg1, zero), m_util.mk_idiv(zero, zero), m_util.mk_int(1));
|
||||
return BR_REWRITE3;
|
||||
}
|
||||
if (divides(arg1, arg2, result)) {
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
result = arg1;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_zero()) {
|
||||
return BR_FAILED;
|
||||
}
|
||||
if (arg1 == arg2) {
|
||||
expr_ref zero(m_util.mk_int(0), m());
|
||||
result = m().mk_ite(m().mk_eq(arg1, zero), m_util.mk_idiv(zero, zero), m_util.mk_int(1));
|
||||
return BR_REWRITE3;
|
||||
}
|
||||
if (divides(arg1, arg2, result)) {
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// implement div ab ac = floor( ab / ac) = floor (b / c) = div b c
|
||||
|
||||
//
|
||||
// implement div ab ac = floor( ab / ac) = floor (b / c) = div b c
|
||||
//
|
||||
bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
|
||||
expr_fast_mark1 mark;
|
||||
rational num_r(1), den_r(1);
|
||||
expr* num_e = nullptr, *den_e = nullptr;
|
||||
ptr_buffer<expr> args1, args2;
|
||||
flat_mul(num, args1);
|
||||
flat_mul(den, args2);
|
||||
for (expr * arg : args1) {
|
||||
mark.mark(arg);
|
||||
if (m_util.is_numeral(arg, num_r)) num_e = arg;
|
||||
}
|
||||
for (expr* arg : args2) {
|
||||
if (mark.is_marked(arg)) {
|
||||
result = remove_divisor(arg, num, den);
|
||||
return true;
|
||||
}
|
||||
if (m_util.is_numeral(arg, den_r)) den_e = arg;
|
||||
}
|
||||
rational g = gcd(num_r, den_r);
|
||||
if (!g.is_one()) {
|
||||
SASSERT(g.is_pos());
|
||||
// replace num_e, den_e by their gcd reduction.
|
||||
for (unsigned i = 0; i < args1.size(); ++i) {
|
||||
if (args1[i] == num_e) {
|
||||
args1[i] = m_util.mk_numeral(num_r / g, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0; i < args2.size(); ++i) {
|
||||
if (args2[i] == den_e) {
|
||||
args2[i] = m_util.mk_numeral(den_r / g, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
num = m_util.mk_mul(args1.size(), args1.c_ptr());
|
||||
den = m_util.mk_mul(args2.size(), args2.c_ptr());
|
||||
result = m_util.mk_idiv(num, den);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
expr_ref arith_rewriter::remove_divisor(expr* arg, expr* num, expr* den) {
|
||||
ptr_buffer<expr> args1, args2;
|
||||
flat_mul(num, args1);
|
||||
flat_mul(den, args2);
|
||||
remove_divisor(arg, args1);
|
||||
remove_divisor(arg, args2);
|
||||
expr_ref zero(m_util.mk_int(0), m());
|
||||
num = args1.empty() ? m_util.mk_int(1) : m_util.mk_mul(args1.size(), args1.c_ptr());
|
||||
den = args2.empty() ? m_util.mk_int(1) : m_util.mk_mul(args2.size(), args2.c_ptr());
|
||||
return expr_ref(m().mk_ite(m().mk_eq(zero, arg), m_util.mk_idiv(zero, zero), m_util.mk_idiv(num, den)), m());
|
||||
}
|
||||
|
||||
void arith_rewriter::flat_mul(expr* e, ptr_buffer<expr>& args) {
|
||||
args.push_back(e);
|
||||
for (unsigned i = 0; i < args.size(); ++i) {
|
||||
e = args[i];
|
||||
if (m_util.is_mul(e)) {
|
||||
args.append(to_app(e)->get_num_args(), to_app(e)->get_args());
|
||||
args[i] = args.back();
|
||||
args.shrink(args.size()-1);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void arith_rewriter::remove_divisor(expr* d, ptr_buffer<expr>& args) {
|
||||
for (unsigned i = 0; i < args.size(); ++i) {
|
||||
if (args[i] == d) {
|
||||
args[i] = args.back();
|
||||
args.shrink(args.size()-1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
}
|
||||
bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
|
||||
expr_fast_mark1 mark;
|
||||
rational num_r(1), den_r(1);
|
||||
expr* num_e = nullptr, *den_e = nullptr;
|
||||
ptr_buffer<expr> args1, args2;
|
||||
flat_mul(num, args1);
|
||||
flat_mul(den, args2);
|
||||
for (expr * arg : args1) {
|
||||
mark.mark(arg);
|
||||
if (m_util.is_numeral(arg, num_r)) num_e = arg;
|
||||
}
|
||||
for (expr* arg : args2) {
|
||||
if (mark.is_marked(arg)) {
|
||||
result = remove_divisor(arg, num, den);
|
||||
return true;
|
||||
}
|
||||
if (m_util.is_numeral(arg, den_r)) den_e = arg;
|
||||
}
|
||||
rational g = gcd(num_r, den_r);
|
||||
if (!g.is_one()) {
|
||||
SASSERT(g.is_pos());
|
||||
// replace num_e, den_e by their gcd reduction.
|
||||
for (unsigned i = 0; i < args1.size(); ++i) {
|
||||
if (args1[i] == num_e) {
|
||||
args1[i] = m_util.mk_numeral(num_r / g, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0; i < args2.size(); ++i) {
|
||||
if (args2[i] == den_e) {
|
||||
args2[i] = m_util.mk_numeral(den_r / g, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
num = m_util.mk_mul(args1.size(), args1.c_ptr());
|
||||
den = m_util.mk_mul(args2.size(), args2.c_ptr());
|
||||
result = m_util.mk_idiv(num, den);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
expr_ref arith_rewriter::remove_divisor(expr* arg, expr* num, expr* den) {
|
||||
ptr_buffer<expr> args1, args2;
|
||||
flat_mul(num, args1);
|
||||
flat_mul(den, args2);
|
||||
remove_divisor(arg, args1);
|
||||
remove_divisor(arg, args2);
|
||||
expr_ref zero(m_util.mk_int(0), m());
|
||||
num = args1.empty() ? m_util.mk_int(1) : m_util.mk_mul(args1.size(), args1.c_ptr());
|
||||
den = args2.empty() ? m_util.mk_int(1) : m_util.mk_mul(args2.size(), args2.c_ptr());
|
||||
return expr_ref(m().mk_ite(m().mk_eq(zero, arg), m_util.mk_idiv(zero, zero), m_util.mk_idiv(num, den)), m());
|
||||
}
|
||||
|
||||
void arith_rewriter::flat_mul(expr* e, ptr_buffer<expr>& args) {
|
||||
args.push_back(e);
|
||||
for (unsigned i = 0; i < args.size(); ++i) {
|
||||
e = args[i];
|
||||
if (m_util.is_mul(e)) {
|
||||
args.append(to_app(e)->get_num_args(), to_app(e)->get_args());
|
||||
args[i] = args.back();
|
||||
args.shrink(args.size()-1);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void arith_rewriter::remove_divisor(expr* d, ptr_buffer<expr>& args) {
|
||||
for (unsigned i = 0; i < args.size(); ++i) {
|
||||
if (args[i] == d) {
|
||||
args[i] = args.back();
|
||||
args.shrink(args.size()-1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & result) {
|
||||
set_curr_sort(m().get_sort(arg1));
|
||||
numeral v1, v2;
|
||||
|
|
|
@ -96,10 +96,9 @@ class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
|
|||
expr * mk_sin_value(rational const & k);
|
||||
app * mk_sqrt(rational const & k);
|
||||
bool divides(expr* d, expr* n, expr_ref& result);
|
||||
expr_ref remove_divisor(expr* arg, expr* num, expr* den);
|
||||
void flat_mul(expr* e, ptr_buffer<expr>& args);
|
||||
void remove_divisor(expr* d, ptr_buffer<expr>& args);
|
||||
|
||||
expr_ref remove_divisor(expr* arg, expr* num, expr* den);
|
||||
void flat_mul(expr* e, ptr_buffer<expr>& args);
|
||||
void remove_divisor(expr* d, ptr_buffer<expr>& args);
|
||||
public:
|
||||
arith_rewriter(ast_manager & m, params_ref const & p = params_ref()):
|
||||
poly_rewriter<arith_rewriter_core>(m, p) {
|
||||
|
|
|
@ -85,7 +85,7 @@ void run_solver(lp_params & params, char const * mps_file_name) {
|
|||
solver->find_maximal_solution();
|
||||
|
||||
*(solver->settings().get_message_ostream()) << "status is " << lp_status_to_string(solver->get_status()) << std::endl;
|
||||
if (solver->get_status() == lp::OPTIMAL) {
|
||||
if (solver->get_status() == lp::lp_status::OPTIMAL) {
|
||||
if (params.min()) {
|
||||
solver->flip_costs();
|
||||
}
|
||||
|
|
|
@ -40,7 +40,7 @@ def_module_params(module_name='smt',
|
|||
('bv.reflect', BOOL, True, 'create enode for every bit-vector term'),
|
||||
('bv.enable_int2bv', BOOL, True, 'enable support for int2bv and bv2int operators'),
|
||||
('arith.random_initial_value', BOOL, False, 'use random initial values in the simplex-based procedure for linear arithmetic'),
|
||||
('arith.solver', UINT, 2, 'arithmetic solver: 0 - no solver, 1 - bellman-ford based solver (diff. logic only), 2 - simplex based solver, 3 - floyd-warshall based solver (diff. logic only) and no theory combination 4 - utvpi, 5 - infinitary lra, 6 - lra solver'),
|
||||
('arith.solver', UINT, 6, 'arithmetic solver: 0 - no solver, 1 - bellman-ford based solver (diff. logic only), 2 - simplex based solver, 3 - floyd-warshall based solver (diff. logic only) and no theory combination 4 - utvpi, 5 - infinitary lra, 6 - lra solver'),
|
||||
('arith.nl', BOOL, True, '(incomplete) nonlinear arithmetic support based on Groebner basis and interval propagation'),
|
||||
('arith.nl.gb', BOOL, True, 'groebner Basis computation, this option is ignored when arith.nl=false'),
|
||||
('arith.nl.branching', BOOL, True, 'branching on integer variables in non linear clusters'),
|
||||
|
|
|
@ -25,11 +25,11 @@ Revision History:
|
|||
enum arith_solver_id {
|
||||
AS_NO_ARITH, // 0
|
||||
AS_DIFF_LOGIC, // 1
|
||||
AS_ARITH, // 2
|
||||
AS_OLD_ARITH, // 2
|
||||
AS_DENSE_DIFF_LOGIC, // 3
|
||||
AS_UTVPI, // 4
|
||||
AS_OPTINF, // 5
|
||||
AS_LRA // 6
|
||||
AS_NEW_ARITH // 6
|
||||
};
|
||||
|
||||
enum bound_prop_mode {
|
||||
|
@ -113,7 +113,7 @@ struct theory_arith_params {
|
|||
theory_arith_params(params_ref const & p = params_ref()):
|
||||
m_arith_eq2ineq(false),
|
||||
m_arith_process_all_eqs(false),
|
||||
m_arith_mode(AS_ARITH),
|
||||
m_arith_mode(AS_NEW_ARITH),
|
||||
m_arith_auto_config_simplex(false),
|
||||
m_arith_blands_rule_threshold(1000),
|
||||
m_arith_propagate_eqs(true),
|
||||
|
|
|
@ -3763,6 +3763,7 @@ namespace smt {
|
|||
}
|
||||
|
||||
m_stats.m_num_final_checks++;
|
||||
TRACE("final_check_stats", tout << "m_stats.m_num_final_checks = " << m_stats.m_num_final_checks << "\n";);
|
||||
|
||||
final_check_status ok = m_qmanager->final_check_eh(false);
|
||||
if (ok != FC_DONE)
|
||||
|
|
|
@ -849,7 +849,7 @@ namespace smt {
|
|||
std::cerr << v << " ::=\n" << mk_ll_pp(n, m_manager) << "<END-OF-FORMULA>\n";
|
||||
}
|
||||
#endif
|
||||
TRACE("mk_bool_var", tout << "creating boolean variable: " << v << " for:\n" << mk_pp(n, m_manager) << "\n";);
|
||||
TRACE("mk_bool_var", tout << "creating boolean variable: " << v << " for:\n" << mk_pp(n, m_manager) << " " << n->get_id() << "\n";);
|
||||
TRACE("mk_var_bug", tout << "mk_bool: " << v << "\n";);
|
||||
set_bool_var(id, v);
|
||||
m_bdata.reserve(v+1);
|
||||
|
|
|
@ -740,8 +740,12 @@ namespace smt {
|
|||
}
|
||||
|
||||
void setup::setup_i_arith() {
|
||||
// m_context.register_plugin(alloc(smt::theory_lra, m_manager, m_params));
|
||||
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
|
||||
if (AS_OLD_ARITH == m_params.m_arith_mode) {
|
||||
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
|
||||
}
|
||||
else {
|
||||
setup_r_arith();
|
||||
}
|
||||
}
|
||||
|
||||
void setup::setup_r_arith() {
|
||||
|
@ -749,14 +753,21 @@ namespace smt {
|
|||
}
|
||||
|
||||
void setup::setup_mi_arith() {
|
||||
if (m_params.m_arith_mode == AS_OPTINF) {
|
||||
switch (m_params.m_arith_mode) {
|
||||
case AS_OPTINF:
|
||||
m_context.register_plugin(alloc(smt::theory_inf_arith, m_manager, m_params));
|
||||
}
|
||||
else {
|
||||
break;
|
||||
case AS_NEW_ARITH:
|
||||
setup_r_arith();
|
||||
break;
|
||||
default:
|
||||
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void setup::setup_arith() {
|
||||
static_features st(m_manager);
|
||||
IF_VERBOSE(100, verbose_stream() << "(smt.collecting-features)\n";);
|
||||
|
@ -810,15 +821,15 @@ namespace smt {
|
|||
case AS_OPTINF:
|
||||
m_context.register_plugin(alloc(smt::theory_inf_arith, m_manager, m_params));
|
||||
break;
|
||||
case AS_LRA:
|
||||
setup_r_arith();
|
||||
break;
|
||||
default:
|
||||
case AS_OLD_ARITH:
|
||||
if (m_params.m_arith_int_only && int_only)
|
||||
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
|
||||
else
|
||||
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
break;
|
||||
default:
|
||||
setup_i_arith();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -978,7 +989,7 @@ namespace smt {
|
|||
if (st.num_theories() == 2 && st.has_uf() && is_arith(st)) {
|
||||
if (!st.m_has_real)
|
||||
setup_QF_UFLIA(st);
|
||||
else if (!st.m_has_int && st.m_num_non_linear == 0)
|
||||
else if (!st.m_has_int && st.m_num_non_linear == 0)
|
||||
setup_QF_UFLRA();
|
||||
else
|
||||
setup_unknown();
|
||||
|
|
|
@ -42,7 +42,7 @@ Revision History:
|
|||
namespace smt {
|
||||
|
||||
struct theory_arith_stats {
|
||||
unsigned m_conflicts, m_add_rows, m_pivots, m_diseq_cs, m_gomory_cuts, m_branches, m_gcd_tests;
|
||||
unsigned m_conflicts, m_add_rows, m_pivots, m_diseq_cs, m_gomory_cuts, m_branches, m_gcd_tests, m_patches, m_patches_succ;
|
||||
unsigned m_assert_lower, m_assert_upper, m_assert_diseq, m_core2th_eqs, m_core2th_diseqs;
|
||||
unsigned m_th2core_eqs, m_th2core_diseqs, m_bound_props, m_offset_eqs, m_fixed_eqs, m_offline_eqs;
|
||||
unsigned m_max_min;
|
||||
|
|
|
@ -1335,7 +1335,7 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
});
|
||||
|
||||
m_stats.m_patches++;
|
||||
patch_int_infeasible_vars();
|
||||
fix_non_base_vars();
|
||||
|
||||
|
@ -1368,6 +1368,7 @@ namespace smt {
|
|||
|
||||
theory_var int_var = find_infeasible_int_base_var();
|
||||
if (int_var == null_theory_var) {
|
||||
m_stats.m_patches_succ++;
|
||||
TRACE("arith_int_incomp", tout << "FC_DONE 2...\n"; display(tout););
|
||||
return m_liberal_final_check || !m_changed_assignment ? FC_DONE : FC_CONTINUE;
|
||||
}
|
||||
|
@ -1385,6 +1386,7 @@ namespace smt {
|
|||
|
||||
m_branch_cut_counter++;
|
||||
// TODO: add giveup code
|
||||
TRACE("gomory_cut", tout << m_branch_cut_counter << ", " << m_params.m_arith_branch_cut_ratio << std::endl;);
|
||||
if (m_branch_cut_counter % m_params.m_arith_branch_cut_ratio == 0) {
|
||||
TRACE("opt_verbose", display(tout););
|
||||
move_non_base_vars_to_bounds();
|
||||
|
@ -1399,7 +1401,7 @@ namespace smt {
|
|||
SASSERT(is_base(int_var));
|
||||
row const & r = m_rows[get_var_row(int_var)];
|
||||
if (!mk_gomory_cut(r)) {
|
||||
// silent failure
|
||||
TRACE("gomory_cut", tout << "silent failure\n";);
|
||||
}
|
||||
return FC_CONTINUE;
|
||||
}
|
||||
|
|
|
@ -38,6 +38,8 @@ namespace smt {
|
|||
st.update("arith gcd tests", m_stats.m_gcd_tests);
|
||||
st.update("arith ineq splits", m_stats.m_branches);
|
||||
st.update("arith gomory cuts", m_stats.m_gomory_cuts);
|
||||
st.update("arith patches", m_stats.m_patches);
|
||||
st.update("arith patches_succ", m_stats.m_patches_succ);
|
||||
st.update("arith max-min", m_stats.m_max_min);
|
||||
st.update("arith grobner", m_stats.m_gb_compute_basis);
|
||||
st.update("arith pseudo nonlinear", m_stats.m_nl_linear);
|
||||
|
@ -389,8 +391,19 @@ namespace smt {
|
|||
void theory_arith<Ext>::display_vars(std::ostream & out) const {
|
||||
out << "vars:\n";
|
||||
int n = get_num_vars();
|
||||
for (theory_var v = 0; v < n; v++)
|
||||
display_var(out, v);
|
||||
int inf_vars = 0;
|
||||
int int_inf_vars = 0;
|
||||
for (theory_var v = 0; v < n; v++) {
|
||||
if ((lower(v) && lower(v)->get_value() > get_value(v))
|
||||
|| (upper(v) && upper(v)->get_value() < get_value(v)))
|
||||
inf_vars++;
|
||||
if (is_int(v) && !get_value(v).is_int())
|
||||
int_inf_vars++;
|
||||
}
|
||||
out << "infeasibles = " << inf_vars << " int_inf = " << int_inf_vars << std::endl;
|
||||
for (theory_var v = 0; v < n; v++) {
|
||||
display_var(out, v);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Ext>
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -31,7 +31,7 @@ namespace smt {
|
|||
theory_lra(ast_manager& m, theory_arith_params& ap);
|
||||
~theory_lra() override;
|
||||
theory* mk_fresh(context* new_ctx) override;
|
||||
char const* get_name() const override { return "lra"; }
|
||||
char const* get_name() const override { return "arithmetic"; }
|
||||
|
||||
void init(context * ctx) override;
|
||||
|
||||
|
@ -78,6 +78,8 @@ namespace smt {
|
|||
model_value_proc * mk_value(enode * n, model_generator & mg) override;
|
||||
|
||||
bool get_value(enode* n, expr_ref& r) override;
|
||||
bool get_lower(enode* n, expr_ref& r);
|
||||
bool get_upper(enode* n, expr_ref& r);
|
||||
|
||||
bool validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const override;
|
||||
|
||||
|
|
|
@ -26,6 +26,7 @@ Revision History:
|
|||
#include "smt/smt_model_generator.h"
|
||||
#include "smt/theory_seq.h"
|
||||
#include "smt/theory_arith.h"
|
||||
#include "smt/theory_lra.h"
|
||||
#include "smt/smt_kernel.h"
|
||||
|
||||
using namespace smt;
|
||||
|
@ -4551,6 +4552,8 @@ static bool get_arith_value(context& ctx, theory_id afid, expr* e, expr_ref& v)
|
|||
if (tha) return tha->get_value(ctx.get_enode(e), v);
|
||||
theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, afid, e);
|
||||
if (thi) return thi->get_value(ctx.get_enode(e), v);
|
||||
theory_lra* thr = get_th_arith<theory_lra>(ctx, afid, e);
|
||||
if (thr) return thr->get_value(ctx.get_enode(e), v);
|
||||
TRACE("seq", tout << "no arithmetic theory\n";);
|
||||
return false;
|
||||
}
|
||||
|
@ -4576,12 +4579,18 @@ bool theory_seq::lower_bound(expr* _e, rational& lo) const {
|
|||
context& ctx = get_context();
|
||||
expr_ref e(m_util.str.mk_length(_e), m);
|
||||
expr_ref _lo(m);
|
||||
theory_mi_arith* tha = get_th_arith<theory_mi_arith>(ctx, m_autil.get_family_id(), e);
|
||||
if (tha && !tha->get_lower(ctx.get_enode(e), _lo)) return false;
|
||||
if (!tha) {
|
||||
theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, m_autil.get_family_id(), e);
|
||||
if (!thi || !thi->get_lower(ctx.get_enode(e), _lo)) return false;
|
||||
family_id afid = m_autil.get_family_id();
|
||||
do {
|
||||
theory_mi_arith* tha = get_th_arith<theory_mi_arith>(ctx, afid, e);
|
||||
if (tha && tha->get_lower(ctx.get_enode(e), _lo)) break;
|
||||
theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, afid, e);
|
||||
if (thi && thi->get_lower(ctx.get_enode(e), _lo)) break;
|
||||
theory_lra* thr = get_th_arith<theory_lra>(ctx, afid, e);
|
||||
if (thr && thr->get_lower(ctx.get_enode(e), _lo)) break;
|
||||
TRACE("seq", tout << "no lower bound " << mk_pp(_e, m) << "\n";);
|
||||
return false;
|
||||
}
|
||||
while (false);
|
||||
return m_autil.is_numeral(_lo, lo) && lo.is_int();
|
||||
}
|
||||
|
||||
|
@ -4627,13 +4636,19 @@ bool theory_seq::lower_bound2(expr* _e, rational& lo) {
|
|||
bool theory_seq::upper_bound(expr* _e, rational& hi) const {
|
||||
context& ctx = get_context();
|
||||
expr_ref e(m_util.str.mk_length(_e), m);
|
||||
theory_mi_arith* tha = get_th_arith<theory_mi_arith>(ctx, m_autil.get_family_id(), e);
|
||||
family_id afid = m_autil.get_family_id();
|
||||
expr_ref _hi(m);
|
||||
if (tha && !tha->get_upper(ctx.get_enode(e), _hi)) return false;
|
||||
if (!tha) {
|
||||
theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, m_autil.get_family_id(), e);
|
||||
if (!thi || !thi->get_upper(ctx.get_enode(e), _hi)) return false;
|
||||
do {
|
||||
theory_mi_arith* tha = get_th_arith<theory_mi_arith>(ctx, afid, e);
|
||||
if (tha && tha->get_upper(ctx.get_enode(e), _hi)) break;
|
||||
theory_i_arith* thi = get_th_arith<theory_i_arith>(ctx, afid, e);
|
||||
if (thi && thi->get_upper(ctx.get_enode(e), _hi)) break;
|
||||
theory_lra* thr = get_th_arith<theory_lra>(ctx, afid, e);
|
||||
if (thr && thr->get_upper(ctx.get_enode(e), _hi)) break;
|
||||
TRACE("seq", tout << "no upper bound " << mk_pp(_e, m) << "\n";);
|
||||
return false;
|
||||
}
|
||||
while (false);
|
||||
return m_autil.is_numeral(_hi, hi) && hi.is_int();
|
||||
}
|
||||
|
||||
|
|
|
@ -211,17 +211,23 @@ tactic * mk_qflia_tactic(ast_manager & m, params_ref const & p) {
|
|||
|
||||
params_ref no_cut_p;
|
||||
no_cut_p.set_uint("arith.branch_cut_ratio", 10000000);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
tactic * st = using_params(and_then(preamble_st,
|
||||
#if 0
|
||||
mk_smt_tactic()),
|
||||
#else
|
||||
or_else(mk_ilp_model_finder_tactic(m),
|
||||
mk_pb_tactic(m),
|
||||
and_then(fail_if_not(mk_is_quasi_pb_probe()),
|
||||
using_params(mk_lia2sat_tactic(m), quasi_pb_p),
|
||||
mk_fail_if_undecided_tactic()),
|
||||
mk_bounded_tactic(m),
|
||||
mk_psmt_tactic(m, p))),
|
||||
mk_smt_tactic())),
|
||||
#endif
|
||||
main_p);
|
||||
|
||||
|
||||
st->updt_params(p);
|
||||
return st;
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
add_subdirectory(fuzzing)
|
||||
add_subdirectory(lp)
|
||||
################################################################################
|
||||
# z3-test executable
|
||||
################################################################################
|
||||
|
@ -120,6 +121,7 @@ add_executable(test-z3
|
|||
upolynomial.cpp
|
||||
var_subst.cpp
|
||||
vector.cpp
|
||||
lp/lp.cpp
|
||||
${z3_test_extra_object_files}
|
||||
)
|
||||
z3_add_install_tactic_rule(${z3_test_deps})
|
||||
|
|
6
src/test/lp/CMakeLists.txt
Normal file
6
src/test/lp/CMakeLists.txt
Normal file
|
@ -0,0 +1,6 @@
|
|||
add_executable(lp_tst lp_main.cpp lp.cpp $<TARGET_OBJECTS:util> $<TARGET_OBJECTS:polynomial> $<TARGET_OBJECTS:nlsat> $<TARGET_OBJECTS:lp> )
|
||||
target_compile_definitions(lp_tst PRIVATE ${Z3_COMPONENT_CXX_DEFINES})
|
||||
target_compile_options(lp_tst PRIVATE ${Z3_COMPONENT_CXX_FLAGS})
|
||||
target_include_directories(lp_tst PRIVATE ${Z3_COMPONENT_EXTRA_INCLUDE_DIRS})
|
||||
target_link_libraries(lp_tst PRIVATE ${Z3_DEPENDENT_LIBS})
|
||||
z3_append_linker_flag_list_to_target(lp_tst ${Z3_DEPENDENT_EXTRA_CXX_LINK_FLAGS})
|
236
src/test/lp/gomory_test.h
Normal file
236
src/test/lp/gomory_test.h
Normal file
|
@ -0,0 +1,236 @@
|
|||
namespace lp {
|
||||
struct gomory_test {
|
||||
gomory_test(
|
||||
std::function<std::string (unsigned)> name_function_p,
|
||||
std::function<mpq (unsigned)> get_value_p,
|
||||
std::function<bool (unsigned)> at_low_p,
|
||||
std::function<bool (unsigned)> at_upper_p,
|
||||
std::function<impq (unsigned) > lower_bound_p,
|
||||
std::function<impq (unsigned) > upper_bound_p,
|
||||
std::function<unsigned (unsigned) > column_lower_bound_constraint_p,
|
||||
std::function<unsigned (unsigned) > column_upper_bound_constraint_p
|
||||
) :
|
||||
m_name_function(name_function_p),
|
||||
get_value(get_value_p),
|
||||
at_low(at_low_p),
|
||||
at_upper(at_upper_p),
|
||||
lower_bound(lower_bound_p),
|
||||
upper_bound(upper_bound_p),
|
||||
column_lower_bound_constraint(column_lower_bound_constraint_p),
|
||||
column_upper_bound_constraint(column_upper_bound_constraint_p)
|
||||
{}
|
||||
|
||||
std::function<std::string (unsigned)> m_name_function;
|
||||
std::function<mpq (unsigned)> get_value;
|
||||
std::function<bool (unsigned)> at_low;
|
||||
std::function<bool (unsigned)> at_upper;
|
||||
std::function<impq (unsigned) > lower_bound;
|
||||
std::function<impq (unsigned) > upper_bound;
|
||||
std::function<unsigned (unsigned) > column_lower_bound_constraint;
|
||||
std::function<unsigned (unsigned) > column_upper_bound_constraint;
|
||||
|
||||
bool is_real(unsigned) { return false; } // todo: test real case
|
||||
void print_row(std::ostream& out, vector<std::pair<mpq, unsigned>> & row ) {
|
||||
bool first = true;
|
||||
for (const auto & it : row) {
|
||||
auto val = it.first;
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
if (numeric_traits<mpq>::is_pos(val)) {
|
||||
out << " + ";
|
||||
} else {
|
||||
out << " - ";
|
||||
val = -val;
|
||||
}
|
||||
}
|
||||
if (val == -numeric_traits<mpq>::one())
|
||||
out << " - ";
|
||||
else if (val != numeric_traits<mpq>::one())
|
||||
out << T_to_string(val);
|
||||
|
||||
out << m_name_function(it.second);
|
||||
}
|
||||
}
|
||||
|
||||
void real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term& pol, explanation & expl, const mpq& f_0, const mpq& one_minus_f_0) {
|
||||
TRACE("gomory_cut_detail_real", tout << "real\n";);
|
||||
mpq new_a;
|
||||
if (at_low(x_j)) {
|
||||
if (a.is_pos()) {
|
||||
new_a = a / (1 - f_0);
|
||||
}
|
||||
else {
|
||||
new_a = a / f_0;
|
||||
new_a.neg();
|
||||
}
|
||||
k.addmul(new_a, lower_bound(x_j).x); // is it a faster operation than
|
||||
// k += lower_bound(x_j).x * new_a;
|
||||
expl.push_justification(column_lower_bound_constraint(x_j), new_a);
|
||||
}
|
||||
else {
|
||||
lp_assert(at_upper(x_j));
|
||||
if (a.is_pos()) {
|
||||
new_a = a / f_0;
|
||||
new_a.neg(); // the upper terms are inverted.
|
||||
}
|
||||
else {
|
||||
new_a = a / (mpq(1) - f_0);
|
||||
}
|
||||
k.addmul(new_a, upper_bound(x_j).x); // k += upper_bound(x_j).x * new_a;
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
}
|
||||
TRACE("gomory_cut_detail_real", tout << a << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.add_monomial(new_a, x_j);
|
||||
}
|
||||
|
||||
void int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term & t, explanation& expl, mpq & lcm_den, const mpq& f_0, const mpq& one_minus_f_0) {
|
||||
lp_assert(is_int(x_j));
|
||||
lp_assert(!a.is_int());
|
||||
lp_assert(f_0 > zero_of_type<mpq>() && f_0 < one_of_type<mpq>());
|
||||
mpq f_j = int_solver::fractional_part(a);
|
||||
TRACE("gomory_cut_detail",
|
||||
tout << a << " x_j = " << x_j << ", k = " << k << "\n";
|
||||
tout << "f_j: " << f_j << "\n";
|
||||
tout << "f_0: " << f_0 << "\n";
|
||||
tout << "1 - f_0: " << one_minus_f_0 << "\n";
|
||||
tout << "at_low(" << x_j << ") = " << at_low(x_j) << std::endl;
|
||||
);
|
||||
lp_assert (!f_j.is_zero());
|
||||
mpq new_a;
|
||||
if (at_low(x_j)) {
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (1 - f_j) / f_0;
|
||||
}
|
||||
k.addmul(new_a, lower_bound(x_j).x);
|
||||
expl.push_justification(column_lower_bound_constraint(x_j), new_a);
|
||||
}
|
||||
else {
|
||||
lp_assert(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (mpq(1) - f_j) / (one_minus_f_0);
|
||||
}
|
||||
new_a.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a, upper_bound(x_j).x);
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << k << "\n";);
|
||||
t.add_monomial(new_a, x_j);
|
||||
lcm_den = lcm(lcm_den, denominator(new_a));
|
||||
}
|
||||
|
||||
|
||||
void report_conflict_from_gomory_cut(mpq &k) {
|
||||
lp_assert(false);
|
||||
}
|
||||
|
||||
void adjust_term_and_k_for_some_ints_case_gomory(lar_term& t, mpq& k, mpq &lcm_den) {
|
||||
lp_assert(!t.is_empty());
|
||||
auto pol = t.coeffs_as_vector();
|
||||
t.clear();
|
||||
if (pol.size() == 1) {
|
||||
TRACE("gomory_cut_detail", tout << "pol.size() is 1" << std::endl;);
|
||||
unsigned v = pol[0].second;
|
||||
lp_assert(is_int(v));
|
||||
const mpq& a = pol[0].first;
|
||||
k /= a;
|
||||
if (a.is_pos()) { // we have av >= k
|
||||
if (!k.is_int())
|
||||
k = ceil(k);
|
||||
// switch size
|
||||
t.add_monomial(- mpq(1), v);
|
||||
k.neg();
|
||||
} else {
|
||||
if (!k.is_int())
|
||||
k = floor(k);
|
||||
t.add_monomial(mpq(1), v);
|
||||
}
|
||||
} else {
|
||||
TRACE("gomory_cut_detail", tout << "pol.size() > 1" << std::endl;);
|
||||
lcm_den = lcm(lcm_den, denominator(k));
|
||||
TRACE("gomory_cut_detail", tout << "k: " << k << " lcm_den: " << lcm_den << "\n";
|
||||
for (unsigned i = 0; i < pol.size(); i++) {
|
||||
tout << pol[i].first << " " << pol[i].second << "\n";
|
||||
}
|
||||
tout << "k: " << k << "\n";);
|
||||
lp_assert(lcm_den.is_pos());
|
||||
if (!lcm_den.is_one()) {
|
||||
// normalize coefficients of integer parameters to be integers.
|
||||
for (auto & pi: pol) {
|
||||
pi.first *= lcm_den;
|
||||
SASSERT(!is_int(pi.second) || pi.first.is_int());
|
||||
}
|
||||
k *= lcm_den;
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "after *lcm\n";
|
||||
for (unsigned i = 0; i < pol.size(); i++) {
|
||||
tout << pol[i].first << " * v" << pol[i].second << "\n";
|
||||
}
|
||||
tout << "k: " << k << "\n";);
|
||||
|
||||
// negate everything to return -pol <= -k
|
||||
for (const auto & pi: pol)
|
||||
t.add_monomial(-pi.first, pi.second);
|
||||
k.neg();
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "k = " << k << std::endl;);
|
||||
lp_assert(k.is_int());
|
||||
}
|
||||
|
||||
void print_term(lar_term & t, std::ostream & out) {
|
||||
lp_assert(is_zero(t.m_v));
|
||||
vector<std::pair<mpq, unsigned>> row;
|
||||
for (auto p : t.m_coeffs)
|
||||
row.push_back(std::make_pair(p.second, p.first));
|
||||
print_row(out, row);
|
||||
}
|
||||
|
||||
void mk_gomory_cut(lar_term& t, mpq& k, explanation & expl, unsigned inf_col, vector<std::pair<mpq, unsigned>> & row) {
|
||||
enable_trace("gomory_cut");
|
||||
enable_trace("gomory_cut_detail");
|
||||
|
||||
TRACE("gomory_cut",
|
||||
tout << "applying cut at:\n"; print_row(tout, row);
|
||||
tout << std::endl << "inf_col = " << inf_col << std::endl;
|
||||
);
|
||||
|
||||
// gomory will be t >= k
|
||||
k = 1;
|
||||
mpq lcm_den(1);
|
||||
unsigned x_j;
|
||||
mpq a;
|
||||
bool some_int_columns = false;
|
||||
mpq f_0 = int_solver::fractional_part(get_value(inf_col));
|
||||
mpq one_min_f_0 = 1 - f_0;
|
||||
for ( auto pp : row) {
|
||||
a = pp.first;
|
||||
x_j = pp.second;
|
||||
if (x_j == inf_col)
|
||||
continue;
|
||||
// make the format compatible with the format used in: Integrating Simplex with DPLL(T)
|
||||
a.neg();
|
||||
if (is_real(x_j))
|
||||
real_case_in_gomory_cut(a, x_j, k, t, expl, f_0, one_min_f_0);
|
||||
else {
|
||||
if (a.is_int()) continue; // f_j will be zero and no monomial will be added
|
||||
some_int_columns = true;
|
||||
int_case_in_gomory_cut(a, x_j, k, t, expl, lcm_den, f_0, one_min_f_0);
|
||||
}
|
||||
}
|
||||
|
||||
if (t.is_empty())
|
||||
return report_conflict_from_gomory_cut(k);
|
||||
if (some_int_columns)
|
||||
adjust_term_and_k_for_some_ints_case_gomory(t, k, lcm_den);
|
||||
|
||||
TRACE("gomory_cut", tout<<"new cut :"; print_term(t, tout); tout << " >= " << k << std::endl;);
|
||||
|
||||
}
|
||||
};
|
||||
}
|
File diff suppressed because it is too large
Load diff
14
src/test/lp/lp_main.cpp
Normal file
14
src/test/lp/lp_main.cpp
Normal file
|
@ -0,0 +1,14 @@
|
|||
void gparams_register_modules(){}
|
||||
void mem_initialize() {}
|
||||
void mem_finalize() {}
|
||||
#include "util/rational.h"
|
||||
namespace lp {
|
||||
void test_lp_local(int argc, char**argv);
|
||||
}
|
||||
int main(int argn, char**argv){
|
||||
rational::initialize();
|
||||
lp::test_lp_local(argn, argv);
|
||||
rational::finalize();
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -121,13 +121,13 @@ namespace lp {
|
|||
|
||||
void fill_simple_elem(lisp_elem & lm) {
|
||||
int separator = first_separator();
|
||||
SASSERT(-1 != separator && separator != 0);
|
||||
lp_assert(-1 != separator && separator != 0);
|
||||
lm.m_head = m_line.substr(0, separator);
|
||||
m_line = m_line.substr(separator);
|
||||
}
|
||||
|
||||
void fill_nested_elem(lisp_elem & lm) {
|
||||
SASSERT(m_line[0] == '(');
|
||||
lp_assert(m_line[0] == '(');
|
||||
m_line = m_line.substr(1);
|
||||
int separator = first_separator();
|
||||
lm.m_head = m_line.substr(0, separator);
|
||||
|
@ -194,11 +194,11 @@ namespace lp {
|
|||
}
|
||||
|
||||
void adjust_rigth_side(formula_constraint & /* c*/, lisp_elem & /*el*/) {
|
||||
// SASSERT(el.m_head == "0"); // do nothing for the time being
|
||||
// lp_assert(el.m_head == "0"); // do nothing for the time being
|
||||
}
|
||||
|
||||
void set_constraint_coeffs(formula_constraint & c, lisp_elem & el) {
|
||||
SASSERT(el.m_elems.size() == 2);
|
||||
lp_assert(el.m_elems.size() == 2);
|
||||
set_constraint_coeffs_on_coeff_element(c, el.m_elems[0]);
|
||||
adjust_rigth_side(c, el.m_elems[1]);
|
||||
}
|
||||
|
@ -214,7 +214,7 @@ namespace lp {
|
|||
add_mult_elem(c, el.m_elems);
|
||||
} else if (el.m_head == "~") {
|
||||
lisp_elem & minel = el.m_elems[0];
|
||||
SASSERT(minel.is_simple());
|
||||
lp_assert(minel.is_simple());
|
||||
c.m_right_side += mpq(str_to_int(minel.m_head));
|
||||
} else {
|
||||
std::cout << "unexpected input " << el.m_head << std::endl;
|
||||
|
@ -224,14 +224,14 @@ namespace lp {
|
|||
}
|
||||
|
||||
std::string get_name(lisp_elem & name) {
|
||||
SASSERT(name.is_simple());
|
||||
SASSERT(!is_integer(name.m_head));
|
||||
lp_assert(name.is_simple());
|
||||
lp_assert(!is_integer(name.m_head));
|
||||
return name.m_head;
|
||||
}
|
||||
|
||||
|
||||
void add_mult_elem(formula_constraint & c, std::vector<lisp_elem> & els) {
|
||||
SASSERT(els.size() == 2);
|
||||
lp_assert(els.size() == 2);
|
||||
mpq coeff = get_coeff(els[0]);
|
||||
std::string col_name = get_name(els[1]);
|
||||
c.add_pair(coeff, col_name);
|
||||
|
@ -241,16 +241,16 @@ namespace lp {
|
|||
if (le.is_simple()) {
|
||||
return mpq(str_to_int(le.m_head));
|
||||
} else {
|
||||
SASSERT(le.m_head == "~");
|
||||
SASSERT(le.size() == 1);
|
||||
lp_assert(le.m_head == "~");
|
||||
lp_assert(le.size() == 1);
|
||||
lisp_elem & el = le.m_elems[0];
|
||||
SASSERT(el.is_simple());
|
||||
lp_assert(el.is_simple());
|
||||
return -mpq(str_to_int(el.m_head));
|
||||
}
|
||||
}
|
||||
|
||||
int str_to_int(std::string & s) {
|
||||
SASSERT(is_integer(s));
|
||||
lp_assert(is_integer(s));
|
||||
return atoi(s.c_str());
|
||||
}
|
||||
|
||||
|
@ -258,7 +258,7 @@ namespace lp {
|
|||
if (el.size()) {
|
||||
add_complex_sum_elem(c, el);
|
||||
} else {
|
||||
SASSERT(is_integer(el.m_head));
|
||||
lp_assert(is_integer(el.m_head));
|
||||
int v = atoi(el.m_head.c_str());
|
||||
mpq vr(v);
|
||||
c.m_right_side -= vr;
|
||||
|
@ -276,7 +276,7 @@ namespace lp {
|
|||
} else if (el.m_head == "+") {
|
||||
add_sum(c, el.m_elems);
|
||||
} else {
|
||||
SASSERT(false); // unexpected input
|
||||
lp_assert(false); // unexpected input
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -389,7 +389,7 @@ namespace lp {
|
|||
void add_constraint_to_solver(lar_solver * solver, formula_constraint & fc) {
|
||||
vector<std::pair<mpq, var_index>> ls;
|
||||
for (auto & it : fc.m_coeffs) {
|
||||
ls.push_back(std::make_pair(it.first, solver->add_var(register_name(it.second))));
|
||||
ls.push_back(std::make_pair(it.first, solver->add_var(register_name(it.second), false)));
|
||||
}
|
||||
solver->add_constraint(ls, fc.m_kind, fc.m_right_side);
|
||||
}
|
|
@ -4,7 +4,6 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
|
||||
--*/
|
||||
|
||||
#include "util/lp/sparse_matrix.h"
|
||||
#include "math/simplex/sparse_matrix_def.h"
|
||||
#include "math/simplex/simplex.h"
|
||||
#include "math/simplex/simplex_def.h"
|
||||
|
|
|
@ -1,33 +1,37 @@
|
|||
z3_add_component(lp
|
||||
SOURCES
|
||||
lp_utils.cpp
|
||||
binary_heap_priority_queue_instances.cpp
|
||||
binary_heap_upair_queue_instances.cpp
|
||||
lp_bound_propagator.cpp
|
||||
core_solver_pretty_printer_instances.cpp
|
||||
dense_matrix_instances.cpp
|
||||
eta_matrix_instances.cpp
|
||||
indexed_vector_instances.cpp
|
||||
lar_core_solver_instances.cpp
|
||||
lp_core_solver_base_instances.cpp
|
||||
lp_dual_core_solver_instances.cpp
|
||||
lp_dual_simplex_instances.cpp
|
||||
lp_primal_core_solver_instances.cpp
|
||||
lp_primal_simplex_instances.cpp
|
||||
lp_settings_instances.cpp
|
||||
lp_solver_instances.cpp
|
||||
lu_instances.cpp
|
||||
matrix_instances.cpp
|
||||
permutation_matrix_instances.cpp
|
||||
quick_xplain.cpp
|
||||
row_eta_matrix_instances.cpp
|
||||
scaler_instances.cpp
|
||||
sparse_matrix_instances.cpp
|
||||
square_dense_submatrix_instances.cpp
|
||||
static_matrix_instances.cpp
|
||||
random_updater_instances.cpp
|
||||
binary_heap_priority_queue.cpp
|
||||
binary_heap_upair_queue.cpp
|
||||
bound_propagator.cpp
|
||||
core_solver_pretty_printer.cpp
|
||||
dense_matrix.cpp
|
||||
eta_matrix.cpp
|
||||
indexed_vector.cpp
|
||||
int_solver.cpp
|
||||
lar_solver.cpp
|
||||
lar_core_solver.cpp
|
||||
lp_core_solver_base.cpp
|
||||
lp_dual_core_solver.cpp
|
||||
lp_dual_simplex.cpp
|
||||
lp_primal_core_solver.cpp
|
||||
lp_primal_simplex.cpp
|
||||
lp_settings.cpp
|
||||
lp_solver.cpp
|
||||
lu.cpp
|
||||
matrix.cpp
|
||||
nra_solver.cpp
|
||||
permutation_matrix.cpp
|
||||
row_eta_matrix.cpp
|
||||
scaler.cpp
|
||||
square_sparse_matrix.cpp
|
||||
square_dense_submatrix.cpp
|
||||
static_matrix.cpp
|
||||
random_updater.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
util
|
||||
polynomial
|
||||
nlsat
|
||||
PYG_FILES
|
||||
lp_params.pyg
|
||||
)
|
||||
|
|
76
src/util/lp/active_set.h
Normal file
76
src/util/lp/active_set.h
Normal file
|
@ -0,0 +1,76 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
namespace lp {
|
||||
class active_set {
|
||||
std::unordered_set<constraint*, constraint_hash, constraint_equal> m_cs;
|
||||
binary_heap_priority_queue<int> m_q;
|
||||
std::unordered_map<unsigned, constraint *> m_id_to_constraint;
|
||||
public:
|
||||
std::unordered_set<constraint*, constraint_hash, constraint_equal> cs() const { return m_cs;}
|
||||
|
||||
bool contains(const constraint* c) const {
|
||||
return m_id_to_constraint.find(c->id()) != m_id_to_constraint.end();
|
||||
}
|
||||
|
||||
bool is_empty() const { return m_cs.size() == 0; }
|
||||
// low priority will be dequeued first
|
||||
void add_constraint(constraint* c, int priority) {
|
||||
if (contains(c))
|
||||
return;
|
||||
m_cs.insert(c);
|
||||
m_id_to_constraint[c->id()] = c;
|
||||
m_q.enqueue(c->id(), priority);
|
||||
}
|
||||
|
||||
void clear() {
|
||||
m_cs.clear();
|
||||
m_id_to_constraint.clear();
|
||||
m_q.clear();
|
||||
}
|
||||
|
||||
|
||||
constraint* remove_constraint() {
|
||||
if (m_cs.size() == 0)
|
||||
return nullptr;
|
||||
unsigned id = m_q.dequeue();
|
||||
auto it = m_id_to_constraint.find(id);
|
||||
lp_assert(it != m_id_to_constraint.end());
|
||||
constraint* c = it->second;
|
||||
m_cs.erase(c);
|
||||
m_id_to_constraint.erase(it);
|
||||
return c;
|
||||
}
|
||||
|
||||
unsigned size() const {
|
||||
return static_cast<unsigned>(m_cs.size());
|
||||
}
|
||||
|
||||
void remove_constraint(constraint * c) {
|
||||
if (! contains(c)) return;
|
||||
|
||||
m_cs.erase(c);
|
||||
m_id_to_constraint.erase(c->id());
|
||||
m_q.remove(c->id());
|
||||
}
|
||||
};
|
||||
}
|
|
@ -18,7 +18,7 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/binary_heap_priority_queue.hpp"
|
||||
#include "util/lp/binary_heap_priority_queue_def.h"
|
||||
namespace lp {
|
||||
template binary_heap_priority_queue<int>::binary_heap_priority_queue(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<int>::dequeue();
|
|
@ -45,7 +45,7 @@ public:
|
|||
unsigned size() const { return m_heap_size; }
|
||||
binary_heap_priority_queue(): m_heap(1), m_heap_size(0) {} // the empty constructror
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
// The capacity will be enlarged each time twice if needed
|
||||
binary_heap_priority_queue(unsigned n);
|
||||
|
||||
void clear() {
|
||||
|
@ -75,7 +75,7 @@ public:
|
|||
/// return the first element of the queue and removes it from the queue
|
||||
unsigned dequeue();
|
||||
unsigned peek() const {
|
||||
SASSERT(m_heap_size > 0);
|
||||
lp_assert(m_heap_size > 0);
|
||||
return m_heap[1];
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
|
|
|
@ -20,7 +20,7 @@ Revision History:
|
|||
#include "util/vector.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
namespace lp {
|
||||
// this is the child place in the heap
|
||||
// "i" is the child's place in the heap
|
||||
template <typename T> void binary_heap_priority_queue<T>::swap_with_parent(unsigned i) {
|
||||
unsigned parent = m_heap[i >> 1];
|
||||
put_at(i >> 1, m_heap[i]);
|
||||
|
@ -48,8 +48,8 @@ template <typename T> void binary_heap_priority_queue<T>::decrease_priority(unsi
|
|||
template <typename T> bool binary_heap_priority_queue<T>::is_consistent() const {
|
||||
for (int i = 0; i < m_heap_inverse.size(); i++) {
|
||||
int i_index = m_heap_inverse[i];
|
||||
SASSERT(i_index <= static_cast<int>(m_heap_size));
|
||||
SASSERT(i_index == -1 || m_heap[i_index] == i);
|
||||
lp_assert(i_index <= static_cast<int>(m_heap_size));
|
||||
lp_assert(i_index == -1 || m_heap[i_index] == i);
|
||||
}
|
||||
for (unsigned i = 1; i < m_heap_size; i++) {
|
||||
unsigned ch = i << 1;
|
||||
|
@ -71,7 +71,7 @@ template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
|
|||
if (o_in_heap == -1) {
|
||||
return; // nothing to do
|
||||
}
|
||||
SASSERT(static_cast<unsigned>(o_in_heap) <= m_heap_size);
|
||||
lp_assert(static_cast<unsigned>(o_in_heap) <= m_heap_size);
|
||||
if (static_cast<unsigned>(o_in_heap) < m_heap_size) {
|
||||
put_at(o_in_heap, m_heap[m_heap_size--]);
|
||||
if (m_priorities[m_heap[o_in_heap]] > priority_of_o) {
|
||||
|
@ -88,11 +88,11 @@ template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
|
|||
}
|
||||
}
|
||||
} else {
|
||||
SASSERT(static_cast<unsigned>(o_in_heap) == m_heap_size);
|
||||
lp_assert(static_cast<unsigned>(o_in_heap) == m_heap_size);
|
||||
m_heap_size--;
|
||||
}
|
||||
m_heap_inverse[o] = -1;
|
||||
// SASSERT(is_consistent());
|
||||
// lp_assert(is_consistent());
|
||||
}
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
|
@ -118,7 +118,7 @@ template <typename T> void binary_heap_priority_queue<T>::put_to_heap(unsigned i
|
|||
template <typename T> void binary_heap_priority_queue<T>::enqueue_new(unsigned o, const T& priority) {
|
||||
m_heap_size++;
|
||||
int i = m_heap_size;
|
||||
SASSERT(o < m_priorities.size());
|
||||
lp_assert(o < m_priorities.size());
|
||||
m_priorities[o] = priority;
|
||||
put_at(i, o);
|
||||
while (i > 1 && m_priorities[m_heap[i >> 1]] > priority) {
|
||||
|
@ -130,8 +130,12 @@ template <typename T> void binary_heap_priority_queue<T>::enqueue_new(unsigned o
|
|||
// In this case the priority will be changed and the queue adjusted.
|
||||
template <typename T> void binary_heap_priority_queue<T>::enqueue(unsigned o, const T & priority) {
|
||||
if (o >= m_priorities.size()) {
|
||||
resize(o << 1); // make the size twice larger
|
||||
if (o == 0)
|
||||
resize(2);
|
||||
else
|
||||
resize(o << 1); // make the size twice larger
|
||||
}
|
||||
|
||||
if (m_heap_inverse[o] == -1)
|
||||
enqueue_new(o, priority);
|
||||
else
|
||||
|
@ -150,7 +154,7 @@ template <typename T> void binary_heap_priority_queue<T>::change_priority_for_ex
|
|||
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue_and_get_priority(T & priority) {
|
||||
SASSERT(m_heap_size != 0);
|
||||
lp_assert(m_heap_size != 0);
|
||||
int ret = m_heap[1];
|
||||
priority = m_priorities[ret];
|
||||
put_the_last_at_the_top_and_fix_the_heap();
|
||||
|
@ -184,7 +188,7 @@ template <typename T> void binary_heap_priority_queue<T>::put_the_last_at_the_to
|
|||
}
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue() {
|
||||
SASSERT(m_heap_size > 0);
|
||||
lp_assert(m_heap_size > 0);
|
||||
int ret = m_heap[1];
|
||||
put_the_last_at_the_top_and_fix_the_heap();
|
||||
m_heap_inverse[ret] = -1;
|
|
@ -17,7 +17,7 @@ Revision History:
|
|||
|
||||
|
||||
--*/
|
||||
#include "util/lp/binary_heap_upair_queue.hpp"
|
||||
#include "util/lp/binary_heap_upair_queue_def.h"
|
||||
namespace lp {
|
||||
template binary_heap_upair_queue<int>::binary_heap_upair_queue(unsigned int);
|
||||
template binary_heap_upair_queue<unsigned int>::binary_heap_upair_queue(unsigned int);
|
|
@ -29,7 +29,7 @@ template <typename T> binary_heap_upair_queue<T>::binary_heap_upair_queue(unsign
|
|||
|
||||
template <typename T> unsigned
|
||||
binary_heap_upair_queue<T>::dequeue_available_spot() {
|
||||
SASSERT(m_available_spots.empty() == false);
|
||||
lp_assert(m_available_spots.empty() == false);
|
||||
unsigned ret = m_available_spots.back();
|
||||
m_available_spots.pop_back();
|
||||
return ret;
|
||||
|
@ -69,7 +69,7 @@ template <typename T> void binary_heap_upair_queue<T>::enqueue(unsigned i, unsig
|
|||
m_pairs.resize(new_size);
|
||||
}
|
||||
ij_index = dequeue_available_spot();
|
||||
// SASSERT(ij_index<m_pairs.size() && ij_index_is_new(ij_index));
|
||||
// lp_assert(ij_index<m_pairs.size() && ij_index_is_new(ij_index));
|
||||
m_pairs[ij_index] = p;
|
||||
m_pairs_to_index[p] = ij_index;
|
||||
} else {
|
||||
|
@ -79,7 +79,7 @@ template <typename T> void binary_heap_upair_queue<T>::enqueue(unsigned i, unsig
|
|||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::dequeue(unsigned & i, unsigned &j) {
|
||||
SASSERT(!m_q.is_empty());
|
||||
lp_assert(!m_q.is_empty());
|
||||
unsigned ij_index = m_q.dequeue();
|
||||
upair & p = m_pairs[ij_index];
|
||||
i = p.first;
|
|
@ -19,37 +19,93 @@ Revision History:
|
|||
--*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/implied_bound.h"
|
||||
#include "util/lp/test_bound_analyzer.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_bound_propagator.h"
|
||||
#include "implied_bound.h"
|
||||
#include "test_bound_analyzer.h"
|
||||
#include "util/lp/bound_propagator.h"
|
||||
// We have an equality : sum by j of row[j]*x[j] = rs
|
||||
// We try to pin a var by pushing the total by using the variable bounds
|
||||
// In a loop we drive the partial sum down, denoting the variables of this process by _u.
|
||||
// In the same loop trying to pin variables by pushing the partial sum up, denoting the variable related to it by _l
|
||||
namespace lp {
|
||||
|
||||
template <typename C> // C plays a role of a container
|
||||
class bound_analyzer_on_row {
|
||||
struct term_with_basis_col {
|
||||
const C & m_row;
|
||||
unsigned m_bj;
|
||||
struct ival {
|
||||
unsigned m_var;
|
||||
const mpq & m_coeff;
|
||||
ival(unsigned var, const mpq & val) : m_var(var), m_coeff(val) {
|
||||
}
|
||||
unsigned var() const { return m_var;}
|
||||
const mpq & coeff() const { return m_coeff; }
|
||||
};
|
||||
|
||||
term_with_basis_col(const C& row, unsigned bj) : m_row(row), m_bj(bj) {}
|
||||
struct const_iterator {
|
||||
// fields
|
||||
typename C::const_iterator m_it;
|
||||
unsigned m_bj;
|
||||
|
||||
|
||||
linear_combination_iterator<mpq> & m_it;
|
||||
lp_bound_propagator & m_bp;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
//typedefs
|
||||
|
||||
|
||||
typedef const_iterator self_type;
|
||||
typedef ival value_type;
|
||||
typedef ival reference;
|
||||
typedef int difference_type;
|
||||
typedef std::forward_iterator_tag iterator_category;
|
||||
|
||||
reference operator*() const {
|
||||
if (m_bj == static_cast<unsigned>(-1))
|
||||
return ival((*m_it).var(), (*m_it).coeff());
|
||||
return ival(m_bj, - 1);
|
||||
}
|
||||
self_type operator++() { self_type i = *this; operator++(1); return i; }
|
||||
|
||||
self_type operator++(int) {
|
||||
if (m_bj == static_cast<unsigned>(-1))
|
||||
m_it++;
|
||||
else
|
||||
m_bj = static_cast<unsigned>(-1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// constructor
|
||||
const_iterator(const typename C::const_iterator& it, unsigned bj) :
|
||||
m_it(it),
|
||||
m_bj(bj)
|
||||
{}
|
||||
bool operator==(const self_type &other) const {
|
||||
return m_it == other.m_it && m_bj == other.m_bj ;
|
||||
}
|
||||
bool operator!=(const self_type &other) const { return !(*this == other); }
|
||||
};
|
||||
const_iterator begin() const {
|
||||
return const_iterator( m_row.begin(), m_bj);
|
||||
}
|
||||
const_iterator end() const { return const_iterator(m_row.end(), m_bj); }
|
||||
};
|
||||
term_with_basis_col m_row;
|
||||
bound_propagator & m_bp;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
|
||||
public :
|
||||
// constructor
|
||||
bound_analyzer_on_row(
|
||||
linear_combination_iterator<mpq> &it,
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
lp_bound_propagator & bp
|
||||
const C & it,
|
||||
unsigned bj, // basis column for the row
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
bound_propagator & bp
|
||||
)
|
||||
:
|
||||
m_it(it),
|
||||
m_row(it, bj),
|
||||
m_bp(bp),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_column_of_u(-1),
|
||||
|
@ -60,11 +116,11 @@ public :
|
|||
|
||||
unsigned j;
|
||||
void analyze() {
|
||||
|
||||
mpq a; unsigned j;
|
||||
while (((m_column_of_l != -2) || (m_column_of_u != -2)) && m_it.next(a, j))
|
||||
analyze_bound_on_var_on_coeff(j, a);
|
||||
|
||||
for (const auto & c : m_row) {
|
||||
if ((m_column_of_l == -2) && (m_column_of_u == -2))
|
||||
break;
|
||||
analyze_bound_on_var_on_coeff(c.var(), c.coeff());
|
||||
}
|
||||
if (m_column_of_u >= 0)
|
||||
limit_monoid_u_from_below();
|
||||
else if (m_column_of_u == -1)
|
||||
|
@ -76,42 +132,42 @@ public :
|
|||
limit_all_monoids_from_above();
|
||||
}
|
||||
|
||||
bool bound_is_available(unsigned j, bool low_bound) {
|
||||
return (low_bound && low_bound_is_available(j)) ||
|
||||
(!low_bound && upper_bound_is_available(j));
|
||||
bool bound_is_available(unsigned j, bool lower_bound) {
|
||||
return (lower_bound && lower_bound_is_available(j)) ||
|
||||
(!lower_bound && upper_bound_is_available(j));
|
||||
}
|
||||
|
||||
bool upper_bound_is_available(unsigned j) const {
|
||||
switch (m_bp.get_column_type(j))
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool low_bound_is_available(unsigned j) const {
|
||||
bool lower_bound_is_available(unsigned j) const {
|
||||
switch (m_bp.get_column_type(j))
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::lower_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const impq & ub(unsigned j) const {
|
||||
SASSERT(upper_bound_is_available(j));
|
||||
lp_assert(upper_bound_is_available(j));
|
||||
return m_bp.get_upper_bound(j);
|
||||
}
|
||||
const impq & lb(unsigned j) const {
|
||||
SASSERT(low_bound_is_available(j));
|
||||
return m_bp.get_low_bound(j);
|
||||
lp_assert(lower_bound_is_available(j));
|
||||
return m_bp.get_lower_bound(j);
|
||||
}
|
||||
|
||||
|
||||
|
@ -151,7 +207,7 @@ public :
|
|||
strict = !is_zero(ub(j).y);
|
||||
return a * ub(j).x;
|
||||
}
|
||||
|
||||
|
||||
strict = !is_zero(lb(j).y);
|
||||
return a * lb(j).x;
|
||||
}
|
||||
|
@ -160,34 +216,32 @@ public :
|
|||
if (is_neg(a)) {
|
||||
return a * ub(j).x;
|
||||
}
|
||||
|
||||
|
||||
return a * lb(j).x;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void limit_all_monoids_from_above() {
|
||||
int strict = 0;
|
||||
mpq total;
|
||||
SASSERT(is_zero(total));
|
||||
m_it.reset();
|
||||
mpq a; unsigned j;
|
||||
while (m_it.next(a, j)) {
|
||||
lp_assert(is_zero(total));
|
||||
for (const auto& p : m_row) {
|
||||
bool str;
|
||||
total -= monoid_min(a, j, str);
|
||||
total -= monoid_min(p.coeff(), p.var(), str);
|
||||
if (str)
|
||||
strict++;
|
||||
}
|
||||
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
|
||||
for (const auto &p : m_row) {
|
||||
bool str;
|
||||
bool a_is_pos = is_pos(a);
|
||||
mpq bound = total / a + monoid_min_no_mult(a_is_pos, j, str);
|
||||
bool a_is_pos = is_pos(p.coeff());
|
||||
mpq bound = total / p.coeff() + monoid_min_no_mult(a_is_pos, p.var(), str);
|
||||
if (a_is_pos) {
|
||||
limit_j(j, bound, true, false, strict - static_cast<int>(str) > 0);
|
||||
limit_j(p.var(), bound, true, false, strict - static_cast<int>(str) > 0);
|
||||
}
|
||||
else {
|
||||
limit_j(j, bound, false, true, strict - static_cast<int>(str) > 0);
|
||||
limit_j(p.var(), bound, false, true, strict - static_cast<int>(str) > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -195,52 +249,50 @@ public :
|
|||
void limit_all_monoids_from_below() {
|
||||
int strict = 0;
|
||||
mpq total;
|
||||
SASSERT(is_zero(total));
|
||||
m_it.reset();
|
||||
mpq a; unsigned j;
|
||||
while (m_it.next(a, j)) {
|
||||
lp_assert(is_zero(total));
|
||||
for (const auto &p : m_row) {
|
||||
bool str;
|
||||
total -= monoid_max(a, j, str);
|
||||
total -= monoid_max(p.coeff(), p.var(), str);
|
||||
if (str)
|
||||
strict++;
|
||||
}
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
|
||||
for (const auto& p : m_row) {
|
||||
bool str;
|
||||
bool a_is_pos = is_pos(a);
|
||||
mpq bound = total / a + monoid_max_no_mult(a_is_pos, j, str);
|
||||
bool astrict = strict - static_cast<int>(str) > 0;
|
||||
bool a_is_pos = is_pos(p.coeff());
|
||||
mpq bound = total / p.coeff() + monoid_max_no_mult(a_is_pos, p.var(), str);
|
||||
bool astrict = strict - static_cast<int>(str) > 0;
|
||||
if (a_is_pos) {
|
||||
limit_j(j, bound, true, true, astrict);
|
||||
limit_j(p.var(), bound, true, true, astrict);
|
||||
}
|
||||
else {
|
||||
limit_j(j, bound, false, false, astrict);
|
||||
limit_j(p.var(), bound, false, false, astrict);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void limit_monoid_u_from_below() {
|
||||
// we are going to limit from below the monoid m_column_of_u,
|
||||
// every other monoid is impossible to limit from below
|
||||
mpq u_coeff, a;
|
||||
mpq u_coeff;
|
||||
unsigned j;
|
||||
mpq bound = -m_rs.x;
|
||||
m_it.reset();
|
||||
bool strict = false;
|
||||
while (m_it.next(a, j)) {
|
||||
for (const auto& p : m_row) {
|
||||
j = p.var();
|
||||
if (j == static_cast<unsigned>(m_column_of_u)) {
|
||||
u_coeff = a;
|
||||
u_coeff = p.coeff();
|
||||
continue;
|
||||
}
|
||||
bool str;
|
||||
bound -= monoid_max(a, j, str);
|
||||
bound -= monoid_max(p.coeff(), j, str);
|
||||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
||||
bound /= u_coeff;
|
||||
|
||||
|
||||
if (numeric_traits<impq>::is_pos(u_coeff)) {
|
||||
limit_j(m_column_of_u, bound, true, true, strict);
|
||||
} else {
|
||||
|
@ -252,19 +304,19 @@ public :
|
|||
void limit_monoid_l_from_above() {
|
||||
// we are going to limit from above the monoid m_column_of_l,
|
||||
// every other monoid is impossible to limit from above
|
||||
mpq l_coeff, a;
|
||||
mpq l_coeff;
|
||||
unsigned j;
|
||||
mpq bound = -m_rs.x;
|
||||
bool strict = false;
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
for (const auto &p : m_row) {
|
||||
j = p.var();
|
||||
if (j == static_cast<unsigned>(m_column_of_l)) {
|
||||
l_coeff = a;
|
||||
l_coeff = p.coeff();
|
||||
continue;
|
||||
}
|
||||
|
||||
bool str;
|
||||
bound -= monoid_min(a, j, str);
|
||||
bound -= monoid_min(p.coeff(), j, str);
|
||||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
@ -275,51 +327,51 @@ public :
|
|||
limit_j(m_column_of_l, bound, false, true, strict);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// // it is the coefficent before the bounded column
|
||||
// void provide_evidence(bool coeff_is_pos) {
|
||||
// /*
|
||||
// auto & be = m_ibounds.back();
|
||||
// bool low_bound = be.m_low_bound;
|
||||
// bool lower_bound = be.m_lower_bound;
|
||||
// if (!coeff_is_pos)
|
||||
// low_bound = !low_bound;
|
||||
// auto it = m_it.clone();
|
||||
// lower_bound = !lower_bound;
|
||||
// auto it = m_row.clone();
|
||||
// mpq a; unsigned j;
|
||||
// while (it->next(a, j)) {
|
||||
// if (be.m_j == j) continue;
|
||||
// SASSERT(bound_is_available(j, is_neg(a) ? low_bound : !low_bound));
|
||||
// lp_assert(bound_is_available(j, is_neg(a) ? lower_bound : !lower_bound));
|
||||
// be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits<impq>::
|
||||
// is_neg(a)? low_bound: !low_bound);
|
||||
// is_neg(a)? lower_bound: !lower_bound);
|
||||
// }
|
||||
// delete it;
|
||||
// */
|
||||
// }
|
||||
|
||||
void limit_j(unsigned j, const mpq& u, bool coeff_before_j_is_pos, bool is_low_bound, bool strict){
|
||||
m_bp.try_add_bound(u, j, is_low_bound, coeff_before_j_is_pos, m_row_or_term_index, strict);
|
||||
void limit_j(unsigned j, const mpq& u, bool coeff_before_j_is_pos, bool is_lower_bound, bool strict){
|
||||
m_bp.try_add_bound(u, j, is_lower_bound, coeff_before_j_is_pos, m_row_or_term_index, strict);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void advance_u(unsigned j) {
|
||||
if (m_column_of_u == -1)
|
||||
m_column_of_u = j;
|
||||
else
|
||||
m_column_of_u = -2;
|
||||
}
|
||||
|
||||
|
||||
void advance_l(unsigned j) {
|
||||
if (m_column_of_l == -1)
|
||||
m_column_of_l = j;
|
||||
else
|
||||
m_column_of_l = -2;
|
||||
}
|
||||
|
||||
|
||||
void analyze_bound_on_var_on_coeff(int j, const mpq &a) {
|
||||
switch (m_bp.get_column_type(j)) {
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (numeric_traits<mpq>::is_pos(a))
|
||||
advance_u(j);
|
||||
else
|
||||
else
|
||||
advance_l(j);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
|
@ -337,14 +389,16 @@ public :
|
|||
}
|
||||
}
|
||||
|
||||
static void analyze_row(linear_combination_iterator<mpq> &it,
|
||||
static void analyze_row(const C & row,
|
||||
unsigned bj, // basis column for the row
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
lp_bound_propagator & bp
|
||||
bound_propagator & bp
|
||||
) {
|
||||
bound_analyzer_on_row a(it, rs, row_or_term_index, bp);
|
||||
bound_analyzer_on_row a(row, bj, rs, row_or_term_index, bp);
|
||||
a.analyze();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
|
|
58
src/util/lp/bound_propagator.cpp
Normal file
58
src/util/lp/bound_propagator.cpp
Normal file
|
@ -0,0 +1,58 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lar_solver.h"
|
||||
namespace lp {
|
||||
bound_propagator::bound_propagator(lar_solver & ls):
|
||||
m_lar_solver(ls) {}
|
||||
column_type bound_propagator::get_column_type(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_column_types()[j];
|
||||
}
|
||||
const impq & bound_propagator::get_lower_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_lower_bounds()[j];
|
||||
}
|
||||
const impq & bound_propagator::get_upper_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j];
|
||||
}
|
||||
void bound_propagator::try_add_bound(mpq v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
|
||||
j = m_lar_solver.adjust_column_index_to_term_index(j);
|
||||
if (m_lar_solver.is_term(j)) {
|
||||
// lp treats terms as not having a free coefficient, restoring it below for the outside consumption
|
||||
v += m_lar_solver.get_term(j).m_v;
|
||||
}
|
||||
|
||||
lconstraint_kind kind = is_low? GE : LE;
|
||||
if (strict)
|
||||
kind = static_cast<lconstraint_kind>(kind / 2);
|
||||
|
||||
if (!bound_is_interesting(j, kind, v))
|
||||
return;
|
||||
unsigned k; // index to ibounds
|
||||
if (is_low) {
|
||||
if (try_get_value(m_improved_lower_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v > found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict)) {
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
TRACE("try_add_bound", m_lar_solver.print_implied_bound(found_bound, tout););
|
||||
}
|
||||
} else {
|
||||
m_improved_lower_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
TRACE("try_add_bound", m_lar_solver.print_implied_bound(m_ibounds.back(), tout););
|
||||
}
|
||||
} else { // the upper bound case
|
||||
if (try_get_value(m_improved_upper_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v < found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict)) {
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
TRACE("try_add_bound", m_lar_solver.print_implied_bound(found_bound, tout););
|
||||
}
|
||||
} else {
|
||||
m_improved_upper_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
TRACE("try_add_bound", m_lar_solver.print_implied_bound(m_ibounds.back(), tout););
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
27
src/util/lp/bound_propagator.h
Normal file
27
src/util/lp/bound_propagator.h
Normal file
|
@ -0,0 +1,27 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lp {
|
||||
class lar_solver;
|
||||
class bound_propagator {
|
||||
std::unordered_map<unsigned, unsigned> m_improved_lower_bounds; // these maps map a column index to the corresponding index in ibounds
|
||||
std::unordered_map<unsigned, unsigned> m_improved_upper_bounds;
|
||||
lar_solver & m_lar_solver;
|
||||
public:
|
||||
vector<implied_bound> m_ibounds;
|
||||
public:
|
||||
bound_propagator(lar_solver & ls);
|
||||
column_type get_column_type(unsigned) const;
|
||||
const impq & get_lower_bound(unsigned) const;
|
||||
const impq & get_upper_bound(unsigned) const;
|
||||
void try_add_bound(mpq v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict);
|
||||
virtual bool bound_is_interesting(unsigned vi,
|
||||
lp::lconstraint_kind kind,
|
||||
const rational & bval) {return true;}
|
||||
unsigned number_of_found_bounds() const { return m_ibounds.size(); }
|
||||
virtual void consume(mpq const& v, lp::constraint_index j) = 0;
|
||||
};
|
||||
}
|
|
@ -30,11 +30,11 @@ inline bool is_valid(unsigned j) { return static_cast<int>(j) >= 0;}
|
|||
template <typename T>
|
||||
class column_info {
|
||||
std::string m_name;
|
||||
bool m_low_bound_is_set;
|
||||
bool m_low_bound_is_strict;
|
||||
bool m_lower_bound_is_set;
|
||||
bool m_lower_bound_is_strict;
|
||||
bool m_upper_bound_is_set;
|
||||
bool m_upper_bound_is_strict;
|
||||
T m_low_bound;
|
||||
T m_lower_bound;
|
||||
T m_upper_bound;
|
||||
T m_fixed_value;
|
||||
bool m_is_fixed;
|
||||
|
@ -43,11 +43,11 @@ class column_info {
|
|||
public:
|
||||
bool operator==(const column_info & c) const {
|
||||
return m_name == c.m_name &&
|
||||
m_low_bound_is_set == c.m_low_bound_is_set &&
|
||||
m_low_bound_is_strict == c.m_low_bound_is_strict &&
|
||||
m_lower_bound_is_set == c.m_lower_bound_is_set &&
|
||||
m_lower_bound_is_strict == c.m_lower_bound_is_strict &&
|
||||
m_upper_bound_is_set == c.m_upper_bound_is_set&&
|
||||
m_upper_bound_is_strict == c.m_upper_bound_is_strict&&
|
||||
(!m_low_bound_is_set || m_low_bound == c.m_low_bound) &&
|
||||
(!m_lower_bound_is_set || m_lower_bound == c.m_low_bound) &&
|
||||
(!m_upper_bound_is_set || m_upper_bound == c.m_upper_bound) &&
|
||||
m_cost == c.m_cost &&
|
||||
m_is_fixed == c.m_is_fixed &&
|
||||
|
@ -60,8 +60,8 @@ public:
|
|||
}
|
||||
// the default constructor
|
||||
column_info():
|
||||
m_low_bound_is_set(false),
|
||||
m_low_bound_is_strict(false),
|
||||
m_lower_bound_is_set(false),
|
||||
m_lower_bound_is_strict(false),
|
||||
m_upper_bound_is_set (false),
|
||||
m_upper_bound_is_strict (false),
|
||||
m_is_fixed(false),
|
||||
|
@ -70,8 +70,8 @@ public:
|
|||
{}
|
||||
|
||||
column_info(unsigned column_index) :
|
||||
m_low_bound_is_set(false),
|
||||
m_low_bound_is_strict(false),
|
||||
m_lower_bound_is_set(false),
|
||||
m_lower_bound_is_strict(false),
|
||||
m_upper_bound_is_set (false),
|
||||
m_upper_bound_is_strict (false),
|
||||
m_is_fixed(false),
|
||||
|
@ -81,11 +81,11 @@ public:
|
|||
|
||||
column_info(const column_info & ci) {
|
||||
m_name = ci.m_name;
|
||||
m_low_bound_is_set = ci.m_low_bound_is_set;
|
||||
m_low_bound_is_strict = ci.m_low_bound_is_strict;
|
||||
m_lower_bound_is_set = ci.m_lower_bound_is_set;
|
||||
m_lower_bound_is_strict = ci.m_lower_bound_is_strict;
|
||||
m_upper_bound_is_set = ci.m_upper_bound_is_set;
|
||||
m_upper_bound_is_strict = ci.m_upper_bound_is_strict;
|
||||
m_low_bound = ci.m_low_bound;
|
||||
m_lower_bound = ci.m_lower_bound;
|
||||
m_upper_bound = ci.m_upper_bound;
|
||||
m_cost = ci.m_cost;
|
||||
m_fixed_value = ci.m_fixed_value;
|
||||
|
@ -98,7 +98,7 @@ public:
|
|||
}
|
||||
|
||||
column_type get_column_type() const {
|
||||
return m_is_fixed? column_type::fixed : (m_low_bound_is_set? (m_upper_bound_is_set? column_type::boxed : column_type::low_bound) : (m_upper_bound_is_set? column_type::upper_bound: column_type::free_column));
|
||||
return m_is_fixed? column_type::fixed : (m_lower_bound_is_set? (m_upper_bound_is_set? column_type::boxed : column_type::lower_bound) : (m_upper_bound_is_set? column_type::upper_bound: column_type::free_column));
|
||||
}
|
||||
|
||||
column_type get_column_type_no_flipping() const {
|
||||
|
@ -106,25 +106,25 @@ public:
|
|||
return column_type::fixed;
|
||||
}
|
||||
|
||||
if (m_low_bound_is_set) {
|
||||
return m_upper_bound_is_set? column_type::boxed: column_type::low_bound;
|
||||
if (m_lower_bound_is_set) {
|
||||
return m_upper_bound_is_set? column_type::boxed: column_type::lower_bound;
|
||||
}
|
||||
// we are flipping the bounds!
|
||||
return m_upper_bound_is_set? column_type::upper_bound
|
||||
: column_type::free_column;
|
||||
}
|
||||
|
||||
T get_low_bound() const {
|
||||
SASSERT(m_low_bound_is_set);
|
||||
return m_low_bound;
|
||||
T get_lower_bound() const {
|
||||
lp_assert(m_lower_bound_is_set);
|
||||
return m_lower_bound;
|
||||
}
|
||||
T get_upper_bound() const {
|
||||
SASSERT(m_upper_bound_is_set);
|
||||
lp_assert(m_upper_bound_is_set);
|
||||
return m_upper_bound;
|
||||
}
|
||||
|
||||
bool low_bound_is_set() const {
|
||||
return m_low_bound_is_set;
|
||||
bool lower_bound_is_set() const {
|
||||
return m_lower_bound_is_set;
|
||||
}
|
||||
|
||||
bool upper_bound_is_set() const {
|
||||
|
@ -138,23 +138,23 @@ public:
|
|||
if (is_flipped()){
|
||||
return m_upper_bound;
|
||||
}
|
||||
return m_low_bound_is_set? m_low_bound : numeric_traits<T>::zero();
|
||||
return m_lower_bound_is_set? m_lower_bound : numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
bool is_flipped() {
|
||||
return m_upper_bound_is_set && !m_low_bound_is_set;
|
||||
return m_upper_bound_is_set && !m_lower_bound_is_set;
|
||||
}
|
||||
|
||||
bool adjusted_low_bound_is_set() {
|
||||
return !is_flipped()? low_bound_is_set(): upper_bound_is_set();
|
||||
bool adjusted_lower_bound_is_set() {
|
||||
return !is_flipped()? lower_bound_is_set(): upper_bound_is_set();
|
||||
}
|
||||
|
||||
bool adjusted_upper_bound_is_set() {
|
||||
return !is_flipped()? upper_bound_is_set(): low_bound_is_set();
|
||||
return !is_flipped()? upper_bound_is_set(): lower_bound_is_set();
|
||||
}
|
||||
|
||||
T get_adjusted_upper_bound() {
|
||||
return get_upper_bound() - get_low_bound();
|
||||
return get_upper_bound() - get_lower_bound();
|
||||
}
|
||||
|
||||
bool is_fixed() const {
|
||||
|
@ -162,7 +162,7 @@ public:
|
|||
}
|
||||
|
||||
bool is_free() {
|
||||
return !m_low_bound_is_set && !m_upper_bound_is_set;
|
||||
return !m_lower_bound_is_set && !m_upper_bound_is_set;
|
||||
}
|
||||
|
||||
void set_fixed_value(T v) {
|
||||
|
@ -171,7 +171,7 @@ public:
|
|||
}
|
||||
|
||||
T get_fixed_value() const {
|
||||
SASSERT(m_is_fixed);
|
||||
lp_assert(m_is_fixed);
|
||||
return m_fixed_value;
|
||||
}
|
||||
|
||||
|
@ -191,9 +191,9 @@ public:
|
|||
return m_name;
|
||||
}
|
||||
|
||||
void set_low_bound(T const & l) {
|
||||
m_low_bound = l;
|
||||
m_low_bound_is_set = true;
|
||||
void set_lower_bound(T const & l) {
|
||||
m_lower_bound = l;
|
||||
m_lower_bound_is_set = true;
|
||||
}
|
||||
|
||||
void set_upper_bound(T const & l) {
|
||||
|
@ -201,8 +201,8 @@ public:
|
|||
m_upper_bound_is_set = true;
|
||||
}
|
||||
|
||||
void unset_low_bound() {
|
||||
m_low_bound_is_set = false;
|
||||
void unset_lower_bound() {
|
||||
m_lower_bound_is_set = false;
|
||||
}
|
||||
|
||||
void unset_upper_bound() {
|
||||
|
@ -213,8 +213,8 @@ public:
|
|||
m_is_fixed = false;
|
||||
}
|
||||
|
||||
bool low_bound_holds(T v) {
|
||||
return !low_bound_is_set() || v >= m_low_bound -T(0.0000001);
|
||||
bool lower_bound_holds(T v) {
|
||||
return !lower_bound_is_set() || v >= m_lower_bound -T(0.0000001);
|
||||
}
|
||||
|
||||
bool upper_bound_holds(T v) {
|
||||
|
@ -222,36 +222,36 @@ public:
|
|||
}
|
||||
|
||||
bool bounds_hold(T v) {
|
||||
return low_bound_holds(v) && upper_bound_holds(v);
|
||||
return lower_bound_holds(v) && upper_bound_holds(v);
|
||||
}
|
||||
|
||||
bool adjusted_bounds_hold(T v) {
|
||||
return adjusted_low_bound_holds(v) && adjusted_upper_bound_holds(v);
|
||||
return adjusted_lower_bound_holds(v) && adjusted_upper_bound_holds(v);
|
||||
}
|
||||
|
||||
bool adjusted_low_bound_holds(T v) {
|
||||
return !adjusted_low_bound_is_set() || v >= -T(0.0000001);
|
||||
bool adjusted_lower_bound_holds(T v) {
|
||||
return !adjusted_lower_bound_is_set() || v >= -T(0.0000001);
|
||||
}
|
||||
|
||||
bool adjusted_upper_bound_holds(T v) {
|
||||
return !adjusted_upper_bound_is_set() || v <= get_adjusted_upper_bound() + T(0.000001);
|
||||
}
|
||||
bool is_infeasible() {
|
||||
if ((!upper_bound_is_set()) || (!low_bound_is_set()))
|
||||
if ((!upper_bound_is_set()) || (!lower_bound_is_set()))
|
||||
return false;
|
||||
// ok, both bounds are set
|
||||
bool at_least_one_is_strict = upper_bound_is_strict() || low_bound_is_strict();
|
||||
bool at_least_one_is_strict = upper_bound_is_strict() || lower_bound_is_strict();
|
||||
if (!at_least_one_is_strict)
|
||||
return get_upper_bound() < get_low_bound();
|
||||
return get_upper_bound() < get_lower_bound();
|
||||
// at least on bound is strict
|
||||
return get_upper_bound() <= get_low_bound(); // the equality is impossible
|
||||
return get_upper_bound() <= get_lower_bound(); // the equality is impossible
|
||||
}
|
||||
bool low_bound_is_strict() const {
|
||||
return m_low_bound_is_strict;
|
||||
bool lower_bound_is_strict() const {
|
||||
return m_lower_bound_is_strict;
|
||||
}
|
||||
|
||||
void set_low_bound_strict(bool val) {
|
||||
m_low_bound_is_strict = val;
|
||||
void set_lower_bound_strict(bool val) {
|
||||
m_lower_bound_is_strict = val;
|
||||
}
|
||||
|
||||
bool upper_bound_is_strict() const {
|
||||
|
|
|
@ -19,31 +19,19 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include <string>
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
namespace lp {
|
||||
class column_namer {
|
||||
public:
|
||||
virtual std::string get_column_name(unsigned j) const = 0;
|
||||
template <typename T>
|
||||
void print_linear_iterator(linear_combination_iterator<T>* it, std::ostream & out) const {
|
||||
void print_row(const row_strip<T> & row, std::ostream & out) const {
|
||||
vector<std::pair<T, unsigned>> coeff;
|
||||
T a;
|
||||
unsigned i;
|
||||
while (it->next(a, i)) {
|
||||
coeff.push_back(std::make_pair(a, i));
|
||||
for (auto & p : row) {
|
||||
coeff.push_back(std::make_pair(p.coeff(), p.var()));
|
||||
}
|
||||
print_linear_combination_of_column_indices(coeff, out);
|
||||
}
|
||||
template <typename T>
|
||||
void print_linear_iterator_indices_only(linear_combination_iterator<T>* it, std::ostream & out) const {
|
||||
vector<std::pair<T, unsigned>> coeff;
|
||||
T a;
|
||||
unsigned i;
|
||||
while (it->next(a, i)) {
|
||||
coeff.emplace_back(a, i);
|
||||
}
|
||||
print_linear_combination_of_column_indices_only(coeff, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices_only(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
|
@ -65,10 +53,34 @@ public:
|
|||
else if (val != numeric_traits<T>::one())
|
||||
out << T_to_string(val);
|
||||
|
||||
out << "_" << it.second;
|
||||
out << "v" << it.second;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices_std(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
bool first = true;
|
||||
for (const auto & it : coeffs) {
|
||||
auto val = it.first;
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
if (numeric_traits<T>::is_pos(val)) {
|
||||
out << " + ";
|
||||
} else {
|
||||
out << " - ";
|
||||
val = -val;
|
||||
}
|
||||
}
|
||||
if (val == -numeric_traits<T>::one())
|
||||
out << " - ";
|
||||
else if (val != numeric_traits<T>::one())
|
||||
out << val;
|
||||
|
||||
out << get_column_name(it.second);
|
||||
}
|
||||
}
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
bool first = true;
|
||||
|
|
99
src/util/lp/constraint.h
Normal file
99
src/util/lp/constraint.h
Normal file
|
@ -0,0 +1,99 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
namespace lp {
|
||||
class constraint; // forward definition
|
||||
struct constraint_hash {
|
||||
size_t operator() (const constraint* c) const;
|
||||
};
|
||||
|
||||
struct constraint_equal {
|
||||
bool operator() (const constraint * a, const constraint * b) const;
|
||||
};
|
||||
|
||||
class constraint { // we only have less or equal for the inequality sign, which is enough for integral variables
|
||||
int m_id;
|
||||
bool m_is_ineq;
|
||||
polynomial m_poly;
|
||||
mpq m_d; // the divider for the case of a divisibility constraint
|
||||
std::unordered_set<constraint_index> m_assert_origins; // these indices come from the client and get collected during tightening
|
||||
public :
|
||||
unsigned id() const { return m_id; }
|
||||
const polynomial & poly() const { return m_poly; }
|
||||
polynomial & poly() { return m_poly; }
|
||||
std::unordered_set<constraint_index> & assert_origins() { return m_assert_origins;}
|
||||
const std::unordered_set<constraint_index> & assert_origins() const { return m_assert_origins;}
|
||||
bool is_lemma() const { return !is_assert(); }
|
||||
bool is_assert() const { return m_assert_origins.size() == 1; }
|
||||
bool is_ineq() const { return m_is_ineq; }
|
||||
const mpq & divider() const { return m_d; }
|
||||
public:
|
||||
constraint(
|
||||
unsigned id,
|
||||
constraint_index assert_origin,
|
||||
const polynomial & p,
|
||||
bool is_ineq):
|
||||
m_id(id),
|
||||
m_is_ineq(is_ineq),
|
||||
m_poly(p)
|
||||
{ // creates an assert
|
||||
m_assert_origins.insert(assert_origin);
|
||||
}
|
||||
constraint(
|
||||
unsigned id,
|
||||
const std::unordered_set<constraint_index>& origins,
|
||||
const polynomial & p,
|
||||
bool is_ineq):
|
||||
m_id(id),
|
||||
m_is_ineq(is_ineq),
|
||||
m_poly(p),
|
||||
m_assert_origins(origins)
|
||||
{}
|
||||
|
||||
|
||||
|
||||
constraint(
|
||||
unsigned id,
|
||||
const polynomial & p,
|
||||
bool is_ineq):
|
||||
m_id(id),
|
||||
m_is_ineq(is_ineq),
|
||||
m_poly(p) { // creates a lemma
|
||||
}
|
||||
|
||||
public:
|
||||
constraint() {}
|
||||
|
||||
const mpq & coeff(var_index j) const {
|
||||
return m_poly.coeff(j);
|
||||
}
|
||||
const vector<monomial>& coeffs() const { return m_poly.m_coeffs;}
|
||||
|
||||
bool is_tight(unsigned j) const {
|
||||
const mpq & a = m_poly.coeff(j);
|
||||
return a == 1 || a == -1;
|
||||
}
|
||||
void add_predecessor(const constraint* p) {
|
||||
lp_assert(p != nullptr);
|
||||
for (auto m : p->assert_origins())
|
||||
m_assert_origins.insert(m); }
|
||||
};
|
||||
}
|
|
@ -22,8 +22,8 @@ Revision History:
|
|||
namespace lp {
|
||||
template <typename V>
|
||||
struct conversion_helper {
|
||||
static V get_low_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_low_bound(), ci.low_bound_is_strict()? 1 : 0);
|
||||
static V get_lower_bound(const column_info<mpq> & ci) {
|
||||
return V(ci.get_lower_bound(), ci.lower_bound_is_strict()? 1 : 0);
|
||||
}
|
||||
|
||||
static V get_upper_bound(const column_info<mpq> & ci) {
|
||||
|
@ -37,20 +37,20 @@ struct conversion_helper <double> {
|
|||
if (!ci.upper_bound_is_strict())
|
||||
return ci.get_upper_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.low_bound_is_set())
|
||||
if (!ci.lower_bound_is_set())
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_lower_bound()).get_double() / 1000, eps);
|
||||
return ci.get_upper_bound().get_double() - eps;
|
||||
}
|
||||
|
||||
static double get_low_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.low_bound_is_strict())
|
||||
return ci.get_low_bound().get_double();
|
||||
static double get_lower_bound(const column_info<mpq> & ci) {
|
||||
if (!ci.lower_bound_is_strict())
|
||||
return ci.get_lower_bound().get_double();
|
||||
double eps = 0.00001;
|
||||
if (!ci.upper_bound_is_set())
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_low_bound()).get_double() / 1000, eps);
|
||||
return ci.get_low_bound().get_double() + eps;
|
||||
return ci.get_lower_bound().get_double() + eps;
|
||||
eps = std::min((ci.get_upper_bound() - ci.get_lower_bound()).get_double() / 1000, eps);
|
||||
return ci.get_lower_bound().get_double() + eps;
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
@ -18,7 +18,7 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/core_solver_pretty_printer.hpp"
|
||||
#include "util/lp/core_solver_pretty_printer_def.h"
|
||||
template lp::core_solver_pretty_printer<double, double>::core_solver_pretty_printer(lp::lp_core_solver_base<double, double> &, std::ostream & out);
|
||||
template void lp::core_solver_pretty_printer<double, double>::print();
|
||||
template lp::core_solver_pretty_printer<double, double>::~core_solver_pretty_printer();
|
|
@ -48,7 +48,7 @@ class core_solver_pretty_printer {
|
|||
std::string m_cost_title;
|
||||
std::string m_basis_heading_title;
|
||||
std::string m_x_title;
|
||||
std::string m_low_bounds_title;
|
||||
std::string m_lower_bounds_title;
|
||||
std::string m_upp_bounds_title;
|
||||
std::string m_exact_norm_title;
|
||||
std::string m_approx_norm_title;
|
||||
|
@ -75,7 +75,7 @@ public:
|
|||
|
||||
void init_column_widths();
|
||||
|
||||
void adjust_width_with_low_bound(unsigned column, unsigned & w);
|
||||
void adjust_width_with_lower_bound(unsigned column, unsigned & w);
|
||||
void adjust_width_with_upper_bound(unsigned column, unsigned & w);
|
||||
|
||||
void adjust_width_with_bounds(unsigned column, unsigned & w);
|
||||
|
@ -97,7 +97,7 @@ public:
|
|||
|
||||
void print_x();
|
||||
|
||||
std::string get_low_bound_string(unsigned j);
|
||||
std::string get_lower_bound_string(unsigned j);
|
||||
|
||||
std::string get_upp_bound_string(unsigned j);
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ core_solver_pretty_printer<T, X>::core_solver_pretty_printer(lp_core_solver_base
|
|||
m_rs(ncols(), zero_of_type<X>()),
|
||||
m_w_buff(core_solver.m_w),
|
||||
m_ed_buff(core_solver.m_ed) {
|
||||
m_low_bounds_title = "low";
|
||||
m_lower_bounds_title = "low";
|
||||
m_upp_bounds_title = "upp";
|
||||
m_exact_norm_title = "exact cn";
|
||||
m_approx_norm_title = "approx cn";
|
||||
|
@ -105,6 +105,8 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_m_
|
|||
|
||||
string name = m_core_solver.column_name(column);
|
||||
for (unsigned row = 0; row < nrows(); row ++) {
|
||||
m_A[row].resize(ncols(), "");
|
||||
m_signs[row].resize(ncols(),"");
|
||||
set_coeff(
|
||||
m_A[row],
|
||||
m_signs[row],
|
||||
|
@ -139,9 +141,9 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_co
|
|||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_low_bound(unsigned column, unsigned & w) {
|
||||
if (!m_core_solver.low_bounds_are_set()) return;
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.low_bound_value(column)).size());
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_lower_bound(unsigned column, unsigned & w) {
|
||||
if (!m_core_solver.lower_bounds_are_set()) return;
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.lower_bound_value(column)).size());
|
||||
}
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_upper_bound(unsigned column, unsigned & w) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.upper_bound_value(column)).size());
|
||||
|
@ -151,11 +153,11 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_
|
|||
switch (m_core_solver.get_column_type(column)) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
adjust_width_with_low_bound(column, w);
|
||||
adjust_width_with_lower_bound(column, w);
|
||||
adjust_width_with_upper_bound(column, w);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
adjust_width_with_low_bound(column, w);
|
||||
case column_type::lower_bound:
|
||||
adjust_width_with_lower_bound(column, w);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
adjust_width_with_upper_bound(column, w);
|
||||
|
@ -163,7 +165,7 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_
|
|||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -236,13 +238,13 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_x
|
|||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::get_low_bound_string(unsigned j) {
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::get_lower_bound_string(unsigned j) {
|
||||
switch (m_core_solver.get_column_type(j)){
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
case column_type::fixed:
|
||||
if (m_core_solver.low_bounds_are_set())
|
||||
return T_to_string(m_core_solver.low_bound_value(j));
|
||||
if (m_core_solver.lower_bounds_are_set())
|
||||
return T_to_string(m_core_solver.lower_bound_value(j));
|
||||
else
|
||||
return std::string("0");
|
||||
break;
|
||||
|
@ -268,12 +270,12 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_l
|
|||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
int blanks = m_title_width + 1 - static_cast<unsigned>(m_low_bounds_title.size());
|
||||
m_out << m_low_bounds_title;
|
||||
int blanks = m_title_width + 1 - static_cast<unsigned>(m_lower_bounds_title.size());
|
||||
m_out << m_lower_bounds_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_low_bound_string(i);
|
||||
string s = get_lower_bound_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
|
@ -372,7 +374,7 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_g
|
|||
unsigned width = m_column_widths[col];
|
||||
string s = row[col];
|
||||
int number_of_blanks = width - static_cast<unsigned>(s.size());
|
||||
SASSERT(number_of_blanks >= 0);
|
||||
lp_assert(number_of_blanks >= 0);
|
||||
print_blanks(number_of_blanks, m_out);
|
||||
m_out << s << ' ';
|
||||
if (col < row.size() - 1) {
|
||||
|
@ -383,7 +385,7 @@ template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_g
|
|||
|
||||
string rs = T_to_string(rst);
|
||||
int nb = m_rs_width - static_cast<int>(rs.size());
|
||||
SASSERT(nb >= 0);
|
||||
lp_assert(nb >= 0);
|
||||
print_blanks(nb + 1, m_out);
|
||||
m_out << rs << std::endl;
|
||||
}
|
|
@ -18,7 +18,7 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/dense_matrix.hpp"
|
||||
#include "util/lp/dense_matrix_def.h"
|
||||
#ifdef Z3DEBUG
|
||||
#include "util/vector.h"
|
||||
template lp::dense_matrix<double, double> lp::operator*<double, double>(lp::matrix<double, double>&, lp::matrix<double, double>&);
|
|
@ -46,7 +46,7 @@ public:
|
|||
dense_matrix(unsigned m, unsigned n);
|
||||
|
||||
dense_matrix operator*=(matrix<T, X> const & a) {
|
||||
SASSERT(column_count() == a.row_count());
|
||||
lp_assert(column_count() == a.row_count());
|
||||
dense_matrix c(row_count(), a.column_count());
|
||||
for (unsigned i = 0; i < row_count(); i++) {
|
||||
for (unsigned j = 0; j < a.column_count(); j++) {
|
||||
|
@ -100,7 +100,7 @@ public:
|
|||
void swap_rows(unsigned a, unsigned b);
|
||||
|
||||
void multiply_row_by_constant(unsigned row, T & t);
|
||||
|
||||
|
||||
};
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b);
|
||||
|
|
|
@ -23,7 +23,6 @@ Revision History:
|
|||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/dense_matrix.h"
|
||||
namespace lp {
|
||||
template <typename T> void print_vector(const vector<T> & t, std::ostream & out);
|
||||
template <typename T, typename X> dense_matrix<T, X>::dense_matrix(unsigned m, unsigned n) : m_m(m), m_n(n), m_values(m * n, numeric_traits<T>::zero()) {
|
||||
}
|
||||
|
||||
|
@ -185,7 +184,7 @@ template <typename T, typename X> void dense_matrix<T, X>::multiply_row_by_const
|
|||
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b){
|
||||
SASSERT(a.column_count() == b.row_count());
|
||||
lp_assert(a.column_count() == b.row_count());
|
||||
dense_matrix<T, X> ret(a.row_count(), b.column_count());
|
||||
for (unsigned i = 0; i < ret.m_m; i++)
|
||||
for (unsigned j = 0; j< ret.m_n; j++) {
|
|
@ -1,334 +0,0 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <map>
|
||||
namespace lp {
|
||||
// represents the set of disjoint intervals of integer number
|
||||
struct disjoint_intervals {
|
||||
std::map<int, short> m_endpoints; // 0 means start, 1 means end, 2 means both - for a point interval
|
||||
bool m_empty;
|
||||
// constructors create an interval containing all integer numbers or an empty interval
|
||||
disjoint_intervals() : m_empty(false) {}
|
||||
disjoint_intervals(bool is_empty) : m_empty(is_empty) {}
|
||||
|
||||
bool is_start(short x) const { return x == 0 || x == 2; }
|
||||
bool is_start(const std::map<int, short>::iterator & it) const {
|
||||
return is_start(it->second);
|
||||
}
|
||||
bool is_start(const std::map<int, short>::reverse_iterator & it) const {
|
||||
return is_start(it->second);
|
||||
}
|
||||
bool is_end(short x) const { return x == 1 || x == 2; }
|
||||
bool is_end(const std::map<int, short>::iterator & it) const {
|
||||
return is_end(it->second);
|
||||
}
|
||||
bool is_end(const std::map<int, short>::reverse_iterator & it) const {
|
||||
return is_end(it->second);
|
||||
}
|
||||
|
||||
int pos(const std::map<int, short>::iterator & it) const {
|
||||
return it->first;
|
||||
}
|
||||
int pos(const std::map<int, short>::reverse_iterator & it) const {
|
||||
return it->first;
|
||||
}
|
||||
|
||||
int bound_kind(const std::map<int, short>::iterator & it) const {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
int bound_kind(const std::map<int, short>::reverse_iterator & it) const {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
bool is_proper_start(short x) const { return x == 0; }
|
||||
bool is_proper_end(short x) const { return x == 1; }
|
||||
bool is_proper_end(const std::map<int, short>::iterator & it) const {
|
||||
return is_proper_end(it->second);
|
||||
}
|
||||
bool is_proper_end(const std::map<int, short>::reverse_iterator & it) const {
|
||||
return is_proper_end(it->second);
|
||||
}
|
||||
|
||||
bool is_one_point_interval(short x) const { return x == 2; }
|
||||
bool is_one_point_interval(const std::map<int, short>::iterator & it) const {
|
||||
return is_one_point_interval(it->second);
|
||||
}
|
||||
bool is_one_point_interval(const std::map<int, short>::reverse_iterator & it) const {
|
||||
return is_one_point_interval(it->second);
|
||||
}
|
||||
|
||||
|
||||
void erase(int x) {
|
||||
m_endpoints.erase(x);
|
||||
}
|
||||
|
||||
void set_one_point_segment(int x) {
|
||||
m_endpoints[x] = 2;
|
||||
}
|
||||
|
||||
void set_start(int x) {
|
||||
m_endpoints[x] = 0;
|
||||
}
|
||||
|
||||
void set_end(int x) {
|
||||
m_endpoints[x] = 1;
|
||||
}
|
||||
|
||||
void remove_all_endpoints_below(int x) {
|
||||
while (m_endpoints.begin() != m_endpoints.end() && m_endpoints.begin()->first < x)
|
||||
m_endpoints.erase(m_endpoints.begin());
|
||||
}
|
||||
// we intersect the existing set with the half open to the right interval
|
||||
void intersect_with_lower_bound(int x) {
|
||||
if (m_empty)
|
||||
return;
|
||||
if (m_endpoints.empty()) {
|
||||
set_start(x);
|
||||
return;
|
||||
}
|
||||
bool pos_inf = has_pos_inf();
|
||||
auto it = m_endpoints.begin();
|
||||
while (it != m_endpoints.end() && pos(it) < x) {
|
||||
m_endpoints.erase(it);
|
||||
it = m_endpoints.begin();
|
||||
}
|
||||
if (m_endpoints.empty()) {
|
||||
if (!pos_inf) {
|
||||
m_empty = true;
|
||||
return;
|
||||
}
|
||||
set_start(x);
|
||||
return;
|
||||
}
|
||||
lp_assert(pos(it) >= x);
|
||||
if (pos(it) == x) {
|
||||
if (is_proper_end(it))
|
||||
set_one_point_segment(x);
|
||||
}
|
||||
else { // x(it) > x
|
||||
if (is_proper_end(it)) {
|
||||
set_start(x);
|
||||
}
|
||||
}
|
||||
|
||||
lp_assert(is_correct());
|
||||
}
|
||||
|
||||
// we intersect the existing set with the half open interval
|
||||
void intersect_with_upper_bound(int x) {
|
||||
if (m_empty)
|
||||
return;
|
||||
if (m_endpoints.empty()) {
|
||||
set_end(x);
|
||||
return;
|
||||
}
|
||||
bool neg_inf = has_neg_inf();
|
||||
auto it = m_endpoints.rbegin();
|
||||
|
||||
while (!m_endpoints.empty() && pos(it) > x) {
|
||||
m_endpoints.erase(std::prev(m_endpoints.end()));
|
||||
it = m_endpoints.rbegin();
|
||||
}
|
||||
if (m_endpoints.empty()) {
|
||||
if (!neg_inf) {
|
||||
m_empty = true;
|
||||
return;
|
||||
}
|
||||
set_end(x);
|
||||
}
|
||||
lp_assert(pos(it) <= x);
|
||||
if (pos(it) == x) {
|
||||
if (is_one_point_interval(it)) {}
|
||||
else if (is_proper_end(it)) {}
|
||||
else {// is_proper_start(it->second)
|
||||
set_one_point_segment(x);
|
||||
}
|
||||
}
|
||||
else { // pos(it) < x}
|
||||
if (is_start(it))
|
||||
set_end(x);
|
||||
}
|
||||
lp_assert(is_correct());
|
||||
}
|
||||
|
||||
bool has_pos_inf() const {
|
||||
if (m_empty)
|
||||
return false;
|
||||
|
||||
if (m_endpoints.empty())
|
||||
return true;
|
||||
|
||||
lp_assert(m_endpoints.rbegin() != m_endpoints.rend());
|
||||
return m_endpoints.rbegin()->second == 0;
|
||||
}
|
||||
|
||||
bool has_neg_inf() const {
|
||||
if (m_empty)
|
||||
return false;
|
||||
|
||||
if (m_endpoints.empty())
|
||||
return true;
|
||||
auto it = m_endpoints.begin();
|
||||
return is_proper_end(it->second);//m_endpoints.begin());
|
||||
}
|
||||
|
||||
// we are intersecting
|
||||
void intersect_with_interval(int x, int y) {
|
||||
if (m_empty)
|
||||
return;
|
||||
lp_assert(x <= y);
|
||||
intersect_with_lower_bound(x);
|
||||
intersect_with_upper_bound(y);
|
||||
}
|
||||
|
||||
// add an intervar [x, inf]
|
||||
void unite_with_interval_x_pos_inf(int x) {
|
||||
if (m_empty) {
|
||||
set_start(x);
|
||||
m_empty = false;
|
||||
return;
|
||||
}
|
||||
|
||||
while (!m_endpoints.empty() && pos(m_endpoints.rbegin()) > x) {
|
||||
m_endpoints.erase(std::prev(m_endpoints.end()));
|
||||
}
|
||||
|
||||
if (m_endpoints.empty()) {
|
||||
set_start(x);
|
||||
return;
|
||||
}
|
||||
auto it = m_endpoints.rbegin();
|
||||
lp_assert(pos(it) <= x);
|
||||
if (pos(it) == x) {
|
||||
if (is_end(it)) {
|
||||
m_endpoints.erase(x);
|
||||
} else {
|
||||
set_start(x);
|
||||
}
|
||||
} else if (pos(it) == x - 1 && is_end(it)) {
|
||||
m_endpoints.erase(x - 1); // closing the gap
|
||||
} else {
|
||||
if (!has_pos_inf())
|
||||
set_start(x);
|
||||
}
|
||||
}
|
||||
|
||||
// add an interval [-inf, x]
|
||||
void unite_with_interval_neg_inf_x(int x) {
|
||||
if (m_empty) {
|
||||
set_end(x);
|
||||
m_empty = false;
|
||||
return;
|
||||
}
|
||||
auto it = m_endpoints.upper_bound(x);
|
||||
|
||||
if (it == m_endpoints.end()) {
|
||||
bool pos_inf = has_pos_inf();
|
||||
m_endpoints.clear();
|
||||
// it could be the case where x is inside of the last infinite interval with pos inf
|
||||
if (!pos_inf)
|
||||
set_end(x);
|
||||
return;
|
||||
}
|
||||
lp_assert(pos(it) > x);
|
||||
if (is_one_point_interval(pos(it))) {
|
||||
set_end(it->second);
|
||||
} else {
|
||||
if (is_start(it->second)) {
|
||||
set_end(x);
|
||||
}
|
||||
}
|
||||
|
||||
while (!m_endpoints.empty() && m_endpoints.begin()->first < x) {
|
||||
m_endpoints.erase(m_endpoints.begin());
|
||||
}
|
||||
lp_assert(is_correct());
|
||||
}
|
||||
|
||||
void unite_with_interval(int x, int y) {
|
||||
lp_assert(false); // not implemented
|
||||
}
|
||||
|
||||
bool is_correct() const {
|
||||
if (m_empty) {
|
||||
if (m_endpoints.size() > 0) {
|
||||
std::cout << "is empty is true but m_endpoints.size() = " << m_endpoints.size() << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool expect_end;
|
||||
bool prev = false;
|
||||
int prev_x;
|
||||
for (auto t : m_endpoints) {
|
||||
if (prev && (expect_end != t.second > 0)) {
|
||||
std::cout << "x = " << t.first << "\n";
|
||||
if (expect_end) {
|
||||
std::cout << "expecting an interval end\n";
|
||||
} else {
|
||||
std::cout << "expecting an interval start\n";
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (t.second == 2) {
|
||||
expect_end = false; // swallow a point interval
|
||||
} else {
|
||||
if (prev)
|
||||
expect_end = !expect_end;
|
||||
else
|
||||
expect_end = is_start(t.second);
|
||||
}
|
||||
if (prev) {
|
||||
if (t.first - prev_x <= 1) {
|
||||
std::cout << "the sequence is not increasing or the gap is too small: " << prev_x << ", " << t.first << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
prev = true;
|
||||
prev_x = t.first;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void print(std::ostream & out) const {
|
||||
if (m_empty) {
|
||||
out << "empty\n";
|
||||
return;
|
||||
}
|
||||
if (m_endpoints.empty()){
|
||||
out << "[-oo,oo]\n";
|
||||
return;
|
||||
}
|
||||
bool first = true;
|
||||
for (auto t : m_endpoints) {
|
||||
if (first) {
|
||||
if (t.second == 1) {
|
||||
out << "[-oo," << t.first << "]";
|
||||
}
|
||||
else if (t.second == 0)
|
||||
out << "[" << t.first << ",";
|
||||
else if (t.second == 2)
|
||||
out << "[" << t.first << "]";
|
||||
first = false;
|
||||
} else {
|
||||
if (t.second==0)
|
||||
out << "[" << t.first << ",";
|
||||
else if (t.second == 1)
|
||||
out << t.first << "]";
|
||||
else if (t.second == 2)
|
||||
out << "[" << t.first << "]";
|
||||
}
|
||||
}
|
||||
if (has_pos_inf())
|
||||
out << "oo]";
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
}
|
|
@ -20,7 +20,7 @@ Revision History:
|
|||
#include <memory>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/eta_matrix.hpp"
|
||||
#include "util/lp/eta_matrix_def.h"
|
||||
#ifdef Z3DEBUG
|
||||
template double lp::eta_matrix<double, double>::get_elem(unsigned int, unsigned int) const;
|
||||
template lp::mpq lp::eta_matrix<lp::mpq, lp::mpq>::get_elem(unsigned int, unsigned int) const;
|
|
@ -76,7 +76,7 @@ public:
|
|||
|
||||
|
||||
void push_back(unsigned row_index, T val ) {
|
||||
SASSERT(row_index != m_column_index);
|
||||
lp_assert(row_index != m_column_index);
|
||||
m_column_vector.push_back(row_index, val);
|
||||
}
|
||||
|
||||
|
|
|
@ -75,7 +75,7 @@ void eta_matrix<T, X>::apply_from_right(vector<T> & w) {
|
|||
}
|
||||
w[m_column_index] = t;
|
||||
#ifdef Z3DEBUG
|
||||
// SASSERT(vectors_are_equal<T>(clone_w, w, get_number_of_rows()));
|
||||
// lp_assert(vectors_are_equal<T>(clone_w, w, get_number_of_rows()));
|
||||
// delete clone_w;
|
||||
#endif
|
||||
}
|
||||
|
@ -115,8 +115,8 @@ void eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
|
|||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
// SASSERT(w.is_OK());
|
||||
// SASSERT(vectors_are_equal<T>(wcopy, w.m_data));
|
||||
// lp_assert(w.is_OK());
|
||||
// lp_assert(vectors_are_equal<T>(wcopy, w.m_data));
|
||||
#endif
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
|
@ -145,7 +145,7 @@ void eta_matrix<T, X>::conjugate_by_permutation(permutation_matrix<T, X> & p) {
|
|||
pair.first = p.get_rev(pair.first);
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
// SASSERT(deb == *this);
|
||||
// lp_assert(deb == *this);
|
||||
#endif
|
||||
}
|
||||
}
|
32
src/util/lp/explanation.h
Normal file
32
src/util/lp/explanation.h
Normal file
|
@ -0,0 +1,32 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
namespace lp {
|
||||
struct explanation {
|
||||
void clear() { m_explanation.clear(); }
|
||||
vector<std::pair<mpq, constraint_index>> m_explanation;
|
||||
void push_justification(constraint_index j, const mpq& v) {
|
||||
m_explanation.push_back(std::make_pair(v, j));
|
||||
}
|
||||
void push_justification(constraint_index j) {
|
||||
m_explanation.push_back(std::make_pair(one_of_type<mpq>(), j));
|
||||
}
|
||||
};
|
||||
}
|
259
src/util/lp/general_matrix.h
Normal file
259
src/util/lp/general_matrix.h
Normal file
|
@ -0,0 +1,259 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include <functional>
|
||||
namespace lp {
|
||||
class general_matrix {
|
||||
// fields
|
||||
permutation_matrix<mpq, mpq> m_row_permutation;
|
||||
permutation_matrix<mpq, mpq> m_column_permutation;
|
||||
vector<vector<mpq>> m_data;
|
||||
|
||||
public:
|
||||
unsigned adjust_row(unsigned row) const{
|
||||
return m_row_permutation[row];
|
||||
}
|
||||
|
||||
void push_row(vector<mpq> & v) {
|
||||
m_data.push_back(v);
|
||||
m_row_permutation.resize(m_data.size());
|
||||
m_column_permutation.resize(v.size());
|
||||
}
|
||||
|
||||
unsigned adjust_column(unsigned col) const{
|
||||
return m_column_permutation.apply_reverse(col);
|
||||
}
|
||||
|
||||
unsigned adjust_row_inverse(unsigned row) const{
|
||||
return m_row_permutation.apply_reverse(row);
|
||||
}
|
||||
|
||||
unsigned adjust_column_inverse(unsigned col) const{
|
||||
return m_column_permutation[col];
|
||||
}
|
||||
|
||||
|
||||
unsigned row_count() const { return m_data.size(); }
|
||||
unsigned column_count() const { return m_data.size() > 0? m_data[0].size() : 0; }
|
||||
|
||||
class ref_row {
|
||||
general_matrix& m_matrix;
|
||||
vector<mpq>& m_row_data;
|
||||
public:
|
||||
ref_row(general_matrix& m, vector<mpq>& row_data) : m_matrix(m), m_row_data(row_data) {}
|
||||
mpq & operator[](unsigned col) { return m_row_data[m_matrix.adjust_column(col)]; }
|
||||
};
|
||||
class ref_row_const {
|
||||
const general_matrix& m_matrix;
|
||||
const vector<mpq>& m_row_data;
|
||||
public:
|
||||
ref_row_const(const general_matrix& m, const vector<mpq>& row_data) : m_matrix(m), m_row_data(row_data) {}
|
||||
const mpq& operator[](unsigned col) const { return m_row_data[m_matrix.adjust_column(col)]; }
|
||||
};
|
||||
|
||||
ref_row operator[](unsigned i) { return ref_row(*this, m_data[adjust_row(i)]); }
|
||||
ref_row_const operator[](unsigned i) const { return ref_row_const(*this, m_data[adjust_row(i)]); }
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
void print(std::ostream & out, unsigned blanks = 0) const {
|
||||
unsigned m = row_count();
|
||||
unsigned n = column_count();
|
||||
general_matrix g(m, n);
|
||||
for (unsigned i = 0; i < m; i++)
|
||||
for (unsigned j = 0; j < n; j++)
|
||||
g[i][j] = (*this)[i][j];
|
||||
print_matrix<mpq>(g.m_data, out, blanks);
|
||||
}
|
||||
void print(std::ostream & out, const char * ss) const {
|
||||
std::string s(ss);
|
||||
out << s;
|
||||
print(out, static_cast<unsigned>(s.size()));
|
||||
}
|
||||
|
||||
void print_submatrix(std::ostream & out, unsigned k, unsigned blanks = 0) const {
|
||||
general_matrix m(row_count() - k, column_count() - k);
|
||||
for (unsigned i = k; i < row_count(); i++) {
|
||||
for (unsigned j = k; j < column_count(); j++)
|
||||
m[i-k][j-k] = (*this)[i][j];
|
||||
}
|
||||
print_matrix<mpq>(m.m_data, out, blanks);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void clear() { m_data.clear(); }
|
||||
|
||||
bool row_is_initialized_correctly(const vector<mpq>& row) {
|
||||
lp_assert(row.size() == column_count());
|
||||
for (unsigned j = 0; j < row.size(); j ++)
|
||||
lp_assert(is_zero(row[j]));
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void init_row_from_container(int i, const T & c, std::function<unsigned (unsigned)> column_fix) {
|
||||
auto & row = m_data[adjust_row(i)];
|
||||
lp_assert(row_is_initialized_correctly(row));
|
||||
for (const auto & p : c) {
|
||||
unsigned j = adjust_column(column_fix(p.var()));
|
||||
row[j] = p.coeff();
|
||||
}
|
||||
}
|
||||
|
||||
void copy_column_to_indexed_vector(unsigned entering, indexed_vector<mpq> &w ) const {
|
||||
lp_assert(false); // not implemented
|
||||
}
|
||||
general_matrix operator*(const general_matrix & m) const {
|
||||
lp_assert(m.row_count() == column_count());
|
||||
general_matrix ret(row_count(), m.column_count());
|
||||
for (unsigned i = 0; i < row_count(); i ++) {
|
||||
for (unsigned j = 0; j < m.column_count(); j++) {
|
||||
mpq a(0);
|
||||
for (unsigned k = 0; k < column_count(); k++)
|
||||
a += ((*this)[i][k])*m[k][j];
|
||||
ret[i][j] = a;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool elements_are_equal(const general_matrix& m) const {
|
||||
for (unsigned i = 0; i < row_count(); i++)
|
||||
for (unsigned j = 0; j < column_count(); j++)
|
||||
if ( (*this)[i][j] != m[i][j])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool elements_are_equal_modulo(const general_matrix& m, const mpq & d) const {
|
||||
for (unsigned i = 0; i < row_count(); i++)
|
||||
for (unsigned j = 0; j < column_count(); j++)
|
||||
if (!is_zero(((*this)[i][j] - m[i][j]) % d))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
bool operator==(const general_matrix& m) const {
|
||||
return row_count() == m.row_count() && column_count() == m.column_count() && elements_are_equal(m);
|
||||
}
|
||||
|
||||
bool operator!=(const general_matrix& m) const {
|
||||
return !(*this == m);
|
||||
}
|
||||
|
||||
bool equal_modulo(const general_matrix& m, const mpq & d) const {
|
||||
return row_count() == m.row_count() && column_count() == m.column_count() && elements_are_equal_modulo(m, d);
|
||||
}
|
||||
|
||||
|
||||
vector<mpq> operator*(const vector<mpq> & x) const {
|
||||
vector<mpq> r;
|
||||
lp_assert(x.size() == column_count());
|
||||
for (unsigned i = 0; i < row_count(); i++) {
|
||||
mpq v(0);
|
||||
for (unsigned j = 0; j < column_count(); j++) {
|
||||
v += (*this)[i][j] * x[j];
|
||||
}
|
||||
r.push_back(v);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
// bool create_upper_triangle(general_matrix& m, vector<mpq>& x) {
|
||||
// for (unsigned i = 1; i < m.row_count(); i++) {
|
||||
// lp_assert(false); // to be continued
|
||||
// }
|
||||
// }
|
||||
|
||||
// bool solve_A_x_equal_b(const general_matrix& m, vector<mpq>& x, const vector<mpq>& b) const {
|
||||
// auto m_copy = m;
|
||||
// // for square matrices
|
||||
// lp_assert(row_count() == b.size());
|
||||
// lp_assert(x.size() == column_count());
|
||||
// lp_assert(row_count() == column_count());
|
||||
// x = b;
|
||||
// create_upper_triangle(copy_of_m, x);
|
||||
// solve_on_triangle(copy_of_m, x);
|
||||
// }
|
||||
//
|
||||
|
||||
void transpose_rows(unsigned i, unsigned l) {
|
||||
lp_assert(i != l);
|
||||
m_row_permutation.transpose_from_right(i, l);
|
||||
}
|
||||
|
||||
void transpose_columns(unsigned j, unsigned k) {
|
||||
lp_assert(j != k);
|
||||
m_column_permutation.transpose_from_left(j, k);
|
||||
}
|
||||
|
||||
general_matrix(){}
|
||||
general_matrix(unsigned n) :
|
||||
m_row_permutation(n),
|
||||
m_column_permutation(n),
|
||||
m_data(n)
|
||||
{
|
||||
for (auto& v : m_data){
|
||||
v.resize(n);
|
||||
}
|
||||
}
|
||||
|
||||
general_matrix(unsigned m, unsigned n) :
|
||||
m_row_permutation(m),
|
||||
m_column_permutation(n),
|
||||
m_data(m) {
|
||||
for (auto& v : m_data){
|
||||
v.resize(n);
|
||||
}
|
||||
}
|
||||
|
||||
void shrink_to_rank(const svector<unsigned>& basis_rows) {
|
||||
if (basis_rows.size() == row_count()) return;
|
||||
vector<vector<mpq>> data; // todo : not efficient code
|
||||
for (unsigned i : basis_rows)
|
||||
data.push_back(m_data[i]);
|
||||
m_data = data;
|
||||
}
|
||||
|
||||
// used for debug only
|
||||
general_matrix take_first_n_columns(unsigned n) const {
|
||||
lp_assert(n <= column_count());
|
||||
if (n == column_count())
|
||||
return *this;
|
||||
general_matrix ret(row_count(), n);
|
||||
for (unsigned i = 0; i < row_count(); i++)
|
||||
for (unsigned j = 0; j < n; j++)
|
||||
ret[i][j] = (*this)[i][j];
|
||||
return ret;
|
||||
}
|
||||
inline
|
||||
friend vector<mpq> operator*(const vector<mpq> & f, const general_matrix& a) {
|
||||
vector<mpq> r(a.column_count());
|
||||
for (unsigned j = 0; j < a.column_count(); j ++) {
|
||||
mpq t = zero_of_type<mpq>();
|
||||
for (unsigned i = 0; i < a.row_count(); i++) {
|
||||
t += f[i] * a[i][j];
|
||||
}
|
||||
r[j] = t;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
|
@ -1,54 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include <utility>
|
||||
#include <functional>
|
||||
#include "util/numerics/mpq.h"
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wmismatched-tags"
|
||||
#endif
|
||||
namespace std {
|
||||
template<>
|
||||
struct hash<lp::mpq> {
|
||||
inline size_t operator()(const lp::mpq & v) const {
|
||||
return v.hash();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline void hash_combine(std::size_t & seed, const T & v) {
|
||||
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template<typename S, typename T> struct hash<pair<S, T>> {
|
||||
inline size_t operator()(const pair<S, T> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.first);
|
||||
hash_combine(seed, v.second);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
}
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
623
src/util/lp/hnf.h
Normal file
623
src/util/lp/hnf.h
Normal file
|
@ -0,0 +1,623 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
Creates the Hermite Normal Form of a matrix in place.
|
||||
We suppose that $A$ is an integral $m$ by $n$ matrix or rank $m$, where $n >= m$.
|
||||
The paragraph below is applicable to the usage of HNF.
|
||||
We have $H = AU$ where $H$ is in Hermite Normal Form
|
||||
and $U$ is a unimodular matrix. We do not have an explicit
|
||||
representation of $U$. For a given $i$ we need to find the $i$-th
|
||||
row of $U^{-1}$.
|
||||
Let $e_i$ be a vector of length $m$ with all elements equal to $0$ and
|
||||
$1$ at $i$-th position. Then we need to find the row vector $e_iU^{-1}=t$. Noticing that $U^{-1} = H^{-1}A$, we have $e_iH^{-1}A=t$.
|
||||
We find $e_iH^{-1} = f$ by solving $e_i = fH$ and then $fA$ gives us $t$.
|
||||
|
||||
Author:
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/ext_gcd.h"
|
||||
namespace lp {
|
||||
namespace hnf_calc {
|
||||
|
||||
// d = u * a + v * b and the sum of abs(u) + abs(v) is minimal, d is positive
|
||||
inline
|
||||
void extended_gcd_minimal_uv(const mpq & a, const mpq & b, mpq & d, mpq & u, mpq & v) {
|
||||
if (is_zero(a)) {
|
||||
u = zero_of_type<mpq>();
|
||||
v = one_of_type<mpq>();
|
||||
d = b;
|
||||
return;
|
||||
}
|
||||
if (is_zero(b)) {
|
||||
u = one_of_type<mpq>();
|
||||
v = zero_of_type<mpq>();
|
||||
d = a;
|
||||
return;
|
||||
}
|
||||
#if 1
|
||||
d = gcd(a, b, u, v);
|
||||
#else
|
||||
extended_gcd(a, b, d, u, v);
|
||||
#endif
|
||||
if (is_neg(d)) {
|
||||
d = -d;
|
||||
u = -u;
|
||||
v = -v;
|
||||
}
|
||||
|
||||
if (d == a) {
|
||||
u = one_of_type<mpq>();
|
||||
v = zero_of_type<mpq>();
|
||||
return;
|
||||
}
|
||||
if (d == -a) {
|
||||
u = - one_of_type<mpq>();
|
||||
v = zero_of_type<mpq>();
|
||||
return;
|
||||
}
|
||||
|
||||
mpq a_over_d = abs(a) / d;
|
||||
mpq r;
|
||||
|
||||
mpq k = machine_div_rem(v, a_over_d, r);
|
||||
if (is_neg(r)) {
|
||||
r += a_over_d;
|
||||
k -= one_of_type<mpq>();
|
||||
}
|
||||
|
||||
lp_assert(v == k * a_over_d + r);
|
||||
|
||||
if (is_pos(b)) {
|
||||
v = r - a_over_d; // v -= (k + 1) * a_over_d;
|
||||
lp_assert(- a_over_d < v && v <= zero_of_type<mpq>());
|
||||
|
||||
if (is_pos(a)) {
|
||||
u += (k + 1) * (b / d);
|
||||
lp_assert( one_of_type<mpq>() <= u && u <= abs(b)/d);
|
||||
} else {
|
||||
u -= (k + 1) * (b / d);
|
||||
lp_assert( one_of_type<mpq>() <= -u && -u <= abs(b)/d);
|
||||
}
|
||||
} else {
|
||||
v = r; // v -= k * a_over_d;
|
||||
lp_assert(- a_over_d < -v && -v <= zero_of_type<mpq>());
|
||||
if (is_pos(a)) {
|
||||
u += k * (b / d);
|
||||
lp_assert( one_of_type<mpq>() <= u && u <= abs(b)/d);
|
||||
} else {
|
||||
u -= k * (b / d);
|
||||
lp_assert( one_of_type<mpq>() <= -u && -u <= abs(b)/d);
|
||||
}
|
||||
}
|
||||
lp_assert(d == u * a + v * b);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <typename M>
|
||||
bool prepare_pivot_for_lower_triangle(M &m, unsigned r) {
|
||||
for (unsigned i = r; i < m.row_count(); i++) {
|
||||
for (unsigned j = r; j < m.column_count(); j++) {
|
||||
if (!is_zero(m[i][j])) {
|
||||
if (i != r) {
|
||||
m.transpose_rows(i, r);
|
||||
}
|
||||
if (j != r) {
|
||||
m.transpose_columns(j, r);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename M>
|
||||
void pivot_column_non_fractional(M &m, unsigned r, bool & overflow, const mpq & big_number) {
|
||||
lp_assert(!is_zero(m[r][r]));
|
||||
for (unsigned j = r + 1; j < m.column_count(); j++) {
|
||||
for (unsigned i = r + 1; i < m.row_count(); i++) {
|
||||
if (
|
||||
(m[i][j] = (r > 0) ? (m[r][r]*m[i][j] - m[i][r]*m[r][j]) / m[r-1][r-1] :
|
||||
(m[r][r]*m[i][j] - m[i][r]*m[r][j]))
|
||||
>= big_number) {
|
||||
overflow = true;
|
||||
return;
|
||||
}
|
||||
lp_assert(is_int(m[i][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// returns the rank of the matrix
|
||||
template <typename M>
|
||||
unsigned to_lower_triangle_non_fractional(M &m, bool & overflow, const mpq& big_number) {
|
||||
unsigned i = 0;
|
||||
for (; i < m.row_count(); i++) {
|
||||
if (!prepare_pivot_for_lower_triangle(m, i)) {
|
||||
return i;
|
||||
}
|
||||
pivot_column_non_fractional(m, i, overflow, big_number);
|
||||
if (overflow)
|
||||
return 0;
|
||||
}
|
||||
lp_assert(i == m.row_count());
|
||||
return i;
|
||||
}
|
||||
|
||||
// returns gcd of values below diagonal i,i
|
||||
template <typename M>
|
||||
mpq gcd_of_row_starting_from_diagonal(const M& m, unsigned i) {
|
||||
mpq g = zero_of_type<mpq>();
|
||||
unsigned j = i;
|
||||
for (; j < m.column_count() && is_zero(g); j++) {
|
||||
const auto & t = m[i][j];
|
||||
if (!is_zero(t))
|
||||
g = abs(t);
|
||||
}
|
||||
lp_assert(!is_zero(g));
|
||||
for (; j < m.column_count(); j++) {
|
||||
const auto & t = m[i][j];
|
||||
if (!is_zero(t))
|
||||
g = gcd(g, t);
|
||||
}
|
||||
return g;
|
||||
}
|
||||
|
||||
// It fills "r" - the basic rows of m.
|
||||
// The plan is to transform m to the lower triangular form by using non-fractional Gaussian Elimination by columns.
|
||||
// Then the trailing after the diagonal elements of the following elements of the last non-zero row of the matrix,
|
||||
// namely, m[r-1][r-1], m[r-1][r], ..., m[r-1]m[m.column_count() - 1] give the determinants of all minors of rank r.
|
||||
// The gcd of these minors is the return value.
|
||||
|
||||
template <typename M>
|
||||
mpq determinant_of_rectangular_matrix(const M& m, svector<unsigned> & basis_rows, const mpq& big_number) {
|
||||
auto m_copy = m;
|
||||
bool overflow = false;
|
||||
unsigned rank = to_lower_triangle_non_fractional(m_copy, overflow, big_number);
|
||||
if (overflow)
|
||||
return big_number;
|
||||
if (rank == 0)
|
||||
return one_of_type<mpq>();
|
||||
|
||||
for (unsigned i = 0; i < rank; i++) {
|
||||
basis_rows.push_back(m_copy.adjust_row(i));
|
||||
}
|
||||
TRACE("hnf_calc", tout << "basis_rows = "; print_vector(basis_rows, tout); m_copy.print(tout, "m_copy = "););
|
||||
return gcd_of_row_starting_from_diagonal(m_copy, rank - 1);
|
||||
}
|
||||
} // end of namespace hnf_calc
|
||||
|
||||
template <typename M> // M is the matrix type
|
||||
class hnf {
|
||||
// fields
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
M m_H;
|
||||
M m_U;
|
||||
M m_U_reverse;
|
||||
M m_A_orig;
|
||||
#endif
|
||||
M m_W;
|
||||
vector<mpq> m_buffer;
|
||||
unsigned m_m;
|
||||
unsigned m_n;
|
||||
mpq m_d; // it is a positive number and a multiple of gcd of r-minors of m_A_orig, where r is the rank of m_A_orig
|
||||
// we suppose that the rank of m_A is equal to row_count(), and that row_count() <= column_count(), that is m_A has the full rank
|
||||
unsigned m_i;
|
||||
unsigned m_j;
|
||||
mpq m_R;
|
||||
mpq m_half_R;
|
||||
mpq mod_R_balanced(const mpq & a) const {
|
||||
mpq t = a % m_R;
|
||||
return t > m_half_R? t - m_R : (t < - m_half_R? t + m_R : t);
|
||||
}
|
||||
|
||||
mpq mod_R(const mpq & a) const {
|
||||
mpq t = a % m_R;
|
||||
t = is_neg(t) ? t + m_R : t;
|
||||
CTRACE("hnf", is_neg(t), tout << "a=" << a << ", m_R= " << m_R << std::endl;);
|
||||
return t;
|
||||
|
||||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
void buffer_p_col_i_plus_q_col_j_H(const mpq & p, unsigned i, const mpq & q, unsigned j) {
|
||||
for (unsigned k = i; k < m_m; k++) {
|
||||
m_buffer[k] = p * m_H[k][i] + q * m_H[k][j];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
bool zeros_in_column_W_above(unsigned i) {
|
||||
for (unsigned k = 0; k < i; k++)
|
||||
if (!is_zero(m_W[k][i]))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void buffer_p_col_i_plus_q_col_j_W_modulo(const mpq & p, const mpq & q) {
|
||||
lp_assert(zeros_in_column_W_above(m_i));
|
||||
for (unsigned k = m_i; k < m_m; k++) {
|
||||
m_buffer[k] = mod_R_balanced(mod_R_balanced(p * m_W[k][m_i]) + mod_R_balanced(q * m_W[k][m_j]));
|
||||
}
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
void buffer_p_col_i_plus_q_col_j_U(const mpq & p, unsigned i, const mpq & q, unsigned j) {
|
||||
for (unsigned k = 0; k < m_n; k++) {
|
||||
m_buffer[k] = p * m_U[k][i] + q * m_U[k][j];
|
||||
}
|
||||
}
|
||||
|
||||
void pivot_column_i_to_column_j_H(mpq u, unsigned i, mpq v, unsigned j) {
|
||||
lp_assert(is_zero(u * m_H[i][i] + v * m_H[i][j]));
|
||||
m_H[i][j] = zero_of_type<mpq>();
|
||||
for (unsigned k = i + 1; k < m_m; k ++)
|
||||
m_H[k][j] = u * m_H[k][i] + v * m_H[k][j];
|
||||
|
||||
}
|
||||
#endif
|
||||
void pivot_column_i_to_column_j_W_modulo(mpq u, mpq v) {
|
||||
lp_assert(is_zero((u * m_W[m_i][m_i] + v * m_W[m_i][m_j]) % m_R));
|
||||
m_W[m_i][m_j] = zero_of_type<mpq>();
|
||||
for (unsigned k = m_i + 1; k < m_m; k ++)
|
||||
m_W[k][m_j] = mod_R_balanced(mod_R_balanced(u * m_W[k][m_i]) + mod_R_balanced(v * m_W[k][m_j]));
|
||||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
void pivot_column_i_to_column_j_U(mpq u, unsigned i, mpq v, unsigned j) {
|
||||
for (unsigned k = 0; k < m_n; k ++)
|
||||
m_U[k][j] = u * m_U[k][i] + v * m_U[k][j];
|
||||
|
||||
}
|
||||
|
||||
void copy_buffer_to_col_i_H(unsigned i) {
|
||||
for (unsigned k = i; k < m_m; k++) {
|
||||
m_H[k][i] = m_buffer[k];
|
||||
}
|
||||
}
|
||||
void copy_buffer_to_col_i_U(unsigned i) {
|
||||
for (unsigned k = 0; k < m_n; k++)
|
||||
m_U[k][i] = m_buffer[k];
|
||||
}
|
||||
|
||||
// multiply by (a, b)
|
||||
// (c, d)
|
||||
// from the left where i and j are the modified columns
|
||||
// the [i][i] = a, and [i][j] = b for the matrix we multiply by
|
||||
|
||||
|
||||
void multiply_U_reverse_from_left_by(unsigned i, unsigned j, const mpq & a, const mpq & b, const mpq & c, const mpq d) {
|
||||
// the new i-th row goes to the buffer
|
||||
for (unsigned k = 0; k < m_n; k++) {
|
||||
m_buffer[k] = a * m_U_reverse[i][k] + b * m_U_reverse[j][k];
|
||||
}
|
||||
|
||||
// calculate the new j-th row in place
|
||||
for (unsigned k = 0; k < m_n; k++) {
|
||||
m_U_reverse[j][k] = c * m_U_reverse[i][k] + d * m_U_reverse[j][k];
|
||||
}
|
||||
|
||||
// copy the buffer into i-th row
|
||||
for (unsigned k = 0; k < m_n; k++) {
|
||||
m_U_reverse[i][k] = m_buffer[k];
|
||||
}
|
||||
}
|
||||
|
||||
void handle_column_ij_in_row_i(unsigned i, unsigned j) {
|
||||
lp_assert(is_correct_modulo());
|
||||
const mpq& aii = m_H[i][i];
|
||||
const mpq& aij = m_H[i][j];
|
||||
mpq p,q,r;
|
||||
extended_gcd(aii, aij, r, p, q);
|
||||
mpq aii_over_r = aii / r;
|
||||
mpq aij_over_r = aij / r;
|
||||
|
||||
|
||||
buffer_p_col_i_plus_q_col_j_H(p, i, q, j);
|
||||
pivot_column_i_to_column_j_H(- aij_over_r, i, aii_over_r, j);
|
||||
copy_buffer_to_col_i_H(i);
|
||||
|
||||
|
||||
buffer_p_col_i_plus_q_col_j_U(p, i, q, j);
|
||||
pivot_column_i_to_column_j_U(- aij_over_r, i, aii_over_r, j);
|
||||
copy_buffer_to_col_i_U(i);
|
||||
|
||||
// U was multiplied from the right by (p, - aij_over_r)
|
||||
// (q, aii_over_r )
|
||||
// We need to multiply U_reverse by (aii_over_r, aij_over_r)
|
||||
// (-q , p)
|
||||
// from the left
|
||||
|
||||
multiply_U_reverse_from_left_by(i, j, aii_over_r, aij_over_r, -q, p);
|
||||
lp_assert(is_correct_modulo());
|
||||
}
|
||||
|
||||
|
||||
void switch_sign_for_column(unsigned i) {
|
||||
for (unsigned k = i; k < m_m; k++)
|
||||
m_H[k][i].neg();
|
||||
for (unsigned k = 0; k < m_n; k++)
|
||||
m_U[k][i].neg();
|
||||
|
||||
// switch sign for the i-th row in the reverse m_U_reverse
|
||||
for (unsigned k = 0; k < m_n; k++)
|
||||
m_U_reverse[i][k].neg();
|
||||
|
||||
}
|
||||
|
||||
void process_row_column(unsigned i, unsigned j){
|
||||
if (is_zero(m_H[i][j]))
|
||||
return;
|
||||
handle_column_ij_in_row_i(i, j);
|
||||
}
|
||||
|
||||
void replace_column_j_by_j_minus_u_col_i_H(unsigned i, unsigned j, const mpq & u) {
|
||||
lp_assert(j < i);
|
||||
for (unsigned k = i; k < m_m; k++) {
|
||||
m_H[k][j] -= u * m_H[k][i];
|
||||
}
|
||||
}
|
||||
void replace_column_j_by_j_minus_u_col_i_U(unsigned i, unsigned j, const mpq & u) {
|
||||
|
||||
lp_assert(j < i);
|
||||
for (unsigned k = 0; k < m_n; k++) {
|
||||
m_U[k][j] -= u * m_U[k][i];
|
||||
}
|
||||
// Here we multiply from m_U from the right by the matrix ( 1, 0)
|
||||
// ( -u, 1).
|
||||
// To adjust the reverse we multiply it from the left by (1, 0)
|
||||
// (u, 1)
|
||||
|
||||
for (unsigned k = 0; k < m_n; k++) {
|
||||
m_U_reverse[i][k] += u * m_U_reverse[j][k];
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
void work_on_columns_less_than_i_in_the_triangle(unsigned i) {
|
||||
const mpq & mii = m_H[i][i];
|
||||
if (is_zero(mii)) return;
|
||||
for (unsigned j = 0; j < i; j++) {
|
||||
const mpq & mij = m_H[i][j];
|
||||
if (!is_pos(mij) && - mij < mii)
|
||||
continue;
|
||||
mpq u = ceil(mij / mii);
|
||||
replace_column_j_by_j_minus_u_col_i_H(i, j, u);
|
||||
replace_column_j_by_j_minus_u_col_i_U(i, j, u);
|
||||
}
|
||||
}
|
||||
|
||||
void process_row(unsigned i) {
|
||||
|
||||
lp_assert(is_correct_modulo());
|
||||
for (unsigned j = i + 1; j < m_n; j++) {
|
||||
process_row_column(i, j);
|
||||
}
|
||||
if (i >= m_n) {
|
||||
lp_assert(m_H == m_A_orig * m_U);
|
||||
return;
|
||||
}
|
||||
if (is_neg(m_H[i][i]))
|
||||
switch_sign_for_column(i);
|
||||
work_on_columns_less_than_i_in_the_triangle(i);
|
||||
lp_assert(is_correct_modulo());
|
||||
}
|
||||
|
||||
void calculate() {
|
||||
for (unsigned i = 0; i < m_m; i++) {
|
||||
process_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
void prepare_U_and_U_reverse() {
|
||||
m_U = M(m_H.column_count());
|
||||
for (unsigned i = 0; i < m_U.column_count(); i++)
|
||||
m_U[i][i] = 1;
|
||||
|
||||
m_U_reverse = m_U;
|
||||
|
||||
lp_assert(m_H == m_A_orig * m_U);
|
||||
}
|
||||
|
||||
bool row_is_correct_form(unsigned i) const {
|
||||
if (i >= m_n)
|
||||
return true;
|
||||
const mpq& hii = m_H[i][i];
|
||||
if (is_neg(hii))
|
||||
return false;
|
||||
for (unsigned j = 0; j < i; j++) {
|
||||
const mpq & hij = m_H[i][j];
|
||||
if (is_pos(hij))
|
||||
return false;
|
||||
if (!is_zero(hii) && - hij >= hii)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool is_correct_form() const {
|
||||
for (unsigned i = 0; i < m_m; i++)
|
||||
if (!row_is_correct_form(i))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool is_correct() const {
|
||||
return m_H == m_A_orig * m_U && is_unit_matrix(m_U * m_U_reverse);
|
||||
}
|
||||
|
||||
bool is_correct_modulo() const {
|
||||
return m_H.equal_modulo(m_A_orig * m_U, m_d) && is_unit_matrix(m_U * m_U_reverse);
|
||||
}
|
||||
|
||||
bool is_correct_final() const {
|
||||
if (!is_correct()) {
|
||||
TRACE("hnf_calc",
|
||||
tout << "m_H = "; m_H.print(tout, 17);
|
||||
tout << "\nm_A_orig * m_U = "; (m_A_orig * m_U).print(tout, 17);
|
||||
tout << "is_correct() does not hold" << std::endl;);
|
||||
return false;
|
||||
}
|
||||
if (!is_correct_form()) {
|
||||
TRACE("hnf_calc", tout << "is_correct_form() does not hold" << std::endl;);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
public:
|
||||
const M& H() const { return m_H;}
|
||||
const M& U() const { return m_U;}
|
||||
const M& U_reverse() const { return m_U_reverse; }
|
||||
private:
|
||||
#endif
|
||||
void copy_buffer_to_col_i_W_modulo() {
|
||||
for (unsigned k = m_i; k < m_m; k++) {
|
||||
m_W[k][m_i] = m_buffer[k];
|
||||
}
|
||||
}
|
||||
|
||||
void replace_column_j_by_j_minus_u_col_i_W(unsigned j, const mpq & u) {
|
||||
lp_assert(j < m_i);
|
||||
for (unsigned k = m_i; k < m_m; k++) {
|
||||
m_W[k][j] -= u * m_W[k][m_i];
|
||||
// m_W[k][j] = mod_R_balanced(m_W[k][j]);
|
||||
}
|
||||
}
|
||||
|
||||
bool is_unit_matrix(const M& u) const {
|
||||
unsigned m = u.row_count();
|
||||
unsigned n = u.column_count();
|
||||
if (m != n) return false;
|
||||
for (unsigned i = 0; i < m; i ++)
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
if (i == j) {
|
||||
if (one_of_type<mpq>() != u[i][j])
|
||||
return false;
|
||||
} else {
|
||||
if (!is_zero(u[i][j]))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// follows Algorithm 2.4.8 of Henri Cohen's "A course on computational algebraic number theory",
|
||||
// with some changes related to that we create a low triangle matrix
|
||||
// with non-positive elements under the diagonal
|
||||
void process_column_in_row_modulo() {
|
||||
const mpq& aii = m_W[m_i][m_i];
|
||||
const mpq& aij = m_W[m_i][m_j];
|
||||
mpq d, p,q;
|
||||
hnf_calc::extended_gcd_minimal_uv(aii, aij, d, p, q);
|
||||
if (is_zero(d))
|
||||
return;
|
||||
mpq aii_over_d = mod_R(aii / d);
|
||||
mpq aij_over_d = mod_R(aij / d);
|
||||
buffer_p_col_i_plus_q_col_j_W_modulo(p, q);
|
||||
pivot_column_i_to_column_j_W_modulo(- aij_over_d, aii_over_d);
|
||||
copy_buffer_to_col_i_W_modulo();
|
||||
}
|
||||
|
||||
void fix_row_under_diagonal_W_modulo() {
|
||||
mpq d, u, v;
|
||||
if (is_zero(m_W[m_i][m_i])) {
|
||||
m_W[m_i][m_i] = m_R;
|
||||
u = one_of_type<mpq>();
|
||||
d = m_R;
|
||||
} else {
|
||||
hnf_calc::extended_gcd_minimal_uv(m_W[m_i][m_i], m_R, d, u, v);
|
||||
}
|
||||
auto & mii = m_W[m_i][m_i];
|
||||
mii *= u;
|
||||
mii = mod_R(mii);
|
||||
if (is_zero(mii))
|
||||
mii = d;
|
||||
|
||||
lp_assert(is_pos(mii));
|
||||
|
||||
// adjust column m_i
|
||||
for (unsigned k = m_i + 1; k < m_m; k++) {
|
||||
m_W[k][m_i] *= u;
|
||||
m_W[k][m_i] = mod_R_balanced(m_W[k][m_i]);
|
||||
}
|
||||
|
||||
lp_assert(is_pos(mii));
|
||||
for (unsigned j = 0; j < m_i; j++) {
|
||||
const mpq & mij = m_W[m_i][j];
|
||||
if (!is_pos(mij) && - mij < mii)
|
||||
continue;
|
||||
mpq q = ceil(mij / mii);
|
||||
replace_column_j_by_j_minus_u_col_i_W(j, q);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void process_row_modulo() {
|
||||
for (m_j = m_i + 1; m_j < m_n; m_j++) {
|
||||
process_column_in_row_modulo();
|
||||
}
|
||||
fix_row_under_diagonal_W_modulo();
|
||||
}
|
||||
|
||||
void calculate_by_modulo() {
|
||||
for (m_i = 0; m_i < m_m; m_i ++) {
|
||||
process_row_modulo();
|
||||
lp_assert(is_pos(m_W[m_i][m_i]));
|
||||
m_R /= m_W[m_i][m_i];
|
||||
lp_assert(is_int(m_R));
|
||||
m_half_R = floor(m_R / 2);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
hnf(M & A, const mpq & d) :
|
||||
#ifdef Z3DEBUG
|
||||
m_H(A),
|
||||
m_A_orig(A),
|
||||
#endif
|
||||
m_W(A),
|
||||
m_buffer(std::max(A.row_count(), A.column_count())),
|
||||
m_m(A.row_count()),
|
||||
m_n(A.column_count()),
|
||||
m_d(d),
|
||||
m_R(m_d),
|
||||
m_half_R(floor(m_R / 2))
|
||||
{
|
||||
if (m_m == 0 || m_n == 0 || is_zero(m_d))
|
||||
return;
|
||||
#ifdef Z3DEBUG
|
||||
prepare_U_and_U_reverse();
|
||||
calculate();
|
||||
lp_assert(is_correct_final());
|
||||
#endif
|
||||
calculate_by_modulo();
|
||||
#ifdef Z3DEBUG
|
||||
CTRACE("hnf_calc", m_H != m_W,
|
||||
tout << "A = "; m_A_orig.print(tout, 4); tout << std::endl;
|
||||
tout << "H = "; m_H.print(tout, 4); tout << std::endl;
|
||||
tout << "W = "; m_W.print(tout, 4); tout << std::endl;);
|
||||
lp_assert (m_H == m_W);
|
||||
#endif
|
||||
}
|
||||
|
||||
const M & W() const { return m_W; }
|
||||
|
||||
};
|
||||
|
||||
}
|
232
src/util/lp/hnf_cutter.h
Normal file
232
src/util/lp/hnf_cutter.h
Normal file
|
@ -0,0 +1,232 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/lar_term.h"
|
||||
#include "util/lp/hnf.h"
|
||||
#include "util/lp/general_matrix.h"
|
||||
#include "util/lp/var_register.h"
|
||||
#include "util/lp/lia_move.h"
|
||||
#include "util/lp/explanation.h"
|
||||
|
||||
namespace lp {
|
||||
class hnf_cutter {
|
||||
var_register m_var_register;
|
||||
general_matrix m_A;
|
||||
vector<const lar_term*> m_terms;
|
||||
svector<constraint_index> m_constraints_for_explanation;
|
||||
vector<mpq> m_right_sides;
|
||||
lp_settings & m_settings;
|
||||
mpq m_abs_max;
|
||||
bool m_overflow;
|
||||
public:
|
||||
|
||||
const mpq & abs_max() const { return m_abs_max; }
|
||||
|
||||
hnf_cutter(lp_settings & settings) : m_settings(settings),
|
||||
m_abs_max(zero_of_type<mpq>()) {}
|
||||
|
||||
unsigned terms_count() const {
|
||||
return m_terms.size();
|
||||
}
|
||||
|
||||
const vector<const lar_term*>& terms() const { return m_terms; }
|
||||
const svector<unsigned>& constraints_for_explanation() const {
|
||||
return m_constraints_for_explanation;
|
||||
}
|
||||
const vector<mpq> & right_sides() const { return m_right_sides; }
|
||||
void clear() {
|
||||
// m_A will be filled from scratch in init_matrix_A
|
||||
m_var_register.clear();
|
||||
m_terms.clear();
|
||||
m_constraints_for_explanation.clear();
|
||||
m_right_sides.clear();
|
||||
m_abs_max = zero_of_type<mpq>();
|
||||
m_overflow = false;
|
||||
}
|
||||
void add_term(const lar_term* t, const mpq &rs, constraint_index ci) {
|
||||
m_terms.push_back(t);
|
||||
m_right_sides.push_back(rs);
|
||||
m_constraints_for_explanation.push_back(ci);
|
||||
for (const auto &p : *t) {
|
||||
m_var_register.add_var(p.var());
|
||||
mpq t = abs(ceil(p.coeff()));
|
||||
if (t > m_abs_max)
|
||||
m_abs_max = t;
|
||||
}
|
||||
}
|
||||
|
||||
void print(std::ostream & out) {
|
||||
out << "terms = " << m_terms.size() << ", var = " << m_var_register.size() << std::endl;
|
||||
}
|
||||
|
||||
void initialize_row(unsigned i) {
|
||||
m_A.init_row_from_container(i, * m_terms[i], [this](unsigned j) { return m_var_register.add_var(j);});
|
||||
}
|
||||
|
||||
void init_matrix_A() {
|
||||
m_A = general_matrix(terms_count(), vars().size());
|
||||
for (unsigned i = 0; i < terms_count(); i++)
|
||||
initialize_row(i);
|
||||
}
|
||||
|
||||
// todo: as we need only one row i with non integral b[i] need to optimize later
|
||||
void find_h_minus_1_b(const general_matrix& H, vector<mpq> & b) {
|
||||
// the solution will be put into b
|
||||
for (unsigned i = 0; i < H.row_count() ;i++) {
|
||||
for (unsigned j = 0; j < i; j++) {
|
||||
b[i] -= H[i][j]*b[j];
|
||||
}
|
||||
b[i] /= H[i][i];
|
||||
// consider return from here if b[i] is not an integer and return i
|
||||
}
|
||||
}
|
||||
|
||||
vector<mpq> create_b(const svector<unsigned> & basis_rows) {
|
||||
if (basis_rows.size() == m_right_sides.size())
|
||||
return m_right_sides;
|
||||
vector<mpq> b;
|
||||
for (unsigned i : basis_rows) {
|
||||
b.push_back(m_right_sides[i]);
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
int find_cut_row_index(const vector<mpq> & b) {
|
||||
int ret = -1;
|
||||
int n = 0;
|
||||
for (int i = 0; i < static_cast<int>(b.size()); i++) {
|
||||
if (is_int(b[i])) continue;
|
||||
if (n == 0 ) {
|
||||
lp_assert(ret == -1);
|
||||
n = 1;
|
||||
ret = i;
|
||||
} else {
|
||||
if (m_settings.random_next() % (++n) == 0) {
|
||||
ret = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// fills e_i*H_minus_1
|
||||
void get_ei_H_minus_1(unsigned i, const general_matrix& H, vector<mpq> & row) {
|
||||
// we solve x = ei * H_min_1
|
||||
// or x * H = ei
|
||||
unsigned m = H.row_count();
|
||||
for (unsigned k = i + 1; k < m; k++) {
|
||||
row[k] = zero_of_type<mpq>();
|
||||
}
|
||||
row[i] = one_of_type<mpq>() / H[i][i];
|
||||
for(int k = i - 1; k >= 0; k--) {
|
||||
mpq t = zero_of_type<mpq>();
|
||||
for (unsigned l = k + 1; l <= i; l++) {
|
||||
t += H[l][k]*row[l];
|
||||
}
|
||||
row[k] = -t / H[k][k];
|
||||
}
|
||||
|
||||
// // test region
|
||||
// vector<mpq> ei(H.row_count(), zero_of_type<mpq>());
|
||||
// ei[i] = one_of_type<mpq>();
|
||||
// vector<mpq> pr = row * H;
|
||||
// pr.shrink(ei.size());
|
||||
// lp_assert(ei == pr);
|
||||
// // end test region
|
||||
|
||||
}
|
||||
|
||||
void fill_term(const vector<mpq> & row, lar_term& t) {
|
||||
for (unsigned j = 0; j < row.size(); j++) {
|
||||
if (!is_zero(row[j]))
|
||||
t.add_monomial(row[j], m_var_register.local_to_external(j));
|
||||
}
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
vector<mpq> transform_to_local_columns(const vector<impq> & x) const {
|
||||
vector<mpq> ret;
|
||||
for (unsigned j = 0; j < vars().size(); j++) {
|
||||
lp_assert(is_zero(x[m_var_register.local_to_external(j)].y));
|
||||
ret.push_back(x[m_var_register.local_to_external(j)].x);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
void shrink_explanation(const svector<unsigned>& basis_rows) {
|
||||
svector<unsigned> new_expl;
|
||||
for (unsigned i : basis_rows) {
|
||||
new_expl.push_back(m_constraints_for_explanation[i]);
|
||||
}
|
||||
m_constraints_for_explanation = new_expl;
|
||||
}
|
||||
|
||||
bool overflow() const { return m_overflow; }
|
||||
|
||||
lia_move create_cut(lar_term& t, mpq& k, explanation& ex, bool & upper
|
||||
#ifdef Z3DEBUG
|
||||
,
|
||||
const vector<mpq> & x0
|
||||
#endif
|
||||
) {
|
||||
// we suppose that x0 has at least one non integer element
|
||||
init_matrix_A();
|
||||
svector<unsigned> basis_rows;
|
||||
mpq big_number = m_abs_max.expt(3);
|
||||
mpq d = hnf_calc::determinant_of_rectangular_matrix(m_A, basis_rows, big_number);
|
||||
|
||||
// std::cout << "max = " << m_abs_max << ", d = " << d << ", d/max = " << ceil (d /m_abs_max) << std::endl;
|
||||
//std::cout << "max cube " << m_abs_max * m_abs_max * m_abs_max << std::endl;
|
||||
|
||||
if (d >= big_number) {
|
||||
return lia_move::undef;
|
||||
}
|
||||
|
||||
if (m_settings.get_cancel_flag())
|
||||
return lia_move::undef;
|
||||
if (basis_rows.size() < m_A.row_count()) {
|
||||
m_A.shrink_to_rank(basis_rows);
|
||||
shrink_explanation(basis_rows);
|
||||
}
|
||||
|
||||
hnf<general_matrix> h(m_A, d);
|
||||
// general_matrix A_orig = m_A;
|
||||
|
||||
vector<mpq> b = create_b(basis_rows);
|
||||
lp_assert(m_A * x0 == b);
|
||||
// vector<mpq> bcopy = b;
|
||||
find_h_minus_1_b(h.W(), b);
|
||||
// lp_assert(bcopy == h.W().take_first_n_columns(b.size()) * b);
|
||||
int cut_row = find_cut_row_index(b);
|
||||
if (cut_row == -1)
|
||||
return lia_move::undef;
|
||||
// the matrix is not square - we can get
|
||||
// all integers in b's projection
|
||||
|
||||
vector<mpq> row(m_A.column_count());
|
||||
get_ei_H_minus_1(cut_row, h.W(), row);
|
||||
vector<mpq> f = row * m_A;
|
||||
fill_term(f, t);
|
||||
k = floor(b[cut_row]);
|
||||
upper = true;
|
||||
return lia_move::cut;
|
||||
}
|
||||
|
||||
svector<unsigned> vars() const { return m_var_register.vars(); }
|
||||
};
|
||||
}
|
|
@ -24,34 +24,34 @@ namespace lp {
|
|||
struct implied_bound {
|
||||
mpq m_bound;
|
||||
unsigned m_j; // the column for which the bound has been found
|
||||
bool m_is_low_bound;
|
||||
bool m_is_lower_bound;
|
||||
bool m_coeff_before_j_is_pos;
|
||||
unsigned m_row_or_term_index;
|
||||
bool m_strict;
|
||||
|
||||
lconstraint_kind kind() const {
|
||||
lconstraint_kind k = m_is_low_bound? GE : LE;
|
||||
lconstraint_kind k = m_is_lower_bound? GE : LE;
|
||||
if (m_strict)
|
||||
k = static_cast<lconstraint_kind>(k / 2);
|
||||
return k;
|
||||
}
|
||||
bool operator==(const implied_bound & o) const {
|
||||
return m_j == o.m_j && m_is_low_bound == o.m_is_low_bound && m_bound == o.m_bound &&
|
||||
return m_j == o.m_j && m_is_lower_bound == o.m_is_lower_bound && m_bound == o.m_bound &&
|
||||
m_coeff_before_j_is_pos == o.m_coeff_before_j_is_pos &&
|
||||
m_row_or_term_index == o.m_row_or_term_index && m_strict == o.m_strict;
|
||||
}
|
||||
implied_bound(){}
|
||||
implied_bound(const mpq & a,
|
||||
unsigned j,
|
||||
bool low_bound,
|
||||
bool lower_bound,
|
||||
bool coeff_before_j_is_pos,
|
||||
unsigned row_or_term_index,
|
||||
bool strict):
|
||||
m_bound(a),
|
||||
m_j(j),
|
||||
m_is_low_bound(low_bound),
|
||||
m_is_lower_bound(lower_bound),
|
||||
m_coeff_before_j_is_pos(coeff_before_j_is_pos),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_strict(strict) {}
|
||||
m_strict(strict) {
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.hpp"
|
||||
#include "util/lp/indexed_vector_def.h"
|
||||
namespace lp {
|
||||
template void indexed_vector<double>::clear();
|
||||
template void indexed_vector<double>::clear_all();
|
||||
|
@ -42,11 +42,12 @@ template void lp::indexed_vector<double>::print(std::basic_ostream<char,struct s
|
|||
template void lp::indexed_vector<lp::numeric_pair<lp::mpq> >::print(std::ostream&);
|
||||
#endif
|
||||
}
|
||||
template void lp::print_vector<double>(vector<double> const&, std::ostream&);
|
||||
template void lp::print_vector<unsigned int>(vector<unsigned int> const&, std::ostream&);
|
||||
template void lp::print_vector<std::string>(vector<std::string> const&, std::ostream&);
|
||||
template void lp::print_vector<lp::numeric_pair<lp::mpq> >(vector<lp::numeric_pair<lp::mpq>> const&, std::ostream&);
|
||||
// template void lp::print_vector<double, vectro>(vector<double> const&, std::ostream&);
|
||||
// template void lp::print_vector<unsigned int>(vector<unsigned int> const&, std::ostream&);
|
||||
// template void lp::print_vector<std::string>(vector<std::string> const&, std::ostream&);
|
||||
// template void lp::print_vector<lp::numeric_pair<lp::mpq> >(vector<lp::numeric_pair<lp::mpq>> const&, std::ostream&);
|
||||
template void lp::indexed_vector<double>::resize(unsigned int);
|
||||
template void lp::print_vector< lp::mpq>(vector< lp::mpq> const &, std::basic_ostream<char, std::char_traits<char> > &);
|
||||
template void lp::print_vector<std::pair<lp::mpq, unsigned int> >(vector<std::pair<lp::mpq, unsigned int>> const&, std::ostream&);
|
||||
// template void lp::print_vector< lp::mpq>(vector< lp::mpq> const &, std::basic_ostream<char, std::char_traits<char> > &);
|
||||
// template void lp::print_vector<std::pair<lp::mpq, unsigned int> >(vector<std::pair<lp::mpq, unsigned int>> const&, std::ostream&);
|
||||
template void lp::indexed_vector<lp::numeric_pair<lp::mpq> >::erase_from_index(unsigned int);
|
||||
|
|
@ -28,11 +28,9 @@ Revision History:
|
|||
#include <unordered_set>
|
||||
namespace lp {
|
||||
|
||||
template <typename T> void print_vector(const vector<T> & t, std::ostream & out);
|
||||
template <typename T> void print_vector(const buffer<T> & t, std::ostream & out);
|
||||
template <typename T> void print_sparse_vector(const vector<T> & t, std::ostream & out);
|
||||
|
||||
void print_vector(const vector<mpq> & t, std::ostream & out);
|
||||
void print_vector_as_doubles(const vector<mpq> & t, std::ostream & out);
|
||||
template <typename T>
|
||||
class indexed_vector {
|
||||
public:
|
||||
|
@ -90,16 +88,7 @@ public:
|
|||
}
|
||||
|
||||
void set_value(const T& value, unsigned index);
|
||||
void set_value_as_in_dictionary(unsigned index) {
|
||||
SASSERT(index < m_data.size());
|
||||
T & loc = m_data[index];
|
||||
if (is_zero(loc)) {
|
||||
m_index.push_back(index);
|
||||
loc = one_of_type<T>(); // use as a characteristic function
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void clear();
|
||||
void clear_all();
|
||||
const T& operator[] (unsigned i) const {
|
||||
|
@ -175,6 +164,55 @@ public:
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct ival {
|
||||
unsigned m_var;
|
||||
const T & m_coeff;
|
||||
ival(unsigned var, const T & val) : m_var(var), m_coeff(val) {
|
||||
}
|
||||
unsigned var() const { return m_var;}
|
||||
const T & coeff() const { return m_coeff; }
|
||||
};
|
||||
|
||||
struct const_iterator {
|
||||
// fields
|
||||
const unsigned *m_i;
|
||||
const indexed_vector& m_v;
|
||||
|
||||
//typedefs
|
||||
|
||||
|
||||
typedef const_iterator self_type;
|
||||
typedef ival value_type;
|
||||
typedef const ival reference;
|
||||
// typedef const column_cell* pointer;
|
||||
typedef int difference_type;
|
||||
typedef std::forward_iterator_tag iterator_category;
|
||||
|
||||
reference operator*() const {
|
||||
return ival(*m_i, m_v[*m_i]);
|
||||
}
|
||||
self_type operator++() { self_type i = *this; m_i++; return i; }
|
||||
self_type operator++(int) { m_i++; return *this; }
|
||||
|
||||
const_iterator(const unsigned* it, const indexed_vector& v) :
|
||||
m_i(it),
|
||||
m_v(v)
|
||||
{}
|
||||
bool operator==(const self_type &other) const {
|
||||
return m_i == other.m_i;
|
||||
}
|
||||
bool operator!=(const self_type &other) const { return !(*this == other); }
|
||||
};
|
||||
|
||||
const_iterator begin() const {
|
||||
return const_iterator(m_index.begin(), *this);
|
||||
}
|
||||
|
||||
const_iterator end() const {
|
||||
return const_iterator(m_index.end(), *this);
|
||||
}
|
||||
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
bool is_OK() const;
|
||||
|
|
|
@ -22,21 +22,6 @@ Revision History:
|
|||
#include "util/lp/lp_settings.h"
|
||||
namespace lp {
|
||||
|
||||
template <typename T>
|
||||
void print_vector(const vector<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i] << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void print_vector(const buffer<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i] << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_sparse_vector(const vector<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++) {
|
||||
|
@ -46,7 +31,7 @@ void print_sparse_vector(const vector<T> & t, std::ostream & out) {
|
|||
out << std::endl;
|
||||
}
|
||||
|
||||
void print_vector(const vector<mpq> & t, std::ostream & out) {
|
||||
void print_vector_as_doubles(const vector<mpq> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i].get_double() << std::setprecision(3) << " ";
|
||||
out << std::endl;
|
||||
|
@ -56,13 +41,13 @@ template <typename T>
|
|||
void indexed_vector<T>::resize(unsigned data_size) {
|
||||
clear();
|
||||
m_data.resize(data_size, numeric_traits<T>::zero());
|
||||
SASSERT(is_OK());
|
||||
lp_assert(is_OK());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::set_value(const T& value, unsigned index) {
|
||||
m_data[index] = value;
|
||||
SASSERT(std::find(m_index.begin(), m_index.end(), index) == m_index.end());
|
||||
lp_assert(std::find(m_index.begin(), m_index.end(), index) == m_index.end());
|
||||
m_index.push_back(index);
|
||||
}
|
||||
|
45
src/util/lp/indexer_of_constraints.h
Normal file
45
src/util/lp/indexer_of_constraints.h
Normal file
|
@ -0,0 +1,45 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
namespace lp {
|
||||
|
||||
class indexer_of_constraints {
|
||||
binary_heap_priority_queue<unsigned> m_queue_of_released_indices;
|
||||
unsigned m_max;
|
||||
public:
|
||||
indexer_of_constraints() :m_max(0) {}
|
||||
unsigned get_new_index() {
|
||||
unsigned ret;
|
||||
if (m_queue_of_released_indices.is_empty()) {
|
||||
ret = m_max++;
|
||||
}
|
||||
else {
|
||||
ret = m_queue_of_released_indices.dequeue();
|
||||
}
|
||||
return ret;
|
||||
};
|
||||
void release_index(unsigned i) {
|
||||
m_queue_of_released_indices.enqueue(i, i);
|
||||
};
|
||||
unsigned max() const { return m_max; }
|
||||
};
|
||||
}
|
|
@ -1,591 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
// here we are inside lp::lar_solver class
|
||||
|
||||
bool strategy_is_undecided() const {
|
||||
return m_settings.simplex_strategy() == simplex_strategy_enum::undecided;
|
||||
}
|
||||
|
||||
var_index add_var(unsigned ext_j) {
|
||||
var_index i;
|
||||
SASSERT (ext_j < m_terms_start_index);
|
||||
|
||||
if (ext_j >= m_terms_start_index)
|
||||
throw 0; // todo : what is the right way to exit?
|
||||
|
||||
if (try_get_val(m_ext_vars_to_columns, ext_j, i)) {
|
||||
return i;
|
||||
}
|
||||
SASSERT(m_vars_to_ul_pairs.size() == A_r().column_count());
|
||||
i = A_r().column_count();
|
||||
m_vars_to_ul_pairs.push_back (ul_pair(static_cast<unsigned>(-1)));
|
||||
add_non_basic_var_to_core_fields(ext_j);
|
||||
SASSERT(sizes_are_correct());
|
||||
return i;
|
||||
}
|
||||
|
||||
void register_new_ext_var_index(unsigned ext_v) {
|
||||
SASSERT(!contains(m_ext_vars_to_columns, ext_v));
|
||||
unsigned j = static_cast<unsigned>(m_ext_vars_to_columns.size());
|
||||
m_ext_vars_to_columns[ext_v] = j;
|
||||
SASSERT(m_columns_to_ext_vars_or_term_indices.size() == j);
|
||||
m_columns_to_ext_vars_or_term_indices.push_back(ext_v);
|
||||
}
|
||||
|
||||
void add_non_basic_var_to_core_fields(unsigned ext_j) {
|
||||
register_new_ext_var_index(ext_j);
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(false);
|
||||
if (use_lu())
|
||||
add_new_var_to_core_fields_for_doubles(false);
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_doubles(bool register_in_basis) {
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
SASSERT(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// SASSERT(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
SASSERT(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_new_var_to_core_fields_for_mpq(bool register_in_basis) {
|
||||
unsigned j = A_r().column_count();
|
||||
A_r().add_column();
|
||||
SASSERT(m_mpq_lar_core_solver.m_r_x.size() == j);
|
||||
// SASSERT(m_mpq_lar_core_solver.m_r_low_bounds.size() == j && m_mpq_lar_core_solver.m_r_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_r_x.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_inf_set.increase_size_by_one();
|
||||
m_mpq_lar_core_solver.m_r_solver.m_costs.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_d.resize(j + 1);
|
||||
SASSERT(m_mpq_lar_core_solver.m_r_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_r().add_row();
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(m_mpq_lar_core_solver.m_r_basis.size());
|
||||
m_mpq_lar_core_solver.m_r_basis.push_back(j);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_r_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_r_nbasis.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
var_index add_term_undecided(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
return m_terms_start_index + m_terms.size() - 1;
|
||||
}
|
||||
|
||||
// terms
|
||||
var_index add_term(const vector<std::pair<mpq, var_index>> & coeffs,
|
||||
const mpq &m_v) {
|
||||
if (strategy_is_undecided())
|
||||
return add_term_undecided(coeffs, m_v);
|
||||
|
||||
m_terms.push_back(new lar_term(coeffs, m_v));
|
||||
m_orig_terms.push_back(new lar_term(coeffs, m_v));
|
||||
unsigned adjusted_term_index = m_terms.size() - 1;
|
||||
var_index ret = m_terms_start_index + adjusted_term_index;
|
||||
if (use_tableau() && !coeffs.empty()) {
|
||||
add_row_for_term(m_orig_terms.back(), ret);
|
||||
if (m_settings.bound_propagation())
|
||||
m_rows_with_changed_bounds.insert(A_r().row_count() - 1);
|
||||
}
|
||||
SASSERT(m_ext_vars_to_columns.size() == A_r().column_count());
|
||||
return ret;
|
||||
}
|
||||
|
||||
void add_row_for_term(const lar_term * term, unsigned term_ext_index) {
|
||||
SASSERT(sizes_are_correct());
|
||||
add_row_from_term_no_constraint(term, term_ext_index);
|
||||
SASSERT(sizes_are_correct());
|
||||
}
|
||||
|
||||
void add_row_from_term_no_constraint(const lar_term * term, unsigned term_ext_index) {
|
||||
register_new_ext_var_index(term_ext_index);
|
||||
// j will be a new variable
|
||||
unsigned j = A_r().column_count();
|
||||
ul_pair ul(j);
|
||||
m_vars_to_ul_pairs.push_back(ul);
|
||||
add_basic_var_to_core_fields();
|
||||
if (use_tableau()) {
|
||||
auto it = iterator_on_term_with_basis_var(*term, j);
|
||||
A_r().fill_last_row_with_pivoting(it,
|
||||
m_mpq_lar_core_solver.m_r_solver.m_basis_heading);
|
||||
m_mpq_lar_core_solver.m_r_solver.m_b.resize(A_r().column_count(), zero_of_type<mpq>());
|
||||
} else {
|
||||
fill_last_row_of_A_r(A_r(), term);
|
||||
}
|
||||
m_mpq_lar_core_solver.m_r_x[j] = get_basic_var_value_from_row_directly(A_r().row_count() - 1);
|
||||
if (use_lu())
|
||||
fill_last_row_of_A_d(A_d(), term);
|
||||
}
|
||||
|
||||
void add_basic_var_to_core_fields() {
|
||||
bool use_lu = m_mpq_lar_core_solver.need_to_presolve_with_double_solver();
|
||||
SASSERT(!use_lu || A_r().column_count() == A_d().column_count());
|
||||
m_mpq_lar_core_solver.m_column_types.push_back(column_type::free_column);
|
||||
m_columns_with_changed_bound.increase_size_by_one();
|
||||
m_rows_with_changed_bounds.increase_size_by_one();
|
||||
add_new_var_to_core_fields_for_mpq(true);
|
||||
if (use_lu)
|
||||
add_new_var_to_core_fields_for_doubles(true);
|
||||
}
|
||||
|
||||
constraint_index add_var_bound(var_index j, lconstraint_kind kind, const mpq & right_side) {
|
||||
constraint_index ci = m_constraints.size();
|
||||
if (!is_term(j)) { // j is a var
|
||||
auto vc = new lar_var_constraint(j, kind, right_side);
|
||||
m_constraints.push_back(vc);
|
||||
update_column_type_and_bound(j, kind, right_side, ci);
|
||||
} else {
|
||||
add_var_bound_on_constraint_for_term(j, kind, right_side, ci);
|
||||
}
|
||||
SASSERT(sizes_are_correct());
|
||||
return ci;
|
||||
}
|
||||
|
||||
void update_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_index) {
|
||||
switch(m_mpq_lar_core_solver.m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
update_free_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::boxed:
|
||||
update_boxed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
update_low_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
update_upper_bound_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
case column_type::fixed:
|
||||
update_fixed_column_type_and_bound(j, kind, right_side, constr_index);
|
||||
break;
|
||||
default:
|
||||
SASSERT(false); // cannot be here
|
||||
}
|
||||
}
|
||||
|
||||
void add_var_bound_on_constraint_for_term(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
SASSERT(is_term(j));
|
||||
unsigned adjusted_term_index = adjust_term_index(j);
|
||||
unsigned term_j;
|
||||
if (try_get_val(m_ext_vars_to_columns, j, term_j)) {
|
||||
mpq rs = right_side - m_orig_terms[adjusted_term_index]->m_v;
|
||||
m_constraints.push_back(new lar_term_constraint(m_orig_terms[adjusted_term_index], kind, right_side));
|
||||
update_column_type_and_bound(term_j, kind, rs, ci);
|
||||
}
|
||||
else {
|
||||
add_constraint_from_term_and_create_new_column_row(j, m_orig_terms[adjusted_term_index], kind, right_side);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term,
|
||||
lconstraint_kind kind, const mpq & right_side) {
|
||||
|
||||
add_row_from_term_no_constraint(term, term_j);
|
||||
unsigned j = A_r().column_count() - 1;
|
||||
update_column_type_and_bound(j, kind, right_side - term->m_v, m_constraints.size());
|
||||
m_constraints.push_back(new lar_term_constraint(term, kind, right_side));
|
||||
SASSERT(A_r().column_count() == m_mpq_lar_core_solver.m_r_solver.m_costs.size());
|
||||
}
|
||||
|
||||
void decide_on_strategy_and_adjust_initial_state() {
|
||||
SASSERT(strategy_is_undecided());
|
||||
if (m_vars_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::lu;
|
||||
} else {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::tableau_rows; // todo: when to switch to tableau_costs?
|
||||
}
|
||||
adjust_initial_state();
|
||||
}
|
||||
|
||||
void adjust_initial_state() {
|
||||
switch (m_settings.simplex_strategy()) {
|
||||
case simplex_strategy_enum::lu:
|
||||
adjust_initial_state_for_lu();
|
||||
break;
|
||||
case simplex_strategy_enum::tableau_rows:
|
||||
adjust_initial_state_for_tableau_rows();
|
||||
break;
|
||||
case simplex_strategy_enum::tableau_costs:
|
||||
SASSERT(false); // not implemented
|
||||
case simplex_strategy_enum::undecided:
|
||||
adjust_initial_state_for_tableau_rows();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void adjust_initial_state_for_lu() {
|
||||
copy_from_mpq_matrix(A_d());
|
||||
unsigned n = A_d().column_count();
|
||||
m_mpq_lar_core_solver.m_d_x.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(n);
|
||||
m_mpq_lar_core_solver.m_d_heading = m_mpq_lar_core_solver.m_r_heading;
|
||||
m_mpq_lar_core_solver.m_d_basis = m_mpq_lar_core_solver.m_r_basis;
|
||||
|
||||
/*
|
||||
unsigned j = A_d().column_count();
|
||||
A_d().add_column();
|
||||
SASSERT(m_mpq_lar_core_solver.m_d_x.size() == j);
|
||||
// SASSERT(m_mpq_lar_core_solver.m_d_low_bounds.size() == j && m_mpq_lar_core_solver.m_d_upper_bounds.size() == j); // restore later
|
||||
m_mpq_lar_core_solver.m_d_x.resize(j + 1 );
|
||||
m_mpq_lar_core_solver.m_d_low_bounds.resize(j + 1);
|
||||
m_mpq_lar_core_solver.m_d_upper_bounds.resize(j + 1);
|
||||
SASSERT(m_mpq_lar_core_solver.m_d_heading.size() == j); // as A().column_count() on the entry to the method
|
||||
if (register_in_basis) {
|
||||
A_d().add_row();
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(m_mpq_lar_core_solver.m_d_basis.size());
|
||||
m_mpq_lar_core_solver.m_d_basis.push_back(j);
|
||||
}else {
|
||||
m_mpq_lar_core_solver.m_d_heading.push_back(- static_cast<int>(m_mpq_lar_core_solver.m_d_nbasis.size()) - 1);
|
||||
m_mpq_lar_core_solver.m_d_nbasis.push_back(j);
|
||||
}*/
|
||||
}
|
||||
|
||||
void adjust_initial_state_for_tableau_rows() {
|
||||
for (unsigned j = 0; j < m_terms.size(); j++) {
|
||||
if (contains(m_ext_vars_to_columns, j + m_terms_start_index))
|
||||
continue;
|
||||
add_row_from_term_no_constraint(m_terms[j], j + m_terms_start_index);
|
||||
}
|
||||
}
|
||||
|
||||
// this fills the last row of A_d and sets the basis column: -1 in the last column of the row
|
||||
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls) {
|
||||
SASSERT(A.row_count() > 0);
|
||||
SASSERT(A.column_count() > 0);
|
||||
unsigned last_row = A.row_count() - 1;
|
||||
SASSERT(A.m_rows[last_row].empty());
|
||||
|
||||
for (auto & t : ls->m_coeffs) {
|
||||
SASSERT(!is_zero(t.second));
|
||||
var_index j = t.first;
|
||||
A.set(last_row, j, - t.second.get_double());
|
||||
}
|
||||
|
||||
unsigned basis_j = A.column_count() - 1;
|
||||
A.set(last_row, basis_j, - 1 );
|
||||
}
|
||||
|
||||
void update_free_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index constr_ind) {
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::upper_bound;
|
||||
SASSERT(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
SASSERT(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
}
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::low_bound;
|
||||
SASSERT(m_mpq_lar_core_solver.m_r_upper_bounds.size() > j);
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
}
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
case EQ:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
set_upper_bound_witness(j, constr_ind);
|
||||
set_low_bound_witness(j, constr_ind);
|
||||
break;
|
||||
|
||||
default:
|
||||
SASSERT(false);
|
||||
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
void update_upper_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
SASSERT(m_mpq_lar_core_solver.m_column_types()[j] == column_type::upper_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds()[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::boxed;
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
set_low_bound_witness(j, ci);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
SASSERT(false);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_boxed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
SASSERT(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::boxed && m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (up < m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
SASSERT(false);
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
if (m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j])
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
if (low > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else if ( low == m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
SASSERT(false);
|
||||
|
||||
}
|
||||
}
|
||||
void update_low_bound_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
SASSERT(m_mpq_lar_core_solver.m_column_types()[j] == column_type::low_bound);
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
y_of_bound = -1;
|
||||
case LE:
|
||||
{
|
||||
auto up = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
m_mpq_lar_core_solver.m_r_upper_bounds[j] = up;
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
|
||||
if (up < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_column_types[j] = m_mpq_lar_core_solver.m_r_low_bounds()[j] < m_mpq_lar_core_solver.m_r_upper_bounds()[j]? column_type::boxed : column_type::fixed;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
y_of_bound = 1;
|
||||
case GE:
|
||||
{
|
||||
auto low = numeric_pair<mpq>(right_side, y_of_bound);
|
||||
if (low > m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = low;
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
auto v = numeric_pair<mpq>(right_side, zero_of_type<mpq>());
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else {
|
||||
m_mpq_lar_core_solver.m_r_low_bounds[j] = m_mpq_lar_core_solver.m_r_upper_bounds[j] = v;
|
||||
set_low_bound_witness(j, ci);
|
||||
set_upper_bound_witness(j, ci);
|
||||
m_mpq_lar_core_solver.m_column_types[j] = column_type::fixed;
|
||||
}
|
||||
m_columns_with_changed_bound.insert(j);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
SASSERT(false);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void update_fixed_column_type_and_bound(var_index j, lconstraint_kind kind, const mpq & right_side, constraint_index ci) {
|
||||
SASSERT(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_column_types()[j] == column_type::fixed && m_mpq_lar_core_solver.m_r_low_bounds()[j] == m_mpq_lar_core_solver.m_r_upper_bounds()[j]));
|
||||
SASSERT(m_status == INFEASIBLE || (m_mpq_lar_core_solver.m_r_low_bounds()[j].y.is_zero() && m_mpq_lar_core_solver.m_r_upper_bounds()[j].y.is_zero()));
|
||||
auto v = numeric_pair<mpq>(right_side, mpq(0));
|
||||
|
||||
mpq y_of_bound(0);
|
||||
switch (kind) {
|
||||
case LT:
|
||||
if (v <= m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
case LE:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GT:
|
||||
{
|
||||
if (v >= m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index =j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case GE:
|
||||
{
|
||||
if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case EQ:
|
||||
{
|
||||
if (v < m_mpq_lar_core_solver.m_r_low_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_upper_bound_witness(j, ci);
|
||||
} else if (v > m_mpq_lar_core_solver.m_r_upper_bounds[j]) {
|
||||
m_status = INFEASIBLE;
|
||||
m_infeasible_column_index = j;
|
||||
set_low_bound_witness(j, ci);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
SASSERT(false);
|
||||
|
||||
}
|
||||
}
|
||||
|
|
@ -35,7 +35,7 @@ public:
|
|||
return m_data[j] >= 0;
|
||||
}
|
||||
void insert(unsigned j) {
|
||||
SASSERT(j < m_data.size());
|
||||
lp_assert(j < m_data.size());
|
||||
if (contains(j)) return;
|
||||
m_data[j] = m_index.size();
|
||||
m_index.push_back(j);
|
||||
|
|
1294
src/util/lp/int_solver.cpp
Normal file
1294
src/util/lp/int_solver.cpp
Normal file
File diff suppressed because it is too large
Load diff
166
src/util/lp/int_solver.h
Normal file
166
src/util/lp/int_solver.h
Normal file
|
@ -0,0 +1,166 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/int_set.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
#include "util/lp/lar_constraints.h"
|
||||
#include "util/lp/hnf_cutter.h"
|
||||
#include "util/lp/lia_move.h"
|
||||
#include "util/lp/explanation.h"
|
||||
|
||||
namespace lp {
|
||||
class lar_solver;
|
||||
|
||||
template <typename T, typename X>
|
||||
struct lp_constraint;
|
||||
|
||||
|
||||
class int_solver {
|
||||
public:
|
||||
// fields
|
||||
lar_solver *m_lar_solver;
|
||||
unsigned m_number_of_calls;
|
||||
lar_term *m_t; // the term to return in the cut
|
||||
mpq *m_k; // the right side of the cut
|
||||
explanation *m_ex; // the conflict explanation
|
||||
bool *m_upper; // we have a cut m_t*x <= k if m_upper is true nad m_t*x >= k otherwise
|
||||
hnf_cutter m_hnf_cutter;
|
||||
// methods
|
||||
int_solver(lar_solver* lp);
|
||||
|
||||
// main function to check that the solution provided by lar_solver is valid for integral values,
|
||||
// or provide a way of how it can be adjusted.
|
||||
lia_move check(lar_term& t, mpq& k, explanation& ex, bool & upper);
|
||||
lia_move check_(lar_term& t, mpq& k, explanation& ex, bool & upper);
|
||||
bool move_non_basic_column_to_bounds(unsigned j);
|
||||
lia_move check_wrapper(lar_term& t, mpq& k, explanation& ex);
|
||||
bool is_base(unsigned j) const;
|
||||
|
||||
private:
|
||||
|
||||
// how to tighten bounds for integer variables.
|
||||
|
||||
bool gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, unsigned i);
|
||||
|
||||
// gcd test
|
||||
// 5*x + 3*y + 6*z = 5
|
||||
// suppose x is fixed at 2.
|
||||
// so we have 10 + 3(y + 2z) = 5
|
||||
// 5 = -3(y + 2z)
|
||||
// this is unsolvable because 5/3 is not an integer.
|
||||
// so we create a lemma that rules out this condition.
|
||||
//
|
||||
bool gcd_test(); // returns false in case of failure. Creates a theory lemma in case of failure.
|
||||
|
||||
bool branch(const lp_constraint<mpq, mpq> & new_inequality);
|
||||
bool ext_gcd_test(const row_strip<mpq>& row,
|
||||
mpq const & least_coeff,
|
||||
mpq const & lcm_den,
|
||||
mpq const & consts);
|
||||
void fill_explanation_from_fixed_columns(const row_strip<mpq> & row);
|
||||
void add_to_explanation_from_fixed_or_boxed_column(unsigned j);
|
||||
lia_move patch_nbasic_columns();
|
||||
bool get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m);
|
||||
const impq & lower_bound(unsigned j) const;
|
||||
const impq & upper_bound(unsigned j) const;
|
||||
bool is_int(unsigned j) const;
|
||||
bool is_real(unsigned j) const;
|
||||
bool is_boxed(unsigned j) const;
|
||||
bool is_fixed(unsigned j) const;
|
||||
bool is_free(unsigned j) const;
|
||||
bool value_is_int(unsigned j) const;
|
||||
void set_value_for_nbasic_column(unsigned j, const impq & new_val);
|
||||
void set_value_for_nbasic_column_ignore_old_values(unsigned j, const impq & new_val);
|
||||
bool non_basic_columns_are_at_bounds() const;
|
||||
bool is_feasible() const;
|
||||
const impq & get_value(unsigned j) const;
|
||||
bool column_is_int_inf(unsigned j) const;
|
||||
void trace_inf_rows() const;
|
||||
lia_move branch_or_sat();
|
||||
int find_any_inf_int_column_basis_first();
|
||||
int find_inf_int_base_column();
|
||||
int find_inf_int_boxed_base_column_with_smallest_range(unsigned&);
|
||||
int get_kth_inf_int(unsigned) const;
|
||||
lp_settings& settings();
|
||||
const lp_settings& settings() const;
|
||||
bool move_non_basic_columns_to_bounds();
|
||||
void branch_infeasible_int_var(unsigned);
|
||||
lia_move mk_gomory_cut(unsigned inf_col, const row_strip<mpq>& row);
|
||||
lia_move report_conflict_from_gomory_cut();
|
||||
void adjust_term_and_k_for_some_ints_case_gomory(mpq& lcm_den);
|
||||
lia_move proceed_with_gomory_cut(unsigned j);
|
||||
int find_free_var_in_gomory_row(const row_strip<mpq>& );
|
||||
bool is_gomory_cut_target(const row_strip<mpq>&);
|
||||
bool at_bound(unsigned j) const;
|
||||
bool at_low(unsigned j) const;
|
||||
bool at_upper(unsigned j) const;
|
||||
bool has_low(unsigned j) const;
|
||||
bool has_upper(unsigned j) const;
|
||||
unsigned row_of_basic_column(unsigned j) const;
|
||||
inline static bool is_rational(const impq & n) {
|
||||
return is_zero(n.y);
|
||||
}
|
||||
|
||||
public:
|
||||
void display_column(std::ostream & out, unsigned j) const;
|
||||
inline static
|
||||
mpq fractional_part(const impq & n) {
|
||||
lp_assert(is_rational(n));
|
||||
return n.x - floor(n.x);
|
||||
}
|
||||
private:
|
||||
void real_case_in_gomory_cut(const mpq & a, unsigned x_j, const mpq& f_0, const mpq& one_minus_f_0);
|
||||
void int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & lcm_den, const mpq& f_0, const mpq& one_minus_f_0);
|
||||
constraint_index column_upper_bound_constraint(unsigned j) const;
|
||||
constraint_index column_lower_bound_constraint(unsigned j) const;
|
||||
void display_row_info(std::ostream & out, unsigned row_index) const;
|
||||
void gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & pol, lar_term & t, mpq &k, bool num_ints, mpq &lcm_den);
|
||||
bool current_solution_is_inf_on_cut() const;
|
||||
public:
|
||||
bool shift_var(unsigned j, unsigned range);
|
||||
private:
|
||||
unsigned random();
|
||||
bool has_inf_int() const;
|
||||
lia_move create_branch_on_column(int j);
|
||||
public:
|
||||
bool is_term(unsigned j) const;
|
||||
bool left_branch_is_more_narrow_than_right(unsigned);
|
||||
lia_move find_cube();
|
||||
bool tighten_terms_for_cube();
|
||||
bool tighten_term_for_cube(unsigned);
|
||||
unsigned column_count() const;
|
||||
bool all_columns_are_bounded() const;
|
||||
impq get_cube_delta_for_term(const lar_term&) const;
|
||||
void find_feasible_solution();
|
||||
int find_inf_int_nbasis_column() const;
|
||||
lia_move run_gcd_test();
|
||||
lia_move gomory_cut();
|
||||
lia_move hnf_cut();
|
||||
lia_move make_hnf_cut();
|
||||
bool init_terms_for_hnf_cut();
|
||||
bool hnf_matrix_is_empty() const;
|
||||
void try_add_term_to_A_for_hnf(unsigned term_index);
|
||||
bool hnf_has_var_with_non_integral_value() const;
|
||||
bool hnf_cutter_is_full() const;
|
||||
void patch_nbasic_column(unsigned j, bool patch_only_int_vals);
|
||||
};
|
||||
}
|
|
@ -1,65 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lp {
|
||||
template <typename T, typename X>
|
||||
struct iterator_on_column:linear_combination_iterator<T> {
|
||||
const vector<column_cell>& m_column; // the offset in term coeffs
|
||||
const static_matrix<T, X> & m_A;
|
||||
int m_i; // the initial offset in the column
|
||||
unsigned size() const override { return m_column.size(); }
|
||||
iterator_on_column(const vector<column_cell>& column, const static_matrix<T,X> & A) // the offset in term coeffs
|
||||
:
|
||||
m_column(column),
|
||||
m_A(A),
|
||||
m_i(-1) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) override {
|
||||
if (++m_i >= static_cast<int>(m_column.size()))
|
||||
return false;
|
||||
|
||||
const column_cell& c = m_column[m_i];
|
||||
a = m_A.get_val(c);
|
||||
i = c.m_i;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) override {
|
||||
if (++m_i >= static_cast<int>(m_column.size()))
|
||||
return false;
|
||||
|
||||
const column_cell& c = m_column[m_i];
|
||||
i = c.m_i;
|
||||
return true;
|
||||
}
|
||||
|
||||
void reset() override {
|
||||
m_i = -1;
|
||||
}
|
||||
|
||||
linear_combination_iterator<mpq> * clone() override {
|
||||
iterator_on_column * r = new iterator_on_column(m_column, m_A);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
|
@ -1,53 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lp {
|
||||
template <typename T>
|
||||
struct iterator_on_indexed_vector:linear_combination_iterator<T> {
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_offset;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) :
|
||||
m_v(v),
|
||||
m_offset(0)
|
||||
{}
|
||||
unsigned size() const override { return m_v.m_index.size(); }
|
||||
bool next(T & a, unsigned & i) override {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
return false;
|
||||
i = m_v.m_index[m_offset++];
|
||||
a = m_v.m_data[i];
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) override {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
return false;
|
||||
i = m_v.m_index[m_offset++];
|
||||
return true;
|
||||
}
|
||||
void reset() override {
|
||||
m_offset = 0;
|
||||
}
|
||||
linear_combination_iterator<T>* clone() override {
|
||||
return new iterator_on_indexed_vector(m_v);
|
||||
}
|
||||
};
|
||||
}
|
|
@ -1,59 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/iterator_on_indexed_vector.h"
|
||||
namespace lp {
|
||||
template <typename T>
|
||||
struct iterator_on_pivot_row:linear_combination_iterator<T> {
|
||||
bool m_basis_returned;
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_basis_j;
|
||||
iterator_on_indexed_vector<T> m_it;
|
||||
unsigned size() const override { return m_it.size(); }
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) :
|
||||
m_basis_returned(false),
|
||||
m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
bool next(T & a, unsigned & i) override {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
a = one_of_type<T>();
|
||||
i = m_basis_j;
|
||||
return true;
|
||||
}
|
||||
return m_it.next(a, i);
|
||||
}
|
||||
bool next(unsigned & i) override {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
i = m_basis_j;
|
||||
return true;
|
||||
}
|
||||
return m_it.next(i);
|
||||
}
|
||||
void reset() override {
|
||||
m_basis_returned = false;
|
||||
m_it.reset();
|
||||
}
|
||||
linear_combination_iterator<T> * clone() override {
|
||||
iterator_on_pivot_row * r = new iterator_on_pivot_row(m_v, m_basis_j);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
|
@ -1,52 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lp {
|
||||
template <typename T>
|
||||
struct iterator_on_row:linear_combination_iterator<T> {
|
||||
const vector<row_cell<T>> & m_row;
|
||||
unsigned m_i; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row), m_i(0)
|
||||
{}
|
||||
unsigned size() const override { return m_row.size(); }
|
||||
bool next(T & a, unsigned & i) override {
|
||||
if (m_i == m_row.size())
|
||||
return false;
|
||||
auto &c = m_row[m_i++];
|
||||
i = c.m_j;
|
||||
a = c.get_val();
|
||||
return true;
|
||||
}
|
||||
bool next(unsigned & i) override {
|
||||
if (m_i == m_row.size())
|
||||
return false;
|
||||
auto &c = m_row[m_i++];
|
||||
i = c.m_j;
|
||||
return true;
|
||||
}
|
||||
void reset() override {
|
||||
m_i = 0;
|
||||
}
|
||||
linear_combination_iterator<T>* clone() override {
|
||||
return new iterator_on_row(m_row);
|
||||
}
|
||||
};
|
||||
}
|
|
@ -1,72 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lp {
|
||||
struct iterator_on_term_with_basis_var:linear_combination_iterator<mpq> {
|
||||
const lar_term & m_term;
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_i; // the offset in term coeffs
|
||||
bool m_term_j_returned;
|
||||
unsigned m_term_j;
|
||||
unsigned size() const override {return static_cast<unsigned>(m_term.m_coeffs.size() + 1);}
|
||||
iterator_on_term_with_basis_var(const lar_term & t, unsigned term_j) :
|
||||
m_term(t),
|
||||
m_i(t.m_coeffs.begin()),
|
||||
m_term_j_returned(false),
|
||||
m_term_j(term_j) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) override {
|
||||
if (m_term_j_returned == false) {
|
||||
m_term_j_returned = true;
|
||||
a = - one_of_type<mpq>();
|
||||
i = m_term_j;
|
||||
return true;
|
||||
}
|
||||
if (m_i == m_term.m_coeffs.end())
|
||||
return false;
|
||||
i = m_i->first;
|
||||
a = m_i->second;
|
||||
m_i++;
|
||||
return true;
|
||||
}
|
||||
bool next(unsigned & i) override {
|
||||
if (m_term_j_returned == false) {
|
||||
m_term_j_returned = true;
|
||||
i = m_term_j;
|
||||
return true;
|
||||
}
|
||||
if (m_i == m_term.m_coeffs.end())
|
||||
return false;
|
||||
i = m_i->first;
|
||||
m_i++;
|
||||
return true;
|
||||
}
|
||||
void reset() override {
|
||||
m_term_j_returned = false;
|
||||
m_i = m_term.m_coeffs.begin();
|
||||
}
|
||||
linear_combination_iterator<mpq> * clone() override {
|
||||
iterator_on_term_with_basis_var * r = new iterator_on_term_with_basis_var(m_term, m_term_j);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
|
@ -40,12 +40,11 @@ inline std::string lconstraint_kind_string(lconstraint_kind t) {
|
|||
case GT: return std::string(">");
|
||||
case EQ: return std::string("=");
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return std::string(); // it is unreachable
|
||||
}
|
||||
|
||||
class lar_base_constraint {
|
||||
public:
|
||||
struct lar_base_constraint {
|
||||
lconstraint_kind m_kind;
|
||||
mpq m_right_side;
|
||||
virtual vector<std::pair<mpq, var_index>> get_left_side_coefficients() const = 0;
|
||||
|
@ -88,7 +87,7 @@ public:
|
|||
: lar_base_constraint(kind, right_side), m_coeffs(left_side) {}
|
||||
|
||||
lar_constraint(const lar_base_constraint & c) {
|
||||
SASSERT(false); // should not be called : todo!
|
||||
lp_assert(false); // should not be called : todo!
|
||||
}
|
||||
|
||||
unsigned size() const override {
|
||||
|
|
|
@ -22,4 +22,4 @@ Revision History:
|
|||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lar_core_solver.hpp"
|
||||
#include "util/lp/lar_core_solver_def.h"
|
|
@ -26,12 +26,9 @@ Revision History:
|
|||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
#include "util/lp/breakpoint.h"
|
||||
#include "util/lp/stacked_unordered_set.h"
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
#include "util/lp/stacked_vector.h"
|
||||
#include "util/lp/lar_solution_signature.h"
|
||||
#include "util/lp/iterator_on_column.h"
|
||||
#include "util/lp/iterator_on_indexed_vector.h"
|
||||
#include "util/lp/stacked_value.h"
|
||||
namespace lp {
|
||||
|
||||
|
@ -50,7 +47,7 @@ public:
|
|||
stacked_vector<column_type> m_column_types;
|
||||
// r - solver fields, for rational numbers
|
||||
vector<numeric_pair<mpq>> m_r_x; // the solution
|
||||
stacked_vector<numeric_pair<mpq>> m_r_low_bounds;
|
||||
stacked_vector<numeric_pair<mpq>> m_r_lower_bounds;
|
||||
stacked_vector<numeric_pair<mpq>> m_r_upper_bounds;
|
||||
static_matrix<mpq, numeric_pair<mpq>> m_r_A;
|
||||
stacked_vector<unsigned> m_r_pushed_basis;
|
||||
|
@ -62,7 +59,7 @@ public:
|
|||
|
||||
// d - solver fields, for doubles
|
||||
vector<double> m_d_x; // the solution in doubles
|
||||
vector<double> m_d_low_bounds;
|
||||
vector<double> m_d_lower_bounds;
|
||||
vector<double> m_d_upper_bounds;
|
||||
static_matrix<double, double> m_d_A;
|
||||
stacked_vector<unsigned> m_d_pushed_basis;
|
||||
|
@ -155,11 +152,11 @@ public:
|
|||
|
||||
void fill_evidence(unsigned row);
|
||||
|
||||
|
||||
unsigned get_number_of_non_ints() const;
|
||||
|
||||
void solve();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
bool lower_bounds_are_set() const { return true; }
|
||||
|
||||
const indexed_vector<mpq> & get_pivot_row() const {
|
||||
return m_r_solver.m_pivot_row;
|
||||
|
@ -183,16 +180,16 @@ public:
|
|||
}
|
||||
|
||||
void push() {
|
||||
SASSERT(m_r_solver.basis_heading_is_correct());
|
||||
SASSERT(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
SASSERT(m_column_types.size() == m_r_A.column_count());
|
||||
lp_assert(m_r_solver.basis_heading_is_correct());
|
||||
lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
lp_assert(m_column_types.size() == m_r_A.column_count());
|
||||
m_stacked_simplex_strategy = settings().simplex_strategy();
|
||||
m_stacked_simplex_strategy.push();
|
||||
m_column_types.push();
|
||||
// rational
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.push();
|
||||
m_r_low_bounds.push();
|
||||
m_r_lower_bounds.push();
|
||||
m_r_upper_bounds.push();
|
||||
if (!settings().use_tableau()) {
|
||||
push_vector(m_r_pushed_basis, m_r_basis);
|
||||
|
@ -207,7 +204,7 @@ public:
|
|||
|
||||
template <typename K>
|
||||
void push_vector(stacked_vector<K> & pushed_vector, const vector<K> & vector) {
|
||||
SASSERT(pushed_vector.size() <= vector.size());
|
||||
lp_assert(pushed_vector.size() <= vector.size());
|
||||
for (unsigned i = 0; i < vector.size();i++) {
|
||||
if (i == pushed_vector.size()) {
|
||||
pushed_vector.push_back(vector[i]);
|
||||
|
@ -234,7 +231,7 @@ public:
|
|||
// rationals
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.pop(k);
|
||||
m_r_low_bounds.pop(k);
|
||||
m_r_lower_bounds.pop(k);
|
||||
m_r_upper_bounds.pop(k);
|
||||
m_column_types.pop(k);
|
||||
|
||||
|
@ -257,8 +254,8 @@ public:
|
|||
pop_basis(k);
|
||||
m_stacked_simplex_strategy.pop(k);
|
||||
settings().simplex_strategy() = m_stacked_simplex_strategy;
|
||||
SASSERT(m_r_solver.basis_heading_is_correct());
|
||||
SASSERT(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
lp_assert(m_r_solver.basis_heading_is_correct());
|
||||
lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
}
|
||||
|
||||
bool need_to_presolve_with_double_solver() const {
|
||||
|
@ -276,11 +273,11 @@ public:
|
|||
bool update_xj_and_get_delta(unsigned j, non_basic_column_value_position pos_type, numeric_pair<mpq> & delta) {
|
||||
auto & x = m_r_x[j];
|
||||
switch (pos_type) {
|
||||
case at_low_bound:
|
||||
if (x == m_r_solver.m_low_bounds[j])
|
||||
case at_lower_bound:
|
||||
if (x == m_r_solver.m_lower_bounds[j])
|
||||
return false;
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
m_r_solver.m_x[j] = m_r_solver.m_low_bounds[j];
|
||||
delta = m_r_solver.m_lower_bounds[j] - x;
|
||||
m_r_solver.m_x[j] = m_r_solver.m_lower_bounds[j];
|
||||
break;
|
||||
case at_fixed:
|
||||
case at_upper_bound:
|
||||
|
@ -300,30 +297,30 @@ public:
|
|||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x = m_r_solver.m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
case column_type::lower_bound:
|
||||
delta = m_r_solver.m_lower_bounds[j] - x;
|
||||
x = m_r_solver.m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (x > m_r_solver.m_upper_bounds[j]) {
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x += m_r_solver.m_upper_bounds[j];
|
||||
} else {
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
delta = m_r_solver.m_lower_bounds[j] - x;
|
||||
x = m_r_solver.m_lower_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
delta = m_r_solver.m_lower_bounds[j] - x;
|
||||
x = m_r_solver.m_lower_bounds[j];
|
||||
break;
|
||||
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
m_r_solver.remove_column_from_inf_set(j);
|
||||
return true;
|
||||
|
@ -332,7 +329,7 @@ public:
|
|||
|
||||
|
||||
void prepare_solver_x_with_signature_tableau(const lar_solution_signature & signature) {
|
||||
SASSERT(m_r_solver.inf_set_is_correct());
|
||||
lp_assert(m_r_solver.inf_set_is_correct());
|
||||
for (auto &t : signature) {
|
||||
unsigned j = t.first;
|
||||
if (m_r_heading[j] >= 0)
|
||||
|
@ -344,12 +341,11 @@ public:
|
|||
for (const auto & cc : m_r_solver.m_A.m_columns[j]){
|
||||
unsigned i = cc.m_i;
|
||||
unsigned jb = m_r_solver.m_basis[i];
|
||||
m_r_solver.m_x[jb] -= delta * m_r_solver.m_A.get_val(cc);
|
||||
m_r_solver.update_column_in_inf_set(jb);
|
||||
m_r_solver.update_x_with_delta_and_track_feasibility(jb, - delta * m_r_solver.m_A.get_val(cc));
|
||||
}
|
||||
SASSERT(m_r_solver.A_mult_x_is_off() == false);
|
||||
CASSERT("A_off", m_r_solver.A_mult_x_is_off() == false);
|
||||
}
|
||||
SASSERT(m_r_solver.inf_set_is_correct());
|
||||
lp_assert(m_r_solver.inf_set_is_correct());
|
||||
}
|
||||
|
||||
|
||||
|
@ -357,11 +353,11 @@ public:
|
|||
void prepare_solver_x_with_signature(const lar_solution_signature & signature, lp_primal_core_solver<L,K> & s) {
|
||||
for (auto &t : signature) {
|
||||
unsigned j = t.first;
|
||||
SASSERT(m_r_heading[j] < 0);
|
||||
lp_assert(m_r_heading[j] < 0);
|
||||
auto pos_type = t.second;
|
||||
switch (pos_type) {
|
||||
case at_low_bound:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
case at_lower_bound:
|
||||
s.m_x[j] = s.m_lower_bounds[j];
|
||||
break;
|
||||
case at_fixed:
|
||||
case at_upper_bound:
|
||||
|
@ -374,33 +370,33 @@ public:
|
|||
case not_at_bound:
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
SASSERT(false); // unreachable
|
||||
lp_assert(false); // unreachable
|
||||
case column_type::upper_bound:
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
case column_type::lower_bound:
|
||||
s.m_x[j] = s.m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (settings().random_next() % 2) {
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
s.m_x[j] = s.m_lower_bounds[j];
|
||||
} else {
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
s.m_x[j] = s.m_lower_bounds[j];
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
SASSERT(is_zero_vector(s.m_b));
|
||||
lp_assert(is_zero_vector(s.m_b));
|
||||
s.solve_Ax_eq_b();
|
||||
}
|
||||
|
||||
|
@ -433,7 +429,7 @@ public:
|
|||
// the queues of delayed indices
|
||||
std::queue<unsigned> entr_q, leav_q;
|
||||
auto * l = cs.m_factorization;
|
||||
SASSERT(l->get_status() == LU_status::OK);
|
||||
lp_assert(l->get_status() == LU_status::OK);
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
|
@ -461,8 +457,8 @@ public:
|
|||
continue;
|
||||
}
|
||||
}
|
||||
SASSERT(cs.m_basis_heading[entering] < 0);
|
||||
SASSERT(cs.m_basis_heading[leaving] >= 0);
|
||||
lp_assert(cs.m_basis_heading[entering] < 0);
|
||||
lp_assert(cs.m_basis_heading[leaving] >= 0);
|
||||
if (l->get_status() == LU_status::OK) {
|
||||
l->prepare_entering(entering, w); // to init vector w
|
||||
l->replace_column(zero_of_type<L>(), w, cs.m_basis_heading[leaving]);
|
||||
|
@ -486,7 +482,7 @@ public:
|
|||
|
||||
void solve_on_signature_tableau(const lar_solution_signature & signature, const vector<unsigned> & changes_of_basis) {
|
||||
r_basis_is_OK();
|
||||
SASSERT(settings().use_tableau());
|
||||
lp_assert(settings().use_tableau());
|
||||
bool r = catch_up_in_lu_tableau(changes_of_basis, m_d_solver.m_basis_heading);
|
||||
|
||||
if (!r) { // it is the case where m_d_solver gives a degenerated basis
|
||||
|
@ -505,10 +501,10 @@ public:
|
|||
return;
|
||||
m_r_solver.stop_tracing_basis_changes();
|
||||
// and now catch up in the double solver
|
||||
SASSERT(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
lp_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
|
||||
}
|
||||
SASSERT(r_basis_is_OK());
|
||||
lp_assert(r_basis_is_OK());
|
||||
}
|
||||
|
||||
bool adjust_x_of_column(unsigned j) {
|
||||
|
@ -522,16 +518,16 @@ public:
|
|||
}
|
||||
|
||||
m_r_solver.snap_column_to_bound_tableau(j);
|
||||
SASSERT(m_r_solver.column_is_feasible(j));
|
||||
lp_assert(m_r_solver.column_is_feasible(j));
|
||||
m_r_solver.m_inf_set.erase(j);
|
||||
*/
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool catch_up_in_lu_tableau(const vector<unsigned> & trace_of_basis_change, const vector<int> & basis_heading) {
|
||||
SASSERT(r_basis_is_OK());
|
||||
lp_assert(r_basis_is_OK());
|
||||
// the queues of delayed indices
|
||||
std::queue<unsigned> entr_q, leav_q;
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
|
@ -561,8 +557,8 @@ public:
|
|||
continue;
|
||||
}
|
||||
}
|
||||
SASSERT(m_r_solver.m_basis_heading[entering] < 0);
|
||||
SASSERT(m_r_solver.m_basis_heading[leaving] >= 0);
|
||||
lp_assert(m_r_solver.m_basis_heading[entering] < 0);
|
||||
lp_assert(m_r_solver.m_basis_heading[leaving] >= 0);
|
||||
m_r_solver.change_basis_unconditionally(entering, leaving);
|
||||
if(!m_r_solver.pivot_column_tableau(entering, m_r_solver.m_basis_heading[entering])) {
|
||||
// unroll the last step
|
||||
|
@ -572,12 +568,12 @@ public:
|
|||
#endif
|
||||
m_r_solver.pivot_column_tableau(leaving, m_r_solver.m_basis_heading[leaving]);
|
||||
#ifdef Z3DEBUG
|
||||
SASSERT(t);
|
||||
lp_assert(t);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
SASSERT(r_basis_is_OK());
|
||||
lp_assert(r_basis_is_OK());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -587,14 +583,14 @@ public:
|
|||
if (!m_r_solver.m_settings.use_tableau())
|
||||
return true;
|
||||
for (unsigned j : m_r_solver.m_basis) {
|
||||
SASSERT(m_r_solver.m_A.m_columns[j].size() == 1);
|
||||
SASSERT(m_r_solver.m_A.get_val(m_r_solver.m_A.m_columns[j][0]) == one_of_type<mpq>());
|
||||
lp_assert(m_r_solver.m_A.m_columns[j].size() == 1);
|
||||
lp_assert(m_r_solver.m_A.get_val(m_r_solver.m_A.m_columns[j][0]) == one_of_type<mpq>());
|
||||
}
|
||||
for (unsigned j =0; j < m_r_solver.m_basis_heading.size(); j++) {
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) continue;
|
||||
if (m_r_solver.m_column_types[j] == column_type::fixed) continue;
|
||||
SASSERT(static_cast<unsigned>(- m_r_solver.m_basis_heading[j] - 1) < m_r_solver.m_column_types.size());
|
||||
SASSERT( m_r_solver.m_basis_heading[j] <= -1);
|
||||
lp_assert(static_cast<unsigned>(- m_r_solver.m_basis_heading[j] - 1) < m_r_solver.m_column_types.size());
|
||||
lp_assert( m_r_solver.m_basis_heading[j] <= -1);
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
|
@ -614,7 +610,6 @@ public:
|
|||
}
|
||||
|
||||
if (no_r_lu()) { // it is the case where m_d_solver gives a degenerated basis, we need to roll back
|
||||
// std::cout << "no_r_lu" << std::endl;
|
||||
catch_up_in_lu_in_reverse(changes_of_basis, m_r_solver);
|
||||
m_r_solver.find_feasible_solution();
|
||||
m_d_basis = m_r_basis;
|
||||
|
@ -630,7 +625,7 @@ public:
|
|||
return;
|
||||
m_r_solver.stop_tracing_basis_changes();
|
||||
// and now catch up in the double solver
|
||||
SASSERT(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
lp_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
|
||||
}
|
||||
}
|
||||
|
@ -656,7 +651,7 @@ public:
|
|||
template <typename L, typename K>
|
||||
void extract_signature_from_lp_core_solver(const lp_primal_core_solver<L, K> & solver, lar_solution_signature & signature) {
|
||||
signature.clear();
|
||||
SASSERT(signature.size() == 0);
|
||||
lp_assert(signature.size() == 0);
|
||||
for (unsigned j = 0; j < solver.m_basis_heading.size(); j++) {
|
||||
if (solver.m_basis_heading[j] < 0) {
|
||||
signature[j] = solver.get_non_basic_column_value_position(j);
|
||||
|
@ -666,27 +661,27 @@ public:
|
|||
|
||||
void get_bounds_for_double_solver() {
|
||||
unsigned n = m_n();
|
||||
m_d_low_bounds.resize(n);
|
||||
m_d_lower_bounds.resize(n);
|
||||
m_d_upper_bounds.resize(n);
|
||||
double delta = find_delta_for_strict_boxed_bounds().get_double();
|
||||
if (delta > 0.000001)
|
||||
delta = 0.000001;
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
if (low_bound_is_set(j)) {
|
||||
const auto & lb = m_r_solver.m_low_bounds[j];
|
||||
m_d_low_bounds[j] = lb.x.get_double() + delta * lb.y.get_double();
|
||||
if (lower_bound_is_set(j)) {
|
||||
const auto & lb = m_r_solver.m_lower_bounds[j];
|
||||
m_d_lower_bounds[j] = lb.x.get_double() + delta * lb.y.get_double();
|
||||
}
|
||||
if (upper_bound_is_set(j)) {
|
||||
const auto & ub = m_r_solver.m_upper_bounds[j];
|
||||
m_d_upper_bounds[j] = ub.x.get_double() + delta * ub.y.get_double();
|
||||
SASSERT(!low_bound_is_set(j) || (m_d_upper_bounds[j] >= m_d_low_bounds[j]));
|
||||
lp_assert(!lower_bound_is_set(j) || (m_d_upper_bounds[j] >= m_d_lower_bounds[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void scale_problem_for_doubles(
|
||||
static_matrix<double, double>& A,
|
||||
vector<double> & low_bounds,
|
||||
vector<double> & lower_bounds,
|
||||
vector<double> & upper_bounds) {
|
||||
vector<double> column_scale_vector;
|
||||
vector<double> right_side_vector(A.column_count());
|
||||
|
@ -706,8 +701,8 @@ public:
|
|||
if (m_r_solver.column_has_upper_bound(j)) {
|
||||
upper_bounds[j] /= column_scale_vector[j];
|
||||
}
|
||||
if (m_r_solver.column_has_low_bound(j)) {
|
||||
low_bounds[j] /= column_scale_vector[j];
|
||||
if (m_r_solver.column_has_lower_bound(j)) {
|
||||
lower_bounds[j] /= column_scale_vector[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -734,17 +729,17 @@ public:
|
|||
}
|
||||
|
||||
|
||||
bool low_bound_is_set(unsigned j) const {
|
||||
bool lower_bound_is_set(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::upper_bound:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
return true;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
@ -752,27 +747,27 @@ public:
|
|||
bool upper_bound_is_set(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
return false;
|
||||
case column_type::upper_bound:
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
return true;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void update_delta(mpq& delta, numeric_pair<mpq> const& l, numeric_pair<mpq> const& u) const {
|
||||
SASSERT(l <= u);
|
||||
lp_assert(l <= u);
|
||||
if (l.x < u.x && l.y > u.y) {
|
||||
mpq delta1 = (u.x - l.x) / (l.y - u.y);
|
||||
if (delta1 < delta) {
|
||||
delta = delta1;
|
||||
}
|
||||
}
|
||||
SASSERT(l.x + delta * l.y <= u.x + delta * u.y);
|
||||
lp_assert(l.x + delta * l.y <= u.x + delta * u.y);
|
||||
}
|
||||
|
||||
|
||||
|
@ -781,8 +776,7 @@ public:
|
|||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (m_column_types()[j] != column_type::boxed)
|
||||
continue;
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_upper_bounds[j]);
|
||||
|
||||
update_delta(delta, m_r_lower_bounds[j], m_r_upper_bounds[j]);
|
||||
}
|
||||
return delta;
|
||||
}
|
||||
|
@ -791,8 +785,8 @@ public:
|
|||
mpq find_delta_for_strict_bounds(const mpq & initial_delta) const{
|
||||
mpq delta = initial_delta;
|
||||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (low_bound_is_set(j))
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_x[j]);
|
||||
if (lower_bound_is_set(j))
|
||||
update_delta(delta, m_r_lower_bounds[j], m_r_x[j]);
|
||||
if (upper_bound_is_set(j))
|
||||
update_delta(delta, m_r_x[j], m_r_upper_bounds[j]);
|
||||
}
|
||||
|
@ -803,14 +797,38 @@ public:
|
|||
m_r_solver.init_column_row_non_zeroes();
|
||||
}
|
||||
|
||||
linear_combination_iterator<mpq> * get_column_iterator(unsigned j) {
|
||||
if (settings().use_tableau()) {
|
||||
return new iterator_on_column<mpq, numeric_pair<mpq>>(m_r_solver.m_A.m_columns[j], m_r_solver.m_A);
|
||||
} else {
|
||||
m_r_solver.solve_Bd(j);
|
||||
return new iterator_on_indexed_vector<mpq>(m_r_solver.m_ed);
|
||||
bool column_is_fixed(unsigned j) const {
|
||||
return m_column_types()[j] == column_type::fixed ||
|
||||
( m_column_types()[j] == column_type::boxed &&
|
||||
m_r_solver.m_lower_bounds[j] == m_r_solver.m_upper_bounds[j]);
|
||||
}
|
||||
|
||||
const impq & lower_bound(unsigned j) const {
|
||||
lp_assert(m_column_types()[j] == column_type::fixed ||
|
||||
m_column_types()[j] == column_type::boxed ||
|
||||
m_column_types()[j] == column_type::lower_bound);
|
||||
return m_r_lower_bounds[j];
|
||||
}
|
||||
|
||||
const impq & upper_bound(unsigned j) const {
|
||||
lp_assert(m_column_types()[j] == column_type::fixed ||
|
||||
m_column_types()[j] == column_type::boxed ||
|
||||
m_column_types()[j] == column_type::upper_bound);
|
||||
return m_r_upper_bounds[j];
|
||||
}
|
||||
|
||||
|
||||
const bool column_is_bounded(unsigned j) const {
|
||||
switch(m_column_types()[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const vector<unsigned>& r_basis() const { return m_r_basis; }
|
||||
const vector<unsigned>& r_nbasis() const { return m_r_nbasis; }
|
||||
};
|
||||
}
|
||||
|
|
|
@ -54,7 +54,7 @@ lar_core_solver::lar_core_solver(
|
|||
m_r_heading,
|
||||
m_costs_dummy,
|
||||
m_column_types(),
|
||||
m_r_low_bounds(),
|
||||
m_r_lower_bounds(),
|
||||
m_r_upper_bounds(),
|
||||
settings,
|
||||
column_names),
|
||||
|
@ -66,15 +66,15 @@ lar_core_solver::lar_core_solver(
|
|||
m_d_heading,
|
||||
m_d_costs_dummy,
|
||||
m_column_types(),
|
||||
m_d_low_bounds,
|
||||
m_d_lower_bounds,
|
||||
m_d_upper_bounds,
|
||||
settings,
|
||||
column_names){}
|
||||
|
||||
void lar_core_solver::init_costs(bool first_time) {
|
||||
SASSERT(false); // should not be called
|
||||
// SASSERT(this->m_x.size() >= this->m_n());
|
||||
// SASSERT(this->m_column_types.size() >= this->m_n());
|
||||
lp_assert(false); // should not be called
|
||||
// lp_assert(this->m_x.size() >= this->m_n());
|
||||
// lp_assert(this->m_column_types.size() >= this->m_n());
|
||||
// if (first_time)
|
||||
// this->m_costs.resize(this->m_n());
|
||||
// X inf = this->m_infeasibility;
|
||||
|
@ -84,7 +84,7 @@ void lar_core_solver::init_costs(bool first_time) {
|
|||
// if (!(first_time || inf >= this->m_infeasibility)) {
|
||||
// LP_OUT(this->m_settings, "iter = " << this->total_iterations() << std::endl);
|
||||
// LP_OUT(this->m_settings, "inf was " << T_to_string(inf) << " and now " << T_to_string(this->m_infeasibility) << std::endl);
|
||||
// SASSERT(false);
|
||||
// lp_assert(false);
|
||||
// }
|
||||
// if (inf == this->m_infeasibility)
|
||||
// this->m_iters_with_no_cost_growing++;
|
||||
|
@ -108,17 +108,17 @@ void lar_core_solver::init_cost_for_column(unsigned j) {
|
|||
if (x > this->m_upper_bounds[j]) {
|
||||
this->m_costs[j] = 1;
|
||||
this->m_infeasibility += x - this->m_upper_bounds[j];
|
||||
} else if (x < this->m_low_bounds[j]) {
|
||||
this->m_infeasibility += this->m_low_bounds[j] - x;
|
||||
} else if (x < this->m_lower_bounds[j]) {
|
||||
this->m_infeasibility += this->m_lower_bounds[j] - x;
|
||||
this->m_costs[j] = -1;
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case low_bound:
|
||||
if (x < this->m_low_bounds[j]) {
|
||||
case lower_bound:
|
||||
if (x < this->m_lower_bounds[j]) {
|
||||
this->m_costs[j] = -1;
|
||||
this->m_infeasibility += this->m_low_bounds[j] - x;
|
||||
this->m_infeasibility += this->m_lower_bounds[j] - x;
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
|
@ -135,7 +135,7 @@ void lar_core_solver::init_cost_for_column(unsigned j) {
|
|||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}*/
|
||||
}
|
||||
|
@ -154,7 +154,7 @@ int lar_core_solver::column_is_out_of_bounds(unsigned j) {
|
|||
return 1;
|
||||
}
|
||||
return 0;
|
||||
case low_bound:
|
||||
case lower_bound:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
return -1;
|
||||
}
|
||||
|
@ -168,30 +168,14 @@ int lar_core_solver::column_is_out_of_bounds(unsigned j) {
|
|||
return 0;
|
||||
break;
|
||||
}*/
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void lar_core_solver::calculate_pivot_row(unsigned i) {
|
||||
SASSERT(!m_r_solver.use_tableau());
|
||||
SASSERT(m_r_solver.m_pivot_row.is_OK());
|
||||
m_r_solver.m_pivot_row_of_B_1.clear();
|
||||
m_r_solver.m_pivot_row_of_B_1.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_pivot_row.clear();
|
||||
m_r_solver.m_pivot_row.resize(m_r_solver.m_n());
|
||||
if (m_r_solver.m_settings.use_tableau()) {
|
||||
unsigned basis_j = m_r_solver.m_basis[i];
|
||||
for (auto & c : m_r_solver.m_A.m_rows[i]) {
|
||||
if (c.m_j != basis_j)
|
||||
m_r_solver.m_pivot_row.set_value(c.get_val(), c.m_j);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
m_r_solver.calculate_pivot_row_of_B_1(i);
|
||||
m_r_solver.calculate_pivot_row_when_pivot_row_of_B1_is_ready(i);
|
||||
m_r_solver.calculate_pivot_row(i);
|
||||
}
|
||||
|
||||
|
||||
|
@ -238,7 +222,7 @@ void lar_core_solver::calculate_pivot_row(unsigned i) {
|
|||
}
|
||||
|
||||
void lar_core_solver::fill_not_improvable_zero_sum_from_inf_row() {
|
||||
SASSERT(m_r_solver.A_mult_x_is_off() == false);
|
||||
CASSERT("A_off", m_r_solver.A_mult_x_is_off() == false);
|
||||
unsigned bj = m_r_basis[m_r_solver.m_inf_row_index_for_tableau];
|
||||
m_infeasible_sum_sign = m_r_solver.inf_sign_of_column(bj);
|
||||
m_infeasible_linear_combination.clear();
|
||||
|
@ -271,34 +255,44 @@ void lar_core_solver::fill_not_improvable_zero_sum() {
|
|||
}
|
||||
}
|
||||
|
||||
unsigned lar_core_solver::get_number_of_non_ints() const {
|
||||
unsigned n = 0;
|
||||
for (auto & x : m_r_solver.m_x) {
|
||||
if (x.is_int() == false)
|
||||
n++;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
void lar_core_solver::solve() {
|
||||
SASSERT(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
SASSERT(m_r_solver.inf_set_is_correct());
|
||||
if (m_r_solver.current_x_is_feasible() && m_r_solver.m_look_for_feasible_solution_only) {
|
||||
m_r_solver.set_status(OPTIMAL);
|
||||
return;
|
||||
}
|
||||
lp_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lp_assert(m_r_solver.inf_set_is_correct());
|
||||
TRACE("find_feas_stats", tout << "infeasibles = " << m_r_solver.m_inf_set.size() << ", int_infs = " << get_number_of_non_ints() << std::endl;);
|
||||
if (m_r_solver.current_x_is_feasible() && m_r_solver.m_look_for_feasible_solution_only) {
|
||||
m_r_solver.set_status(lp_status::OPTIMAL);
|
||||
return;
|
||||
}
|
||||
++settings().st().m_need_to_solve_inf;
|
||||
SASSERT(!m_r_solver.A_mult_x_is_off());
|
||||
SASSERT((!settings().use_tableau()) || r_basis_is_OK());
|
||||
CASSERT("A_off", !m_r_solver.A_mult_x_is_off());
|
||||
lp_assert((!settings().use_tableau()) || r_basis_is_OK());
|
||||
if (need_to_presolve_with_double_solver()) {
|
||||
prefix_d();
|
||||
lar_solution_signature solution_signature;
|
||||
vector<unsigned> changes_of_basis = find_solution_signature_with_doubles(solution_signature);
|
||||
if (m_d_solver.get_status() == TIME_EXHAUSTED) {
|
||||
m_r_solver.set_status(TIME_EXHAUSTED);
|
||||
if (m_d_solver.get_status() == lp_status::TIME_EXHAUSTED) {
|
||||
m_r_solver.set_status(lp_status::TIME_EXHAUSTED);
|
||||
return;
|
||||
}
|
||||
if (settings().use_tableau())
|
||||
solve_on_signature_tableau(solution_signature, changes_of_basis);
|
||||
else
|
||||
solve_on_signature(solution_signature, changes_of_basis);
|
||||
SASSERT(!settings().use_tableau() || r_basis_is_OK());
|
||||
|
||||
lp_assert(!settings().use_tableau() || r_basis_is_OK());
|
||||
} else {
|
||||
if (!settings().use_tableau()) {
|
||||
bool snapped = m_r_solver.snap_non_basic_x_to_bound();
|
||||
SASSERT(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lp_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
if (snapped)
|
||||
m_r_solver.solve_Ax_eq_b();
|
||||
}
|
||||
|
@ -306,16 +300,16 @@ void lar_core_solver::solve() {
|
|||
m_r_solver.find_feasible_solution();
|
||||
else
|
||||
m_r_solver.solve();
|
||||
SASSERT(!settings().use_tableau() || r_basis_is_OK());
|
||||
lp_assert(!settings().use_tableau() || r_basis_is_OK());
|
||||
}
|
||||
if (m_r_solver.get_status() == INFEASIBLE) {
|
||||
if (m_r_solver.get_status() == lp_status::INFEASIBLE) {
|
||||
fill_not_improvable_zero_sum();
|
||||
} else if (m_r_solver.get_status() != UNBOUNDED) {
|
||||
m_r_solver.set_status(OPTIMAL);
|
||||
} else if (m_r_solver.get_status() != lp_status::UNBOUNDED) {
|
||||
m_r_solver.set_status(lp_status::OPTIMAL);
|
||||
}
|
||||
SASSERT(r_basis_is_OK());
|
||||
SASSERT(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
SASSERT(m_r_solver.inf_set_is_correct());
|
||||
lp_assert(r_basis_is_OK());
|
||||
lp_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lp_assert(m_r_solver.inf_set_is_correct());
|
||||
}
|
||||
|
||||
|
2264
src/util/lp/lar_solver.cpp
Normal file
2264
src/util/lp/lar_solver.cpp
Normal file
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
13
src/util/lp/lar_solver_instances.cpp
Normal file
13
src/util/lp/lar_solver_instances.cpp
Normal file
|
@ -0,0 +1,13 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#include "util/lp/lar_solver.cpp"
|
||||
|
||||
template void lp::lar_solver::copy_from_mpq_matrix<double,double>(class lp::static_matrix<double,double> &);
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,22 +1,22 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/indexed_vector.h"
|
||||
namespace lp {
|
||||
|
@ -25,7 +25,7 @@ struct lar_term {
|
|||
std::unordered_map<unsigned, mpq> m_coeffs;
|
||||
mpq m_v;
|
||||
lar_term() {}
|
||||
void add_to_map(unsigned j, const mpq& c) {
|
||||
void add_monomial(const mpq& c, unsigned j) {
|
||||
auto it = m_coeffs.find(j);
|
||||
if (it == m_coeffs.end()) {
|
||||
m_coeffs.emplace(j, c);
|
||||
|
@ -36,6 +36,10 @@ struct lar_term {
|
|||
}
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return m_coeffs.size() == 0 && is_zero(m_v);
|
||||
}
|
||||
|
||||
unsigned size() const { return static_cast<unsigned>(m_coeffs.size()); }
|
||||
|
||||
const std::unordered_map<unsigned, mpq> & coeffs() const {
|
||||
|
@ -45,7 +49,7 @@ struct lar_term {
|
|||
lar_term(const vector<std::pair<mpq, unsigned>>& coeffs,
|
||||
const mpq & v) : m_v(v) {
|
||||
for (const auto & p : coeffs) {
|
||||
add_to_map(p.second, p.first);
|
||||
add_monomial(p.first, p.second);
|
||||
}
|
||||
}
|
||||
bool operator==(const lar_term & a) const { return false; } // take care not to create identical terms
|
||||
|
@ -67,7 +71,7 @@ struct lar_term {
|
|||
if (it == m_coeffs.end()) return;
|
||||
const mpq & b = it->second;
|
||||
for (unsigned it_j :li.m_index) {
|
||||
add_to_map(it_j, - b * li.m_data[it_j]);
|
||||
add_monomial(- b * li.m_data[it_j], it_j);
|
||||
}
|
||||
m_coeffs.erase(it);
|
||||
}
|
||||
|
@ -75,5 +79,61 @@ struct lar_term {
|
|||
bool contains(unsigned j) const {
|
||||
return m_coeffs.find(j) != m_coeffs.end();
|
||||
}
|
||||
|
||||
void negate() {
|
||||
for (auto & t : m_coeffs)
|
||||
t.second.neg();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T apply(const vector<T>& x) const {
|
||||
T ret = T(m_v);
|
||||
for (const auto & t : m_coeffs) {
|
||||
ret += t.second * x[t.first];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
m_coeffs.clear();
|
||||
m_v = zero_of_type<mpq>();
|
||||
}
|
||||
|
||||
struct ival {
|
||||
unsigned m_var;
|
||||
const mpq & m_coeff;
|
||||
ival(unsigned var, const mpq & val) : m_var(var), m_coeff(val) {
|
||||
}
|
||||
unsigned var() const { return m_var;}
|
||||
const mpq & coeff() const { return m_coeff; }
|
||||
};
|
||||
|
||||
struct const_iterator {
|
||||
//fields
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_it;
|
||||
|
||||
typedef const_iterator self_type;
|
||||
typedef ival value_type;
|
||||
typedef ival reference;
|
||||
// typedef std::pair<const unsigned, mpq>* pointer;
|
||||
typedef int difference_type;
|
||||
typedef std::forward_iterator_tag iterator_category;
|
||||
|
||||
reference operator*() const {
|
||||
return ival(m_it->first, m_it->second);
|
||||
}
|
||||
|
||||
self_type operator++() { self_type i = *this; m_it++; return i; }
|
||||
self_type operator++(int) { m_it++; return *this; }
|
||||
|
||||
const_iterator(std::unordered_map<unsigned, mpq>::const_iterator it) : m_it(it) {}
|
||||
bool operator==(const self_type &other) const {
|
||||
return m_it == other.m_it;
|
||||
}
|
||||
bool operator!=(const self_type &other) const { return !(*this == other); }
|
||||
};
|
||||
|
||||
const_iterator begin() const { return m_coeffs.begin();}
|
||||
const_iterator end() const { return m_coeffs.end(); }
|
||||
};
|
||||
}
|
||||
|
|
31
src/util/lp/lia_move.h
Normal file
31
src/util/lp/lia_move.h
Normal file
|
@ -0,0 +1,31 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
namespace lp {
|
||||
enum class lia_move {
|
||||
sat,
|
||||
branch,
|
||||
cut,
|
||||
conflict,
|
||||
continue_with_check,
|
||||
undef,
|
||||
unsat
|
||||
};
|
||||
}
|
|
@ -1,65 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
namespace lp {
|
||||
template <typename T>
|
||||
struct linear_combination_iterator {
|
||||
virtual bool next(T & a, unsigned & i) = 0;
|
||||
virtual bool next(unsigned & i) = 0;
|
||||
virtual void reset() = 0;
|
||||
virtual linear_combination_iterator * clone() = 0;
|
||||
virtual ~linear_combination_iterator(){}
|
||||
virtual unsigned size() const = 0;
|
||||
};
|
||||
template <typename T>
|
||||
struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
||||
vector<std::pair<T, unsigned>> & m_vector;
|
||||
int m_offset;
|
||||
bool next(T & a, unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
auto & p = m_vector[m_offset];
|
||||
a = p.first;
|
||||
i = p.second;
|
||||
m_offset++;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
auto & p = m_vector[m_offset];
|
||||
i = p.second;
|
||||
m_offset++;
|
||||
return true;
|
||||
}
|
||||
|
||||
void reset() {m_offset = 0;}
|
||||
linear_combination_iterator<T> * clone() {
|
||||
return new linear_combination_iterator_on_vector(m_vector);
|
||||
}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec):
|
||||
m_vector(vec),
|
||||
m_offset(0)
|
||||
{}
|
||||
unsigned size() const { return m_vector.size(); }
|
||||
};
|
||||
|
||||
}
|
|
@ -1,67 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#include "util/lp/lar_solver.h"
|
||||
namespace lp {
|
||||
lp_bound_propagator::lp_bound_propagator(lar_solver & ls):
|
||||
m_lar_solver(ls) {}
|
||||
column_type lp_bound_propagator::get_column_type(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_column_types()[j];
|
||||
}
|
||||
const impq & lp_bound_propagator::get_low_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_low_bounds()[j];
|
||||
}
|
||||
const impq & lp_bound_propagator::get_upper_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j];
|
||||
}
|
||||
void lp_bound_propagator::try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
|
||||
unsigned term_j = m_lar_solver.adjust_column_index_to_term_index(j);
|
||||
mpq w = v;
|
||||
if (term_j != j) {
|
||||
j = term_j;
|
||||
w += m_lar_solver.get_term(term_j).m_v; // when terms are turned into the columns they "lose" the right side, at this moment they aquire it back
|
||||
}
|
||||
lconstraint_kind kind = is_low? GE : LE;
|
||||
if (strict)
|
||||
kind = static_cast<lconstraint_kind>(kind / 2);
|
||||
|
||||
if (!bound_is_interesting(j, kind, w))
|
||||
return;
|
||||
unsigned k; // index to ibounds
|
||||
if (is_low) {
|
||||
if (try_get_val(m_improved_low_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (w > found_bound.m_bound || (w == found_bound.m_bound && found_bound.m_strict == false && strict))
|
||||
found_bound = implied_bound(w, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
} else {
|
||||
m_improved_low_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(w, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
}
|
||||
} else { // the upper bound case
|
||||
if (try_get_val(m_improved_upper_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (w < found_bound.m_bound || (w == found_bound.m_bound && found_bound.m_strict == false && strict))
|
||||
found_bound = implied_bound(w, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
} else {
|
||||
m_improved_upper_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(w, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,42 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lp {
|
||||
class lar_solver;
|
||||
class lp_bound_propagator {
|
||||
std::unordered_map<unsigned, unsigned> m_improved_low_bounds; // these maps map a column index to the corresponding index in ibounds
|
||||
std::unordered_map<unsigned, unsigned> m_improved_upper_bounds;
|
||||
lar_solver & m_lar_solver;
|
||||
public:
|
||||
vector<implied_bound> m_ibounds;
|
||||
public:
|
||||
lp_bound_propagator(lar_solver & ls);
|
||||
column_type get_column_type(unsigned) const;
|
||||
const impq & get_low_bound(unsigned) const;
|
||||
const impq & get_upper_bound(unsigned) const;
|
||||
void try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict);
|
||||
virtual bool bound_is_interesting(unsigned vi,
|
||||
lp::lconstraint_kind kind,
|
||||
const rational & bval) {return true;}
|
||||
unsigned number_of_found_bounds() const { return m_ibounds.size(); }
|
||||
virtual void consume(mpq const& v, unsigned j) { std::cout << "doh\n"; }
|
||||
};
|
||||
}
|
|
@ -22,7 +22,7 @@ Revision History:
|
|||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_core_solver_base.hpp"
|
||||
#include "util/lp/lp_core_solver_base_def.h"
|
||||
template bool lp::lp_core_solver_base<double, double>::A_mult_x_is_off() const;
|
||||
template bool lp::lp_core_solver_base<double, double>::A_mult_x_is_off_on_index(const vector<unsigned> &) const;
|
||||
template bool lp::lp_core_solver_base<double, double>::basis_heading_is_correct() const;
|
||||
|
@ -144,3 +144,5 @@ template bool lp::lp_core_solver_base<lp::mpq, lp::mpq>::inf_set_is_correct() co
|
|||
template bool lp::lp_core_solver_base<lp::mpq, lp::numeric_pair<lp::mpq> >::infeasibility_costs_are_correct() const;
|
||||
template bool lp::lp_core_solver_base<lp::mpq, lp::mpq >::infeasibility_costs_are_correct() const;
|
||||
template bool lp::lp_core_solver_base<double, double >::infeasibility_costs_are_correct() const;
|
||||
template void lp::lp_core_solver_base<lp::mpq, lp::numeric_pair<lp::mpq> >::calculate_pivot_row(unsigned int);
|
||||
template bool lp::lp_core_solver_base<lp::mpq, lp::numeric_pair<lp::mpq> >::remove_from_basis(unsigned int);
|
|
@ -28,6 +28,7 @@ Revision History:
|
|||
#include "util/lp/lu.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
#include "util/lp/column_namer.h"
|
||||
|
||||
namespace lp {
|
||||
|
||||
template <typename T, typename X> // X represents the type of the x variable and the bounds
|
||||
|
@ -38,7 +39,17 @@ class lp_core_solver_base {
|
|||
private:
|
||||
lp_status m_status;
|
||||
public:
|
||||
bool current_x_is_feasible() const { return m_inf_set.size() == 0; }
|
||||
bool current_x_is_feasible() const {
|
||||
TRACE("feas",
|
||||
if (m_inf_set.size()) {
|
||||
tout << "column " << m_inf_set.m_index[0] << " is infeasible" << std::endl;
|
||||
print_column_info(m_inf_set.m_index[0], tout);
|
||||
} else {
|
||||
tout << "x is feasible\n";
|
||||
}
|
||||
);
|
||||
return m_inf_set.size() == 0;
|
||||
}
|
||||
bool current_x_is_infeasible() const { return m_inf_set.size() != 0; }
|
||||
int_set m_inf_set;
|
||||
bool m_using_infeas_costs;
|
||||
|
@ -58,13 +69,13 @@ public:
|
|||
lp_settings & m_settings;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
// a device that is able to solve Bx=c, xB=d, and change the basis
|
||||
lu<T, X> * m_factorization;
|
||||
lu<static_matrix<T, X>> * m_factorization;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
indexed_vector<T> m_ed; // the solution of B*m_ed = a
|
||||
const vector<column_type> & m_column_types;
|
||||
const vector<X> & m_low_bounds;
|
||||
const vector<X> & m_lower_bounds;
|
||||
const vector<X> & m_upper_bounds;
|
||||
vector<T> m_column_norms; // the approximate squares of column norms that help choosing a profitable column
|
||||
vector<X> m_copy_of_xB;
|
||||
|
@ -74,6 +85,7 @@ public:
|
|||
bool m_tracing_basis_changes;
|
||||
int_set* m_pivoted_rows;
|
||||
bool m_look_for_feasible_solution_only;
|
||||
|
||||
void start_tracing_basis_changes() {
|
||||
m_trace_of_basis_change_vector.resize(0);
|
||||
m_tracing_basis_changes = true;
|
||||
|
@ -108,7 +120,7 @@ public:
|
|||
lp_settings & settings,
|
||||
const column_namer& column_names,
|
||||
const vector<column_type> & column_types,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & lower_bound_values,
|
||||
const vector<X> & upper_bound_values);
|
||||
|
||||
void allocate_basis_heading();
|
||||
|
@ -197,11 +209,11 @@ public:
|
|||
|
||||
|
||||
bool need_to_pivot_to_basis_tableau() const {
|
||||
SASSERT(m_A.is_correct());
|
||||
lp_assert(m_A.is_correct());
|
||||
unsigned m = m_A.row_count();
|
||||
for (unsigned i = 0; i < m; i++) {
|
||||
unsigned bj = m_basis[i];
|
||||
SASSERT(m_A.m_columns[bj].size() > 0);
|
||||
lp_assert(m_A.m_columns[bj].size() > 0);
|
||||
if (m_A.m_columns[bj].size() > 1 || m_A.get_val(m_A.m_columns[bj][0]) != one_of_type<mpq>()) return true;
|
||||
}
|
||||
return false;
|
||||
|
@ -210,10 +222,9 @@ public:
|
|||
bool reduced_costs_are_correct_tableau() const {
|
||||
if (m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
return true;
|
||||
SASSERT(m_A.is_correct());
|
||||
lp_assert(m_A.is_correct());
|
||||
if (m_using_infeas_costs) {
|
||||
if (infeasibility_costs_are_correct() == false) {
|
||||
std::cout << "infeasibility_costs_are_correct() does not hold" << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -222,9 +233,6 @@ public:
|
|||
for (unsigned j = 0; j < n; j++) {
|
||||
if (m_basis_heading[j] >= 0) {
|
||||
if (!is_zero(m_d[j])) {
|
||||
|
||||
std::cout << "case a\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
|
@ -233,8 +241,6 @@ public:
|
|||
d -= this->m_costs[this->m_basis[cc.m_i]] * this->m_A.get_val(cc);
|
||||
}
|
||||
if (m_d[j] != d) {
|
||||
std::cout << "case b\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -253,14 +259,14 @@ public:
|
|||
}
|
||||
|
||||
bool x_below_low_bound(unsigned p) const {
|
||||
return below_bound(m_x[p], m_low_bounds[p]);
|
||||
return below_bound(m_x[p], m_lower_bounds[p]);
|
||||
}
|
||||
|
||||
bool infeasibility_costs_are_correct() const;
|
||||
bool infeasibility_cost_is_correct_for_column(unsigned j) const;
|
||||
|
||||
bool x_above_low_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_low_bounds[p]);
|
||||
bool x_above_lower_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_lower_bounds[p]);
|
||||
}
|
||||
|
||||
bool x_below_upper_bound(unsigned p) const {
|
||||
|
@ -271,15 +277,15 @@ public:
|
|||
bool x_above_upper_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_upper_bounds[p]);
|
||||
}
|
||||
bool x_is_at_low_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_low_bounds[j]);
|
||||
bool x_is_at_lower_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_lower_bounds[j]);
|
||||
}
|
||||
bool x_is_at_upper_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_upper_bounds[j]);
|
||||
}
|
||||
|
||||
bool x_is_at_bound(unsigned j) const {
|
||||
return x_is_at_low_bound(j) || x_is_at_upper_bound(j);
|
||||
return x_is_at_lower_bound(j) || x_is_at_upper_bound(j);
|
||||
}
|
||||
bool column_is_feasible(unsigned j) const;
|
||||
|
||||
|
@ -318,8 +324,8 @@ public:
|
|||
void fill_reduced_costs_from_m_y_by_rows();
|
||||
|
||||
void copy_rs_to_xB(vector<X> & rs);
|
||||
virtual bool low_bounds_are_set() const { return false; }
|
||||
X low_bound_value(unsigned j) const { return m_low_bounds[j]; }
|
||||
virtual bool lower_bounds_are_set() const { return false; }
|
||||
X lower_bound_value(unsigned j) const { return m_lower_bounds[j]; }
|
||||
X upper_bound_value(unsigned j) const { return m_upper_bounds[j]; }
|
||||
|
||||
column_type get_column_type(unsigned j) const {return m_column_types[j]; }
|
||||
|
@ -329,7 +335,7 @@ public:
|
|||
}
|
||||
|
||||
X bound_span(unsigned j) const {
|
||||
return m_upper_bounds[j] - m_low_bounds[j];
|
||||
return m_upper_bounds[j] - m_lower_bounds[j];
|
||||
}
|
||||
|
||||
std::string column_name(unsigned column) const;
|
||||
|
@ -357,21 +363,21 @@ public:
|
|||
case column_type::fixed:
|
||||
if (x_is_at_bound(j))
|
||||
break;
|
||||
m_x[j] = m_low_bounds[j];
|
||||
m_x[j] = m_lower_bounds[j];
|
||||
return true;
|
||||
case column_type::boxed:
|
||||
if (x_is_at_bound(j))
|
||||
break; // we should preserve x if possible
|
||||
// snap randomly
|
||||
if (m_settings.random_next() % 2 == 1)
|
||||
m_x[j] = m_low_bounds[j];
|
||||
m_x[j] = m_lower_bounds[j];
|
||||
else
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
return true;
|
||||
case column_type::low_bound:
|
||||
if (x_is_at_low_bound(j))
|
||||
case column_type::lower_bound:
|
||||
if (x_is_at_lower_bound(j))
|
||||
break;
|
||||
m_x[j] = m_low_bounds[j];
|
||||
m_x[j] = m_lower_bounds[j];
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (x_is_at_upper_bound(j))
|
||||
|
@ -385,50 +391,47 @@ public:
|
|||
}
|
||||
|
||||
bool make_column_feasible(unsigned j, numeric_pair<mpq> & delta) {
|
||||
SASSERT(m_basis_heading[j] < 0);
|
||||
bool ret = false;
|
||||
lp_assert(m_basis_heading[j] < 0);
|
||||
auto & x = m_x[j];
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
SASSERT(m_low_bounds[j] == m_upper_bounds[j]);
|
||||
if (x != m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
lp_assert(m_lower_bounds[j] == m_upper_bounds[j]);
|
||||
if (x != m_lower_bounds[j]) {
|
||||
delta = m_lower_bounds[j] - x;
|
||||
ret = true;;
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (x < m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
if (x < m_lower_bounds[j]) {
|
||||
delta = m_lower_bounds[j] - x;
|
||||
ret = true;;
|
||||
}
|
||||
if (x > m_upper_bounds[j]) {
|
||||
delta = m_upper_bounds[j] - x;
|
||||
x = m_upper_bounds[j];
|
||||
return true;
|
||||
ret = true;
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (x < m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
case column_type::lower_bound:
|
||||
if (x < m_lower_bounds[j]) {
|
||||
delta = m_lower_bounds[j] - x;
|
||||
ret = true;
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (x > m_upper_bounds[j]) {
|
||||
delta = m_upper_bounds[j] - x;
|
||||
x = m_upper_bounds[j];
|
||||
return true;
|
||||
ret = true;
|
||||
}
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
if (ret)
|
||||
add_delta_to_x_and_call_tracker(j, delta);
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -444,6 +447,8 @@ public:
|
|||
void init_lu();
|
||||
int pivots_in_column_and_row_are_different(int entering, int leaving) const;
|
||||
void pivot_fixed_vars_from_basis();
|
||||
bool remove_from_basis(unsigned j);
|
||||
bool pivot_column_general(unsigned j, unsigned j_basic, indexed_vector<T> & w);
|
||||
bool pivot_for_tableau_on_basis();
|
||||
bool pivot_row_for_tableau_on_basis(unsigned row);
|
||||
void init_basic_part_of_basis_heading() {
|
||||
|
@ -473,7 +478,7 @@ public:
|
|||
}
|
||||
|
||||
void change_basis_unconditionally(unsigned entering, unsigned leaving) {
|
||||
SASSERT(m_basis_heading[entering] < 0);
|
||||
lp_assert(m_basis_heading[entering] < 0);
|
||||
int place_in_non_basis = -1 - m_basis_heading[entering];
|
||||
if (static_cast<unsigned>(place_in_non_basis) >= m_nbasis.size()) {
|
||||
// entering variable in not in m_nbasis, we need to put it back;
|
||||
|
@ -492,7 +497,8 @@ public:
|
|||
}
|
||||
|
||||
void change_basis(unsigned entering, unsigned leaving) {
|
||||
SASSERT(m_basis_heading[entering] < 0);
|
||||
lp_assert(m_basis_heading[entering] < 0);
|
||||
lp_assert(m_basis_heading[leaving] >= 0);
|
||||
|
||||
int place_in_basis = m_basis_heading[leaving];
|
||||
int place_in_non_basis = - m_basis_heading[entering] - 1;
|
||||
|
@ -522,8 +528,8 @@ public:
|
|||
if (!this->x_is_at_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (!this->x_is_at_low_bound(j))
|
||||
case column_type::lower_bound:
|
||||
if (!this->x_is_at_lower_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
|
@ -533,7 +539,7 @@ public:
|
|||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
|
@ -541,7 +547,6 @@ public:
|
|||
bool non_basic_columns_are_set_correctly() const {
|
||||
for (unsigned j : this->m_nbasis)
|
||||
if (!column_is_feasible(j)) {
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -552,10 +557,10 @@ public:
|
|||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "(" << m_low_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
out << "(" << m_lower_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << m_low_bounds[j] << std::endl;
|
||||
case column_type::lower_bound:
|
||||
out << m_lower_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << m_upper_bounds[j] << std::endl;
|
||||
|
@ -566,36 +571,38 @@ public:
|
|||
}
|
||||
|
||||
void print_column_info(unsigned j, std::ostream & out) const {
|
||||
out << "column_index = " << j << ", name = "<< column_name(j) << " type = " << column_type_to_string(m_column_types[j]) << std::endl;
|
||||
out << "j = " << j << ", name = "<< column_name(j);
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "(" << m_low_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
out << " [" << m_lower_bounds[j] << ", " << m_upper_bounds[j] << "]";
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << m_low_bounds[j] << std::endl;
|
||||
case column_type::lower_bound:
|
||||
out << " [" << m_lower_bounds[j] << "," << "oo" << "]";
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << m_upper_bounds[j] << std::endl;
|
||||
out << " [-oo, " << m_upper_bounds[j] << ']';
|
||||
break;
|
||||
case column_type::free_column:
|
||||
out << " [-oo, oo]";
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
std::cout << "basis heading = " << m_basis_heading[j] << std::endl;
|
||||
std::cout << "x = " << m_x[j] << std::endl;
|
||||
/*
|
||||
std::cout << "cost = " << m_costs[j] << std::endl;
|
||||
std:: cout << "m_d = " << m_d[j] << std::endl;*/
|
||||
// out << "basis heading = " << m_basis_heading[j] << std::endl;
|
||||
out << " x = " << m_x[j];
|
||||
if (m_basis_heading[j] >= 0)
|
||||
out << " base\n";
|
||||
else
|
||||
out << " nbas\n";
|
||||
}
|
||||
|
||||
bool column_is_free(unsigned j) { return this->m_column_type[j] == free; }
|
||||
bool column_is_free(unsigned j) const { return this->m_column_type[j] == free; }
|
||||
|
||||
bool column_has_upper_bound(unsigned j) {
|
||||
bool column_has_upper_bound(unsigned j) const {
|
||||
switch(m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
|
@ -605,13 +612,13 @@ public:
|
|||
bool bounds_for_boxed_are_set_correctly() const {
|
||||
for (unsigned j = 0; j < m_column_types.size(); j++) {
|
||||
if (m_column_types[j] != column_type::boxed) continue;
|
||||
if (m_low_bounds[j] > m_upper_bounds[j])
|
||||
if (m_lower_bounds[j] > m_upper_bounds[j])
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool column_has_low_bound(unsigned j) {
|
||||
bool column_has_lower_bound(unsigned j) const {
|
||||
switch(m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::upper_bound:
|
||||
|
@ -671,26 +678,43 @@ public:
|
|||
return m_inf_set.contains(j);
|
||||
}
|
||||
|
||||
void update_column_in_inf_set(unsigned j) {
|
||||
if (column_is_feasible(j)) {
|
||||
m_inf_set.erase(j);
|
||||
} else {
|
||||
m_inf_set.insert(j);
|
||||
}
|
||||
void update_x_with_feasibility_tracking(unsigned j, const X & v) {
|
||||
m_x[j] = v;
|
||||
track_column_feasibility(j);
|
||||
}
|
||||
|
||||
void update_x_with_delta_and_track_feasibility(unsigned j, const X & del) {
|
||||
m_x[j] += del;
|
||||
track_column_feasibility(j);
|
||||
}
|
||||
|
||||
void update_x_and_call_tracker(unsigned j, const X & v) {
|
||||
m_x[j] = v;
|
||||
}
|
||||
|
||||
void add_delta_to_x_and_call_tracker(unsigned j, const X & delta) {
|
||||
m_x[j] += delta;
|
||||
}
|
||||
|
||||
void track_column_feasibility(unsigned j) {
|
||||
if (column_is_feasible(j))
|
||||
remove_column_from_inf_set(j);
|
||||
else
|
||||
insert_column_into_inf_set(j);
|
||||
}
|
||||
void insert_column_into_inf_set(unsigned j) {
|
||||
m_inf_set.insert(j);
|
||||
SASSERT(!column_is_feasible(j));
|
||||
lp_assert(!column_is_feasible(j));
|
||||
}
|
||||
void remove_column_from_inf_set(unsigned j) {
|
||||
m_inf_set.erase(j);
|
||||
SASSERT(column_is_feasible(j));
|
||||
lp_assert(column_is_feasible(j));
|
||||
}
|
||||
bool costs_on_nbasis_are_zeros() const {
|
||||
SASSERT(this->basis_heading_is_correct());
|
||||
lp_assert(this->basis_heading_is_correct());
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->m_basis_heading[j] < 0)
|
||||
SASSERT(is_zero(this->m_costs[j]));
|
||||
lp_assert(is_zero(this->m_costs[j]));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -701,5 +725,10 @@ public:
|
|||
const unsigned & iters_with_no_cost_growing() const {
|
||||
return m_iters_with_no_cost_growing;
|
||||
}
|
||||
|
||||
void calculate_pivot_row(unsigned i);
|
||||
unsigned get_base_column_in_row(unsigned row_index) const {
|
||||
return m_basis[row_index];
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -35,11 +35,11 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
lp_settings & settings,
|
||||
const column_namer& column_names,
|
||||
const vector<column_type> & column_types,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & lower_bound_values,
|
||||
const vector<X> & upper_bound_values):
|
||||
m_total_iterations(0),
|
||||
m_iters_with_no_cost_growing(0),
|
||||
m_status(FEASIBLE),
|
||||
m_status(lp_status::FEASIBLE),
|
||||
m_inf_set(A.column_count()),
|
||||
m_using_infeas_costs(false),
|
||||
m_pivot_row_of_B_1(A.row_count()),
|
||||
|
@ -59,7 +59,7 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
m_d(m_n()),
|
||||
m_ed(m_m()),
|
||||
m_column_types(column_types),
|
||||
m_low_bounds(low_bound_values),
|
||||
m_lower_bounds(lower_bound_values),
|
||||
m_upper_bounds(upper_bound_values),
|
||||
m_column_norms(m_n()),
|
||||
m_copy_of_xB(m_m()),
|
||||
|
@ -68,7 +68,7 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
m_tracing_basis_changes(false),
|
||||
m_pivoted_rows(nullptr),
|
||||
m_look_for_feasible_solution_only(false) {
|
||||
SASSERT(bounds_for_boxed_are_set_correctly());
|
||||
lp_assert(bounds_for_boxed_are_set_correctly());
|
||||
init();
|
||||
init_basis_heading_and_non_basic_columns_vector();
|
||||
}
|
||||
|
@ -76,7 +76,7 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
allocate_basis_heading() { // the rest of initilization will be handled by the factorization class
|
||||
init_basis_heading_and_non_basic_columns_vector();
|
||||
SASSERT(basis_heading_is_correct());
|
||||
lp_assert(basis_heading_is_correct());
|
||||
}
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
init() {
|
||||
|
@ -142,7 +142,7 @@ solve_yB(vector<T> & y) {
|
|||
// }
|
||||
// }
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::solve_Bd(unsigned entering, indexed_vector<T> & column) {
|
||||
SASSERT(!m_settings.use_tableau());
|
||||
lp_assert(!m_settings.use_tableau());
|
||||
if (m_factorization == nullptr) {
|
||||
init_factorization(m_factorization, m_A, m_basis, m_settings);
|
||||
}
|
||||
|
@ -152,19 +152,19 @@ template <typename T, typename X> void lp_core_solver_base<T, X>::solve_Bd(unsig
|
|||
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
solve_Bd(unsigned entering) {
|
||||
SASSERT(m_ed.is_OK());
|
||||
lp_assert(m_ed.is_OK());
|
||||
m_factorization->solve_Bd(entering, m_ed, m_w);
|
||||
if (this->precise())
|
||||
m_columns_nz[entering] = m_ed.m_index.size();
|
||||
SASSERT(m_ed.is_OK());
|
||||
SASSERT(m_w.is_OK());
|
||||
lp_assert(m_ed.is_OK());
|
||||
lp_assert(m_w.is_OK());
|
||||
#ifdef Z3DEBUG
|
||||
// auto B = get_B(*m_factorization, m_basis);
|
||||
// vector<T> a(m_m());
|
||||
// m_A.copy_column_to_vector(entering, a);
|
||||
// vector<T> cd(m_ed.m_data);
|
||||
// B.apply_from_left(cd, m_settings);
|
||||
// SASSERT(vectors_are_equal(cd , a));
|
||||
// lp_assert(vectors_are_equal(cd , a));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -223,16 +223,11 @@ restore_m_ed(T * buffer) {
|
|||
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::
|
||||
A_mult_x_is_off() const {
|
||||
SASSERT(m_x.size() == m_A.column_count());
|
||||
lp_assert(m_x.size() == m_A.column_count());
|
||||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < m_m(); i++) {
|
||||
for (unsigned i = 0; i < m_m(); i++) {
|
||||
X delta = m_b[i] - m_A.dot_product_with_row(i, m_x);
|
||||
if (delta != numeric_traits<X>::zero()) {
|
||||
std::cout << "precise x is off (";
|
||||
std::cout << "m_b[" << i << "] = " << m_b[i] << " ";
|
||||
std::cout << "left side = " << m_A.dot_product_with_row(i, m_x) << ' ';
|
||||
std::cout << "delta = " << delta << ' ';
|
||||
std::cout << "iters = " << total_iterations() << ")" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -259,17 +254,12 @@ A_mult_x_is_off() const {
|
|||
}
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::
|
||||
A_mult_x_is_off_on_index(const vector<unsigned> & index) const {
|
||||
SASSERT(m_x.size() == m_A.column_count());
|
||||
lp_assert(m_x.size() == m_A.column_count());
|
||||
if (numeric_traits<T>::precise()) return false;
|
||||
#if RUN_A_MULT_X_IS_OFF_FOR_PRECESE
|
||||
for (unsigned i : index) {
|
||||
X delta = m_b[i] - m_A.dot_product_with_row(i, m_x);
|
||||
if (delta != numeric_traits<X>::zero()) {
|
||||
// std::cout << "x is off (";
|
||||
// std::cout << "m_b[" << i << "] = " << m_b[i] << " ";
|
||||
// std::cout << "left side = " << m_A.dot_product_with_row(i, m_x) << ' ';
|
||||
// std::cout << "delta = " << delta << ' ';
|
||||
// std::cout << "iters = " << total_iterations() << ")" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -299,13 +289,13 @@ A_mult_x_is_off_on_index(const vector<unsigned> & index) const {
|
|||
// from page 182 of Istvan Maros's book
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
calculate_pivot_row_of_B_1(unsigned pivot_row) {
|
||||
SASSERT(! use_tableau());
|
||||
SASSERT(m_pivot_row_of_B_1.is_OK());
|
||||
lp_assert(! use_tableau());
|
||||
lp_assert(m_pivot_row_of_B_1.is_OK());
|
||||
m_pivot_row_of_B_1.clear();
|
||||
m_pivot_row_of_B_1.set_value(numeric_traits<T>::one(), pivot_row);
|
||||
SASSERT(m_pivot_row_of_B_1.is_OK());
|
||||
lp_assert(m_pivot_row_of_B_1.is_OK());
|
||||
m_factorization->solve_yB_with_error_check_indexed(m_pivot_row_of_B_1, m_basis_heading, m_basis, m_settings);
|
||||
SASSERT(m_pivot_row_of_B_1.is_OK());
|
||||
lp_assert(m_pivot_row_of_B_1.is_OK());
|
||||
}
|
||||
|
||||
|
||||
|
@ -391,15 +381,15 @@ set_non_basic_x_to_correct_bounds() {
|
|||
for (unsigned j : non_basis()) {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::boxed:
|
||||
m_x[j] = m_d[j] < 0? m_upper_bounds[j]: m_low_bounds[j];
|
||||
m_x[j] = m_d[j] < 0? m_upper_bounds[j]: m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
m_x[j] = m_low_bounds[j];
|
||||
SASSERT(column_is_dual_feasible(j));
|
||||
case column_type::lower_bound:
|
||||
m_x[j] = m_lower_bounds[j];
|
||||
lp_assert(column_is_dual_feasible(j));
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
SASSERT(column_is_dual_feasible(j));
|
||||
lp_assert(column_is_dual_feasible(j));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
|
@ -411,21 +401,18 @@ column_is_dual_feasible(unsigned j) const {
|
|||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
return (x_is_at_low_bound(j) && d_is_not_negative(j)) ||
|
||||
return (x_is_at_lower_bound(j) && d_is_not_negative(j)) ||
|
||||
(x_is_at_upper_bound(j) && d_is_not_positive(j));
|
||||
case column_type::low_bound:
|
||||
return x_is_at_low_bound(j) && d_is_not_negative(j);
|
||||
case column_type::lower_bound:
|
||||
return x_is_at_lower_bound(j) && d_is_not_negative(j);
|
||||
case column_type::upper_bound:
|
||||
LP_OUT(m_settings, "upper_bound type should be switched to low_bound" << std::endl);
|
||||
SASSERT(false); // impossible case
|
||||
lp_assert(false); // impossible case
|
||||
case column_type::free_column:
|
||||
return numeric_traits<X>::is_zero(m_d[j]);
|
||||
default:
|
||||
LP_OUT(m_settings, "column = " << j << std::endl);
|
||||
LP_OUT(m_settings, "unexpected column type = " << column_type_to_string(m_column_types[j]) << std::endl);
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return false;
|
||||
}
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::
|
||||
|
@ -484,14 +471,14 @@ template <typename T, typename X> bool lp_core_solver_base<T, X>::column_is_feas
|
|||
case column_type::boxed:
|
||||
if (this->above_bound(x, this->m_upper_bounds[j])) {
|
||||
return false;
|
||||
} else if (this->below_bound(x, this->m_low_bounds[j])) {
|
||||
} else if (this->below_bound(x, this->m_lower_bounds[j])) {
|
||||
return false;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (this->below_bound(x, this->m_low_bounds[j])) {
|
||||
case column_type::lower_bound:
|
||||
if (this->below_bound(x, this->m_lower_bounds[j])) {
|
||||
return false;
|
||||
} else {
|
||||
return true;
|
||||
|
@ -508,7 +495,7 @@ template <typename T, typename X> bool lp_core_solver_base<T, X>::column_is_feas
|
|||
return true;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
return false; // it is unreachable
|
||||
}
|
||||
|
@ -530,9 +517,6 @@ template <typename T, typename X> bool lp_core_solver_base<T, X>::inf_set_is_cor
|
|||
bool is_feas = column_is_feasible(j);
|
||||
|
||||
if (is_feas == belongs_to_set) {
|
||||
print_column_info(j, std::cout);
|
||||
std::cout << "belongs_to_set = " << belongs_to_set << std::endl;
|
||||
std::cout <<( is_feas? "feas":"inf") << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -549,7 +533,7 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
|
|||
if (!find_x_by_solving()) {
|
||||
restore_x(entering, tt);
|
||||
if(A_mult_x_is_off()) {
|
||||
m_status = FLOATING_POINT_ERROR;
|
||||
m_status = lp_status::FLOATING_POINT_ERROR;
|
||||
m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
|
@ -559,7 +543,7 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
|
|||
if (m_factorization->get_status() != LU_status::OK) {
|
||||
std::stringstream s;
|
||||
// s << "failing refactor on off_result for entering = " << entering << ", leaving = " << leaving << " total_iterations = " << total_iterations();
|
||||
m_status = FLOATING_POINT_ERROR;
|
||||
m_status = lp_status::FLOATING_POINT_ERROR;
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
|
@ -581,19 +565,19 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
|
|||
init_lu();
|
||||
if (m_factorization->get_status() != LU_status::OK) {
|
||||
if (m_look_for_feasible_solution_only && !precise()) {
|
||||
m_status = UNSTABLE;
|
||||
m_status = lp_status::UNSTABLE;
|
||||
delete m_factorization;
|
||||
m_factorization = nullptr;
|
||||
return false;
|
||||
}
|
||||
// LP_OUT(m_settings, "failing refactor for entering = " << entering << ", leaving = " << leaving << " total_iterations = " << total_iterations() << std::endl);
|
||||
restore_x_and_refactor(entering, leaving, tt);
|
||||
if (m_status == FLOATING_POINT_ERROR)
|
||||
if (m_status == lp_status::FLOATING_POINT_ERROR)
|
||||
return false;
|
||||
SASSERT(!A_mult_x_is_off());
|
||||
CASSERT("A_off", !A_mult_x_is_off());
|
||||
m_iters_with_no_cost_growing++;
|
||||
// LP_OUT(m_settings, "rolled back after failing of init_factorization()" << std::endl);
|
||||
m_status = UNSTABLE;
|
||||
m_status = lp_status::UNSTABLE;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -602,7 +586,7 @@ update_basis_and_x(int entering, int leaving, X const & tt) {
|
|||
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::
|
||||
divide_row_by_pivot(unsigned pivot_row, unsigned pivot_col) {
|
||||
SASSERT(numeric_traits<T>::precise());
|
||||
lp_assert(numeric_traits<T>::precise());
|
||||
int pivot_index = -1;
|
||||
auto & row = m_A.m_rows[pivot_row];
|
||||
unsigned size = row.size();
|
||||
|
@ -629,7 +613,7 @@ divide_row_by_pivot(unsigned pivot_row, unsigned pivot_col) {
|
|||
}
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::
|
||||
pivot_column_tableau(unsigned j, unsigned piv_row_index) {
|
||||
if (!divide_row_by_pivot(piv_row_index, j))
|
||||
if (!divide_row_by_pivot(piv_row_index, j))
|
||||
return false;
|
||||
auto &column = m_A.m_columns[j];
|
||||
int pivot_col_cell_index = -1;
|
||||
|
@ -643,7 +627,7 @@ pivot_column_tableau(unsigned j, unsigned piv_row_index) {
|
|||
return false;
|
||||
|
||||
if (pivot_col_cell_index != 0) {
|
||||
SASSERT(column.size() > 1);
|
||||
lp_assert(column.size() > 1);
|
||||
// swap the pivot column cell with the head cell
|
||||
auto c = column[0];
|
||||
column[0] = column[pivot_col_cell_index];
|
||||
|
@ -654,7 +638,7 @@ pivot_column_tableau(unsigned j, unsigned piv_row_index) {
|
|||
}
|
||||
while (column.size() > 1) {
|
||||
auto & c = column.back();
|
||||
SASSERT(c.m_i != piv_row_index);
|
||||
lp_assert(c.m_i != piv_row_index);
|
||||
if(! m_A.pivot_row_to_row_given_cell(piv_row_index, c, j)) {
|
||||
return false;
|
||||
}
|
||||
|
@ -702,7 +686,7 @@ non_basis_is_correctly_represented_in_heading() const {
|
|||
}
|
||||
for (unsigned j = 0; j < m_A.column_count(); j++) {
|
||||
if (m_basis_heading[j] >= 0) {
|
||||
SASSERT(static_cast<unsigned>(m_basis_heading[j]) < m_A.row_count() && m_basis[m_basis_heading[j]] == j);
|
||||
lp_assert(static_cast<unsigned>(m_basis_heading[j]) < m_A.row_count() && m_basis[m_basis_heading[j]] == j);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
@ -710,26 +694,22 @@ non_basis_is_correctly_represented_in_heading() const {
|
|||
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::
|
||||
basis_heading_is_correct() const {
|
||||
SASSERT(m_basis_heading.size() == m_A.column_count());
|
||||
SASSERT(m_basis.size() == m_A.row_count());
|
||||
SASSERT(m_nbasis.size() <= m_A.column_count() - m_A.row_count()); // for the dual the size of non basis can be smaller
|
||||
lp_assert(m_basis_heading.size() == m_A.column_count());
|
||||
lp_assert(m_basis.size() == m_A.row_count());
|
||||
lp_assert(m_nbasis.size() <= m_A.column_count() - m_A.row_count()); // for the dual the size of non basis can be smaller
|
||||
if (!basis_has_no_doubles()) {
|
||||
// std::cout << "basis_has_no_doubles" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!non_basis_has_no_doubles()) {
|
||||
// std::cout << "non_basis_has_no_doubles" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!basis_is_correctly_represented_in_heading()) {
|
||||
// std::cout << "basis_is_correctly_represented_in_heading" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!non_basis_is_correctly_represented_in_heading()) {
|
||||
// std::cout << "non_basis_is_correctly_represented_in_heading" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -856,12 +836,12 @@ solve_Ax_eq_b() {
|
|||
template <typename T, typename X> void lp_core_solver_base<T, X>::
|
||||
snap_non_basic_x_to_bound_and_free_to_zeroes() {
|
||||
for (unsigned j : non_basis()) {
|
||||
SASSERT(j < m_x.size());
|
||||
lp_assert(j < m_x.size());
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
m_x[j] = m_low_bounds[j];
|
||||
case column_type::lower_bound:
|
||||
m_x[j] = m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
|
@ -894,23 +874,23 @@ template <typename T, typename X> non_basic_column_value_position lp_core_solver
|
|||
get_non_basic_column_value_position(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
return x_is_at_low_bound(j)? at_fixed : not_at_bound;
|
||||
return x_is_at_lower_bound(j)? at_fixed : not_at_bound;
|
||||
case column_type::free_column:
|
||||
return free_of_bounds;
|
||||
case column_type::boxed:
|
||||
return x_is_at_low_bound(j)? at_low_bound :(
|
||||
return x_is_at_lower_bound(j)? at_lower_bound :(
|
||||
x_is_at_upper_bound(j)? at_upper_bound:
|
||||
not_at_bound
|
||||
);
|
||||
case column_type::low_bound:
|
||||
return x_is_at_low_bound(j)? at_low_bound : not_at_bound;
|
||||
case column_type::lower_bound:
|
||||
return x_is_at_lower_bound(j)? at_lower_bound : not_at_bound;
|
||||
case column_type::upper_bound:
|
||||
return x_is_at_upper_bound(j)? at_upper_bound : not_at_bound;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
SASSERT(false);
|
||||
return at_low_bound;
|
||||
lp_unreachable();
|
||||
return at_lower_bound;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::init_lu() {
|
||||
|
@ -938,59 +918,80 @@ template <typename T, typename X> void lp_core_solver_base<T, X>::transpose_row
|
|||
transpose_basis(i, j);
|
||||
m_A.transpose_rows(i, j);
|
||||
}
|
||||
// j is the new basic column, j_basic - the leaving column
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::pivot_column_general(unsigned j, unsigned j_basic, indexed_vector<T> & w) {
|
||||
lp_assert(m_basis_heading[j] < 0);
|
||||
lp_assert(m_basis_heading[j_basic] >= 0);
|
||||
unsigned row_index = m_basis_heading[j_basic];
|
||||
if (m_settings.m_simplex_strategy == simplex_strategy_enum::lu) {
|
||||
if (m_factorization->need_to_refactor()) {
|
||||
init_lu();
|
||||
}
|
||||
else {
|
||||
m_factorization->prepare_entering(j, w); // to init vector w
|
||||
m_factorization->replace_column(zero_of_type<T>(), w, row_index);
|
||||
}
|
||||
if (m_factorization->get_status() != LU_status::OK) {
|
||||
init_lu();
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
change_basis(j, j_basic);
|
||||
}
|
||||
}
|
||||
else { // the tableau case
|
||||
if (pivot_column_tableau(j, row_index))
|
||||
change_basis(j, j_basic);
|
||||
else return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_core_solver_base<T, X>::pivot_fixed_vars_from_basis() {
|
||||
// run over basis and non-basis at the same time
|
||||
indexed_vector<T> w(m_basis.size()); // the buffer
|
||||
unsigned i = 0; // points to basis
|
||||
unsigned j = 0; // points to nonbasis
|
||||
for (; i < m_basis.size() && j < m_nbasis.size(); i++) {
|
||||
unsigned ii = m_basis[i];
|
||||
unsigned jj;
|
||||
for (; i < m_basis.size(); i++) {
|
||||
unsigned basic_j = m_basis[i];
|
||||
|
||||
if (get_column_type(ii) != column_type::fixed) continue;
|
||||
while (j < m_nbasis.size()) {
|
||||
for (; j < m_nbasis.size(); j++) {
|
||||
jj = m_nbasis[j];
|
||||
if (get_column_type(jj) != column_type::fixed)
|
||||
if (get_column_type(basic_j) != column_type::fixed) continue;
|
||||
T a;
|
||||
unsigned j;
|
||||
for (auto &c : m_A.m_rows[i]) {
|
||||
j = c.var();
|
||||
if (j == basic_j)
|
||||
continue;
|
||||
if (get_column_type(j) != column_type::fixed) {
|
||||
if (pivot_column_general(j, basic_j, w))
|
||||
break;
|
||||
}
|
||||
if (j >= m_nbasis.size())
|
||||
break;
|
||||
j++;
|
||||
if (m_factorization->need_to_refactor()) {
|
||||
change_basis(jj, ii);
|
||||
init_lu();
|
||||
} else {
|
||||
m_factorization->prepare_entering(jj, w); // to init vector w
|
||||
m_factorization->replace_column(zero_of_type<T>(), w, m_basis_heading[ii]);
|
||||
change_basis(jj, ii);
|
||||
}
|
||||
if (m_factorization->get_status() != LU_status::OK) {
|
||||
change_basis(ii, jj);
|
||||
init_lu();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
SASSERT(m_factorization->get_status()== LU_status::OK);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_core_solver_base<T, X>::remove_from_basis(unsigned basic_j) {
|
||||
indexed_vector<T> w(m_basis.size()); // the buffer
|
||||
unsigned i = m_basis_heading[basic_j];
|
||||
for (auto &c : m_A.m_rows[i]) {
|
||||
if (c.var() == basic_j)
|
||||
continue;
|
||||
if (pivot_column_general(c.var(), basic_j, w))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> bool
|
||||
lp_core_solver_base<T, X>::infeasibility_costs_are_correct() const {
|
||||
if (! this->m_using_infeas_costs)
|
||||
return true;
|
||||
SASSERT(costs_on_nbasis_are_zeros());
|
||||
lp_assert(costs_on_nbasis_are_zeros());
|
||||
for (unsigned j :this->m_basis) {
|
||||
if (!infeasibility_cost_is_correct_for_column(j)) {
|
||||
std::cout << "infeasibility_cost_is_correct_for_column does not hold\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
if (!is_zero(m_d[j])) {
|
||||
std::cout << "m_d is not zero\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -1012,7 +1013,7 @@ lp_core_solver_base<T, X>::infeasibility_cost_is_correct_for_column(unsigned j)
|
|||
}
|
||||
return is_zero(this->m_costs[j]);
|
||||
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
return this->m_costs[j] == -r;
|
||||
}
|
||||
|
@ -1026,9 +1027,31 @@ lp_core_solver_base<T, X>::infeasibility_cost_is_correct_for_column(unsigned j)
|
|||
case column_type::free_column:
|
||||
return is_zero(this->m_costs[j]);
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lp_core_solver_base<T, X>::calculate_pivot_row(unsigned i) {
|
||||
lp_assert(!use_tableau());
|
||||
lp_assert(m_pivot_row.is_OK());
|
||||
m_pivot_row_of_B_1.clear();
|
||||
m_pivot_row_of_B_1.resize(m_m());
|
||||
m_pivot_row.clear();
|
||||
m_pivot_row.resize(m_n());
|
||||
if (m_settings.use_tableau()) {
|
||||
unsigned basic_j = m_basis[i];
|
||||
for (auto & c : m_A.m_rows[i]) {
|
||||
if (c.m_j != basic_j)
|
||||
m_pivot_row.set_value(c.get_val(), c.m_j);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
calculate_pivot_row_of_B_1(i);
|
||||
calculate_pivot_row_when_pivot_row_of_B1_is_ready(i);
|
||||
}
|
||||
|
||||
|
||||
}
|
|
@ -22,7 +22,7 @@ Revision History:
|
|||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_dual_core_solver.hpp"
|
||||
#include "util/lp/lp_dual_core_solver_def.h"
|
||||
template void lp::lp_dual_core_solver<lp::mpq, lp::mpq>::start_with_initial_basis_and_make_it_dual_feasible();
|
||||
template void lp::lp_dual_core_solver<lp::mpq, lp::mpq>::solve();
|
||||
template lp::lp_dual_core_solver<double, double>::lp_dual_core_solver(lp::static_matrix<double, double>&, vector<bool>&,
|
|
@ -56,7 +56,7 @@ public:
|
|||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
vector<column_type> & column_type_array,
|
||||
vector<X> & low_bound_values,
|
||||
vector<X> & lower_bound_values,
|
||||
vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names):
|
||||
|
@ -70,7 +70,7 @@ public:
|
|||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
low_bound_values,
|
||||
lower_bound_values,
|
||||
upper_bound_values),
|
||||
m_can_enter_basis(can_enter_basis),
|
||||
m_a_wave(this->m_m()),
|
||||
|
@ -110,7 +110,7 @@ public:
|
|||
|
||||
bool done();
|
||||
|
||||
T get_edge_steepness_for_low_bound(unsigned p);
|
||||
T get_edge_steepness_for_lower_bound(unsigned p);
|
||||
|
||||
T get_edge_steepness_for_upper_bound(unsigned p);
|
||||
|
||||
|
@ -174,7 +174,7 @@ public:
|
|||
|
||||
// it is positive if going from low bound to upper bound and negative if going from upper bound to low bound
|
||||
T signed_span_of_boxed(unsigned j) {
|
||||
return this->x_is_at_low_bound(j)? this->bound_span(j): - this->bound_span(j);
|
||||
return this->x_is_at_lower_bound(j)? this->bound_span(j): - this->bound_span(j);
|
||||
}
|
||||
|
||||
void add_tight_breakpoints_and_q_to_flipped_set();
|
||||
|
@ -207,6 +207,6 @@ public:
|
|||
|
||||
void solve();
|
||||
|
||||
bool low_bounds_are_set() const override { return true; }
|
||||
bool lower_bounds_are_set() const override { return true; }
|
||||
};
|
||||
}
|
||||
|
|
|
@ -38,7 +38,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::restore_non_ba
|
|||
while (j--) {
|
||||
if (this->m_basis_heading[j] >= 0 ) continue;
|
||||
if (m_can_enter_basis[j]) {
|
||||
SASSERT(std::find(nb.begin(), nb.end(), j) == nb.end());
|
||||
lp_assert(std::find(nb.begin(), nb.end(), j) == nb.end());
|
||||
nb.push_back(j);
|
||||
this->m_basis_heading[j] = - static_cast<int>(nb.size());
|
||||
}
|
||||
|
@ -97,25 +97,25 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::start_with_ini
|
|||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::done() {
|
||||
if (this->get_status() == OPTIMAL) {
|
||||
if (this->get_status() == lp_status::OPTIMAL) {
|
||||
return true;
|
||||
}
|
||||
if (this->total_iterations() > this->m_settings.max_total_number_of_iterations) { // debug !!!!
|
||||
this->set_status(ITERATIONS_EXHAUSTED);
|
||||
this->set_status(lp_status::ITERATIONS_EXHAUSTED);
|
||||
return true;
|
||||
}
|
||||
return false; // todo, need to be more cases
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_low_bound(unsigned p) {
|
||||
SASSERT(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_low_bounds[p];
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_lower_bound(unsigned p) {
|
||||
lp_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_lower_bounds[p];
|
||||
del *= del;
|
||||
return del / this->m_betas[this->m_basis_heading[p]];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_upper_bound(unsigned p) {
|
||||
SASSERT(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
lp_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_upper_bounds[p];
|
||||
del *= del;
|
||||
return del / this->m_betas[this->m_basis_heading[p]];
|
||||
|
@ -127,7 +127,7 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::pricing_for_row(u
|
|||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(p)) {
|
||||
T del = get_edge_steepness_for_low_bound(p);
|
||||
T del = get_edge_steepness_for_lower_bound(p);
|
||||
return del;
|
||||
}
|
||||
if (this->x_above_upper_bound(p)) {
|
||||
|
@ -135,9 +135,9 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::pricing_for_row(u
|
|||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(p)) {
|
||||
T del = get_edge_steepness_for_low_bound(p);
|
||||
T del = get_edge_steepness_for_lower_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
|
@ -150,12 +150,12 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::pricing_for_row(u
|
|||
return numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::free_column:
|
||||
SASSERT(numeric_traits<T>::is_zero(this->m_d[p]));
|
||||
lp_assert(numeric_traits<T>::is_zero(this->m_d[p]));
|
||||
return numeric_traits<T>::zero();
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
|
@ -185,8 +185,8 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::pricing_loop(u
|
|||
}
|
||||
} while (i != initial_offset_in_rows && rows_left);
|
||||
if (m_r == -1) {
|
||||
if (this->get_status() != UNSTABLE) {
|
||||
this->set_status(OPTIMAL);
|
||||
if (this->get_status() != lp_status::UNSTABLE) {
|
||||
this->set_status(lp_status::OPTIMAL);
|
||||
}
|
||||
} else {
|
||||
m_p = this->m_basis[m_r];
|
||||
|
@ -196,10 +196,10 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::pricing_loop(u
|
|||
return;
|
||||
}
|
||||
// failure in advance_on_known_p
|
||||
if (this->get_status() == FLOATING_POINT_ERROR) {
|
||||
if (this->get_status() == lp_status::FLOATING_POINT_ERROR) {
|
||||
return;
|
||||
}
|
||||
this->set_status(UNSTABLE);
|
||||
this->set_status(lp_status::UNSTABLE);
|
||||
m_forbidden_rows.insert(m_r);
|
||||
}
|
||||
}
|
||||
|
@ -224,9 +224,9 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::advance_on_kno
|
|||
int pivot_compare_result = this->pivots_in_column_and_row_are_different(m_q, m_p);
|
||||
if (!pivot_compare_result){;}
|
||||
else if (pivot_compare_result == 2) { // the sign is changed, cannot continue
|
||||
SASSERT(false); // not implemented yet
|
||||
lp_unreachable(); // not implemented yet
|
||||
} else {
|
||||
SASSERT(pivot_compare_result == 1);
|
||||
lp_assert(pivot_compare_result == 1);
|
||||
this->init_lu();
|
||||
}
|
||||
DSE_FTran();
|
||||
|
@ -243,38 +243,38 @@ template <typename T, typename X> int lp_dual_core_solver<T, X>::define_sign_of_
|
|||
if (this->x_above_upper_bound(m_p)) {
|
||||
return 1;
|
||||
}
|
||||
SASSERT(false);
|
||||
case column_type::low_bound:
|
||||
lp_unreachable();
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return -1;
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return 1;
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::can_be_breakpoint(unsigned j) {
|
||||
if (this->pivot_row_element_is_too_small_for_ratio_test(j)) return false;
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::low_bound:
|
||||
SASSERT(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_low_bounds[j]));
|
||||
case column_type::lower_bound:
|
||||
lp_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_lower_bounds[j]));
|
||||
return m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
|
||||
case column_type::upper_bound:
|
||||
SASSERT(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_upper_bounds[j]));
|
||||
lp_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_upper_bounds[j]));
|
||||
return m_sign_of_alpha_r * this->m_pivot_row[j] < 0;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool low_bound = this->x_is_at_low_bound(j);
|
||||
bool lower_bound = this->x_is_at_lower_bound(j);
|
||||
bool grawing = m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
|
||||
return low_bound == grawing;
|
||||
return lower_bound == grawing;
|
||||
}
|
||||
case column_type::fixed: // is always dual feasible so we ingore it
|
||||
return false;
|
||||
|
@ -302,28 +302,28 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::get_delta() {
|
|||
switch (this->m_column_types[m_p]) {
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_low_bounds[m_p];
|
||||
return this->m_x[m_p] - this->m_lower_bounds[m_p];
|
||||
}
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_upper_bounds[m_p];
|
||||
}
|
||||
SASSERT(false);
|
||||
case column_type::low_bound:
|
||||
lp_unreachable();
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_low_bounds[m_p];
|
||||
return this->m_x[m_p] - this->m_lower_bounds[m_p];
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return get_edge_steepness_for_upper_bound(m_p);
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
case column_type::fixed:
|
||||
return this->m_x[m_p] - this->m_upper_bounds[m_p];
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return zero_of_type<T>();
|
||||
}
|
||||
|
||||
|
@ -370,11 +370,11 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::update_betas()
|
|||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::apply_flips() {
|
||||
for (unsigned j : m_flipped_boxed) {
|
||||
SASSERT(this->x_is_at_bound(j));
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
lp_assert(this->x_is_at_bound(j));
|
||||
if (this->x_is_at_lower_bound(j)) {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
} else {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -382,17 +382,17 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::apply_flips()
|
|||
template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_column_to_bounds(unsigned j) {
|
||||
switch (this->m_column_type[j]) {
|
||||
case column_type::fixed:
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
if (this->x_is_at_lower_bound(j)) {
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
} else {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
case column_type::lower_bound:
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
|
@ -400,7 +400,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_column
|
|||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -456,15 +456,15 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::basis_change_a
|
|||
return false;
|
||||
}
|
||||
|
||||
SASSERT(d_is_correct());
|
||||
lp_assert(d_is_correct());
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recover_leaving() {
|
||||
switch (m_entering_boundary_position) {
|
||||
case at_low_bound:
|
||||
case at_lower_bound:
|
||||
case at_fixed:
|
||||
this->m_x[m_q] = this->m_low_bounds[m_q];
|
||||
this->m_x[m_q] = this->m_lower_bounds[m_q];
|
||||
break;
|
||||
case at_upper_bound:
|
||||
this->m_x[m_q] = this->m_upper_bounds[m_q];
|
||||
|
@ -472,7 +472,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::recover_leavin
|
|||
case free_of_bounds:
|
||||
this->m_x[m_q] = zero_of_type<X>();
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -481,12 +481,12 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::revert_to_prev
|
|||
this->change_basis_unconditionally(m_p, m_q);
|
||||
init_factorization(this->m_factorization, this->m_A, this->m_basis, this->m_settings);
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR); // complete failure
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR); // complete failure
|
||||
return;
|
||||
}
|
||||
recover_leaving();
|
||||
if (!this->find_x_by_solving()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
return;
|
||||
}
|
||||
recalculate_xB_and_d();
|
||||
|
@ -497,23 +497,23 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::revert_to_prev
|
|||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::snap_runaway_nonbasic_column(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::low_bound:
|
||||
if (!this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
case column_type::lower_bound:
|
||||
if (!this->x_is_at_lower_bound(j)) {
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool closer_to_low_bound = abs(this->m_low_bounds[j] - this->m_x[j]) < abs(this->m_upper_bounds[j] - this->m_x[j]);
|
||||
if (closer_to_low_bound) {
|
||||
if (!this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
bool closer_to_lower_bound = abs(this->m_lower_bounds[j] - this->m_x[j]) < abs(this->m_upper_bounds[j] - this->m_x[j]);
|
||||
if (closer_to_lower_bound) {
|
||||
if (!this->x_is_at_lower_bound(j)) {
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
if (!this->x_is_at_upper_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
this->m_x[j] = this->m_lower_bounds[j];
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -535,12 +535,6 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::snap_runaway_n
|
|||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::problem_is_dual_feasible() const {
|
||||
for (unsigned j : this->non_basis()){
|
||||
if (!this->column_is_dual_feasible(j)) {
|
||||
// std::cout << "column " << j << " is not dual feasible" << std::endl;
|
||||
// std::cout << "m_d[" << j << "] = " << this->m_d[j] << std::endl;
|
||||
// std::cout << "x[" << j << "] = " << this->m_x[j] << std::endl;
|
||||
// std::cout << "type = " << column_type_to_string(this->m_column_type[j]) << std::endl;
|
||||
// std::cout << "bounds = " << this->m_low_bounds[j] << "," << this->m_upper_bounds[j] << std::endl;
|
||||
// std::cout << "total_iterations = " << this->total_iterations() << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -566,10 +560,10 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::delta_keeps_th
|
|||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::set_status_to_tentative_dual_unbounded_or_dual_unbounded() {
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
this->set_status(DUAL_UNBOUNDED);
|
||||
if (this->get_status() == lp_status::TENTATIVE_DUAL_UNBOUNDED) {
|
||||
this->set_status(lp_status::DUAL_UNBOUNDED);
|
||||
} else {
|
||||
this->set_status(TENTATIVE_DUAL_UNBOUNDED);
|
||||
this->set_status(lp_status::TENTATIVE_DUAL_UNBOUNDED);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -599,10 +593,10 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::tight_breakpoi
|
|||
template <typename T, typename X> T lp_dual_core_solver<T, X>::calculate_harris_delta_on_breakpoint_set() {
|
||||
bool first_time = true;
|
||||
T ret = zero_of_type<T>();
|
||||
SASSERT(m_breakpoint_set.size() > 0);
|
||||
lp_assert(m_breakpoint_set.size() > 0);
|
||||
for (auto j : m_breakpoint_set) {
|
||||
T t;
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
if (this->x_is_at_lower_bound(j)) {
|
||||
t = abs((std::max(this->m_d[j], numeric_traits<T>::zero()) + m_harris_tolerance) / this->m_pivot_row[j]);
|
||||
} else {
|
||||
t = abs((std::min(this->m_d[j], numeric_traits<T>::zero()) - m_harris_tolerance) / this->m_pivot_row[j]);
|
||||
|
@ -620,7 +614,7 @@ template <typename T, typename X> T lp_dual_core_solver<T, X>::calculate_harris_
|
|||
template <typename T, typename X> void lp_dual_core_solver<T, X>::fill_tight_set_on_harris_delta(const T & harris_delta ){
|
||||
m_tight_set.clear();
|
||||
for (auto j : m_breakpoint_set) {
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
if (this->x_is_at_lower_bound(j)) {
|
||||
if (abs(std::max(this->m_d[j], numeric_traits<T>::zero()) / this->m_pivot_row[j]) <= harris_delta){
|
||||
m_tight_set.insert(j);
|
||||
}
|
||||
|
@ -648,7 +642,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_on_tigh
|
|||
}
|
||||
}
|
||||
m_tight_set.erase(m_q);
|
||||
SASSERT(m_q != -1);
|
||||
lp_assert(m_q != -1);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_and_tight_set() {
|
||||
|
@ -675,7 +669,7 @@ template <typename T, typename X> bool lp_dual_core_solver<T, X>::ratio_test() {
|
|||
set_status_to_tentative_dual_unbounded_or_dual_unbounded();
|
||||
return false;
|
||||
}
|
||||
this->set_status(FEASIBLE);
|
||||
this->set_status(lp_status::FEASIBLE);
|
||||
find_q_and_tight_set();
|
||||
if (!tight_breakpoinst_are_all_boxed()) break;
|
||||
T del = m_delta - delta_lost_on_flips_of_tight_breakpoints() * initial_delta_sign;
|
||||
|
@ -731,19 +725,19 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::update_xb_afte
|
|||
template <typename T, typename X> void lp_dual_core_solver<T, X>::one_iteration() {
|
||||
unsigned number_of_rows_to_try = get_number_of_rows_to_try_for_leaving();
|
||||
unsigned offset_in_rows = this->m_settings.random_next() % this->m_m();
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
if (this->get_status() == lp_status::TENTATIVE_DUAL_UNBOUNDED) {
|
||||
number_of_rows_to_try = this->m_m();
|
||||
} else {
|
||||
this->set_status(FEASIBLE);
|
||||
this->set_status(lp_status::FEASIBLE);
|
||||
}
|
||||
pricing_loop(number_of_rows_to_try, offset_in_rows);
|
||||
SASSERT(problem_is_dual_feasible());
|
||||
lp_assert(problem_is_dual_feasible());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::solve() { // see the page 35
|
||||
SASSERT(d_is_correct());
|
||||
SASSERT(problem_is_dual_feasible());
|
||||
SASSERT(this->basis_heading_is_correct());
|
||||
lp_assert(d_is_correct());
|
||||
lp_assert(problem_is_dual_feasible());
|
||||
lp_assert(this->basis_heading_is_correct());
|
||||
this->set_total_iterations(0);
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
do {
|
||||
|
@ -751,7 +745,7 @@ template <typename T, typename X> void lp_dual_core_solver<T, X>::solve() { // s
|
|||
return;
|
||||
}
|
||||
one_iteration();
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR && this->get_status() != DUAL_UNBOUNDED && this->get_status() != OPTIMAL &&
|
||||
} while (this->get_status() != lp_status::FLOATING_POINT_ERROR && this->get_status() != lp_status::DUAL_UNBOUNDED && this->get_status() != lp_status::OPTIMAL &&
|
||||
this->iters_with_no_cost_growing() <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&& this->total_iterations() <= this->m_settings.max_total_number_of_iterations);
|
||||
}
|
|
@ -17,7 +17,7 @@ Revision History:
|
|||
|
||||
|
||||
--*/
|
||||
#include "util/lp/lp_dual_simplex.hpp"
|
||||
#include "util/lp/lp_dual_simplex_def.h"
|
||||
template lp::mpq lp::lp_dual_simplex<lp::mpq, lp::mpq>::get_current_cost() const;
|
||||
template void lp::lp_dual_simplex<lp::mpq, lp::mpq>::find_maximal_solution();
|
||||
template double lp::lp_dual_simplex<double, double>::get_current_cost() const;
|
|
@ -28,7 +28,7 @@ template <typename T, typename X>
|
|||
class lp_dual_simplex: public lp_solver<T, X> {
|
||||
lp_dual_core_solver<T, X> * m_core_solver;
|
||||
vector<T> m_b_copy;
|
||||
vector<T> m_low_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
|
||||
vector<T> m_lower_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
|
||||
vector<column_type> m_column_types_of_core_solver;
|
||||
vector<column_type> m_column_types_of_logicals;
|
||||
vector<bool> m_can_enter_basis;
|
||||
|
|
|
@ -22,61 +22,61 @@ namespace lp{
|
|||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_after_stage1() {
|
||||
switch (m_core_solver->get_status()) {
|
||||
case OPTIMAL:
|
||||
case lp_status::OPTIMAL:
|
||||
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
||||
this->m_status = FEASIBLE;
|
||||
this->m_status = lp_status::FEASIBLE;
|
||||
} else {
|
||||
this->m_status = UNBOUNDED;
|
||||
this->m_status = lp_status::UNBOUNDED;
|
||||
}
|
||||
break;
|
||||
case DUAL_UNBOUNDED:
|
||||
SASSERT(false);
|
||||
case ITERATIONS_EXHAUSTED:
|
||||
this->m_status = ITERATIONS_EXHAUSTED;
|
||||
case lp_status::DUAL_UNBOUNDED:
|
||||
lp_unreachable();
|
||||
case lp_status::ITERATIONS_EXHAUSTED:
|
||||
this->m_status = lp_status::ITERATIONS_EXHAUSTED;
|
||||
break;
|
||||
case TIME_EXHAUSTED:
|
||||
this->m_status = TIME_EXHAUSTED;
|
||||
case lp_status::TIME_EXHAUSTED:
|
||||
this->m_status = lp_status::TIME_EXHAUSTED;
|
||||
break;
|
||||
case FLOATING_POINT_ERROR:
|
||||
this->m_status = FLOATING_POINT_ERROR;
|
||||
case lp_status::FLOATING_POINT_ERROR:
|
||||
this->m_status = lp_status::FLOATING_POINT_ERROR;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
|
||||
SASSERT(j >= this->number_of_core_structurals());
|
||||
lp_assert(j >= this->number_of_core_structurals());
|
||||
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
|
||||
case column_type::low_bound:
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::low_bound;
|
||||
case column_type::lower_bound:
|
||||
m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::lower_bound;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::fixed;
|
||||
m_can_enter_basis[j] = false;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for_stage2(unsigned j) {
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
|
||||
switch (ci->get_column_type()) {
|
||||
case column_type::low_bound:
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::low_bound;
|
||||
case column_type::lower_bound:
|
||||
m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::lower_bound;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
case column_type::upper_bound:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
case column_type::boxed:
|
||||
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
|
@ -85,7 +85,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for
|
|||
m_column_types_of_core_solver[j] = column_type::free_column;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
// T cost_was = this->m_costs[j];
|
||||
this->set_scaled_cost(j);
|
||||
|
@ -114,23 +114,23 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2()
|
|||
m_core_solver->solve_yB(m_core_solver->m_y);
|
||||
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
||||
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
||||
m_core_solver->set_status(FEASIBLE);
|
||||
m_core_solver->set_status(lp_status::FEASIBLE);
|
||||
m_core_solver->solve();
|
||||
switch (m_core_solver->get_status()) {
|
||||
case OPTIMAL:
|
||||
this->m_status = OPTIMAL;
|
||||
case lp_status::OPTIMAL:
|
||||
this->m_status = lp_status::OPTIMAL;
|
||||
break;
|
||||
case DUAL_UNBOUNDED:
|
||||
this->m_status = INFEASIBLE;
|
||||
case lp_status::DUAL_UNBOUNDED:
|
||||
this->m_status = lp_status::INFEASIBLE;
|
||||
break;
|
||||
case TIME_EXHAUSTED:
|
||||
this->m_status = TIME_EXHAUSTED;
|
||||
case lp_status::TIME_EXHAUSTED:
|
||||
this->m_status = lp_status::TIME_EXHAUSTED;
|
||||
break;
|
||||
case FLOATING_POINT_ERROR:
|
||||
this->m_status = FLOATING_POINT_ERROR;
|
||||
case lp_status::FLOATING_POINT_ERROR:
|
||||
this->m_status = lp_status::FLOATING_POINT_ERROR;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
this->m_second_stage_iterations = m_core_solver->total_iterations();
|
||||
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
|
||||
|
@ -144,7 +144,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros(
|
|||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
|
||||
SASSERT(m_core_solver == nullptr);
|
||||
lp_assert(m_core_solver == nullptr);
|
||||
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
|
||||
if (this->m_settings.get_message_ostream() != nullptr)
|
||||
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
||||
|
@ -158,7 +158,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
|
|||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types_of_core_solver,
|
||||
this->m_low_bounds,
|
||||
this->m_lower_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings,
|
||||
*this);
|
||||
|
@ -166,7 +166,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
|
|||
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
||||
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
||||
// skipping stage 1
|
||||
m_core_solver->set_status(OPTIMAL);
|
||||
m_core_solver->set_status(lp_status::OPTIMAL);
|
||||
m_core_solver->set_total_iterations(0);
|
||||
} else {
|
||||
m_core_solver->solve();
|
||||
|
@ -192,7 +192,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_s
|
|||
}
|
||||
|
||||
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
|
||||
SASSERT(j < this->m_A->column_count());
|
||||
lp_assert(j < this->m_A->column_count());
|
||||
if (j >= this->number_of_core_structurals()) {
|
||||
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
|
||||
}
|
||||
|
@ -201,12 +201,12 @@ template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_
|
|||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
|
||||
// see 4.7 in the dissertation of Achim Koberstein
|
||||
SASSERT(this->m_core_solver_columns_to_external_columns.find(j) !=
|
||||
lp_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
|
||||
this->m_core_solver_columns_to_external_columns.end());
|
||||
|
||||
T free_bound = T(1e4); // see 4.8
|
||||
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
|
||||
SASSERT(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
|
||||
lp_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
|
||||
switch (ci->get_column_type()) {
|
||||
case column_type::upper_bound: {
|
||||
|
@ -216,10 +216,10 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_
|
|||
throw_exception(s.str());
|
||||
break;
|
||||
}
|
||||
case column_type::low_bound: {
|
||||
case column_type::lower_bound: {
|
||||
m_can_enter_basis[j] = true;
|
||||
this->set_scaled_cost(j);
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] =numeric_traits<T>::one();
|
||||
break;
|
||||
}
|
||||
|
@ -227,30 +227,30 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_
|
|||
m_can_enter_basis[j] = true;
|
||||
this->set_scaled_cost(j);
|
||||
this->m_upper_bounds[j] = free_bound;
|
||||
this->m_low_bounds[j] = -free_bound;
|
||||
this->m_lower_bounds[j] = -free_bound;
|
||||
break;
|
||||
}
|
||||
case column_type::boxed:
|
||||
m_can_enter_basis[j] = false;
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = this->m_low_bounds[j] = numeric_traits<T>::zero(); // is it needed?
|
||||
this->m_upper_bounds[j] = this->m_lower_bounds[j] = numeric_traits<T>::zero(); // is it needed?
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
|
||||
this->m_costs[j] = 0;
|
||||
SASSERT(get_column_type(j) != column_type::upper_bound);
|
||||
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::low_bound))) {
|
||||
lp_assert(get_column_type(j) != column_type::upper_bound);
|
||||
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::lower_bound))) {
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::one();
|
||||
} else {
|
||||
m_column_types_of_core_solver[j] = column_type::fixed;
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_lower_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
@ -269,7 +269,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bou
|
|||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
SASSERT(row < this->row_count());
|
||||
lp_assert(row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
|
@ -283,7 +283,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_s
|
|||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
set_type_for_logical(slack_var, column_type::low_bound);
|
||||
set_type_for_logical(slack_var, column_type::lower_bound);
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
if (rs > 0) {
|
||||
// adding one artificial
|
||||
|
@ -301,7 +301,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_s
|
|||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
set_type_for_logical(slack_var, column_type::low_bound);
|
||||
set_type_for_logical(slack_var, column_type::lower_bound);
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
|
@ -328,7 +328,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::augment_matrix_A_a
|
|||
m_column_types_of_logicals.resize(this->m_slacks + this->m_artificials);
|
||||
this->m_costs.resize(n);
|
||||
this->m_upper_bounds.resize(n);
|
||||
this->m_low_bounds.resize(n);
|
||||
this->m_lower_bounds.resize(n);
|
||||
m_can_enter_basis.resize(n);
|
||||
this->m_basis.resize(this->m_A->row_count());
|
||||
}
|
||||
|
@ -351,7 +351,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solut
|
|||
this->flip_costs(); // do it for now, todo ( remove the flipping)
|
||||
|
||||
this->cleanup();
|
||||
if (this->m_status == INFEASIBLE) {
|
||||
if (this->m_status == lp_status::INFEASIBLE) {
|
||||
return;
|
||||
}
|
||||
this->fill_matrix_A_and_init_right_side();
|
||||
|
@ -361,7 +361,7 @@ template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solut
|
|||
fill_first_stage_solver_fields();
|
||||
copy_m_b_aside_and_set_it_to_zeros();
|
||||
stage1();
|
||||
if (this->m_status == FEASIBLE) {
|
||||
if (this->m_status == lp_status::FEASIBLE) {
|
||||
stage2();
|
||||
}
|
||||
}
|
|
@ -23,8 +23,8 @@ Revision History:
|
|||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/lp_primal_core_solver.hpp"
|
||||
#include "util/lp/lp_primal_core_solver_tableau.h"
|
||||
#include "util/lp/lp_primal_core_solver_def.h"
|
||||
#include "util/lp/lp_primal_core_solver_tableau_def.h"
|
||||
namespace lp {
|
||||
|
||||
template void lp_primal_core_solver<double, double>::find_feasible_solution();
|
|
@ -37,10 +37,9 @@ Revision History:
|
|||
#include "util/lp/breakpoint.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
#include "util/lp/int_set.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
namespace lp {
|
||||
|
||||
// This core solver solves (Ax=b, low_bound_values \leq x \leq upper_bound_values, maximize costs*x )
|
||||
// This core solver solves (Ax=b, lower_bound_values \leq x \leq upper_bound_values, maximize costs*x )
|
||||
// The right side b is given implicitly by x and the basis
|
||||
template <typename T, typename X>
|
||||
class lp_primal_core_solver:public lp_core_solver_base<T, X> {
|
||||
|
@ -85,7 +84,7 @@ public:
|
|||
// unsigned len = 100000000;
|
||||
// for (unsigned j : this->m_inf_set.m_index) {
|
||||
// int i = this->m_basis_heading[j];
|
||||
// SASSERT(i >= 0);
|
||||
// lp_assert(i >= 0);
|
||||
// unsigned row_len = this->m_A.m_rows[i].size();
|
||||
// if (row_len < len) {
|
||||
// choices.clear();
|
||||
|
@ -113,52 +112,52 @@ public:
|
|||
bool column_is_benefitial_for_entering_basis_on_sign_row_strategy(unsigned j, int sign) const {
|
||||
// sign = 1 means the x of the basis column of the row has to grow to become feasible, when the coeff before j is neg, or x - has to diminish when the coeff is pos
|
||||
// we have xbj = -aj * xj
|
||||
SASSERT(this->m_basis_heading[j] < 0);
|
||||
SASSERT(this->column_is_feasible(j));
|
||||
lp_assert(this->m_basis_heading[j] < 0);
|
||||
lp_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column: return true;
|
||||
case column_type::fixed: return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (sign < 0)
|
||||
return true;
|
||||
return !this->x_is_at_low_bound(j);
|
||||
return !this->x_is_at_lower_bound(j);
|
||||
case column_type::upper_bound:
|
||||
if (sign > 0)
|
||||
return true;
|
||||
return !this->x_is_at_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (sign < 0)
|
||||
return !this->x_is_at_low_bound(j);
|
||||
return !this->x_is_at_lower_bound(j);
|
||||
return !this->x_is_at_upper_bound(j);
|
||||
}
|
||||
|
||||
SASSERT(false); // cannot be here
|
||||
lp_assert(false); // cannot be here
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool needs_to_grow(unsigned bj) const {
|
||||
SASSERT(!this->column_is_feasible(bj));
|
||||
lp_assert(!this->column_is_feasible(bj));
|
||||
switch(this->m_column_types[bj]) {
|
||||
case column_type::free_column:
|
||||
return false;
|
||||
case column_type::fixed:
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
case column_type::boxed:
|
||||
return this-> x_below_low_bound(bj);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
SASSERT(false); // unreachable
|
||||
lp_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
int inf_sign_of_column(unsigned bj) const {
|
||||
SASSERT(!this->column_is_feasible(bj));
|
||||
lp_assert(!this->column_is_feasible(bj));
|
||||
switch(this->m_column_types[bj]) {
|
||||
case column_type::free_column:
|
||||
return 0;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
return 1;
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
|
@ -166,7 +165,7 @@ public:
|
|||
default:
|
||||
return -1;
|
||||
}
|
||||
SASSERT(false); // unreachable
|
||||
lp_assert(false); // unreachable
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
@ -174,15 +173,15 @@ public:
|
|||
|
||||
bool monoid_can_decrease(const row_cell<T> & rc) const {
|
||||
unsigned j = rc.m_j;
|
||||
SASSERT(this->column_is_feasible(j));
|
||||
lp_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
case column_type::fixed:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
return this->x_above_lower_bound(j);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -194,28 +193,28 @@ public:
|
|||
return this->x_below_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
return this->x_above_lower_bound(j);
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
SASSERT(false); // unreachable
|
||||
lp_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monoid_can_increase(const row_cell<T> & rc) const {
|
||||
unsigned j = rc.m_j;
|
||||
SASSERT(this->column_is_feasible(j));
|
||||
lp_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
case column_type::fixed:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
return this->x_above_lower_bound(j);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -227,14 +226,14 @@ public:
|
|||
return this->x_below_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
return this->x_above_lower_bound(j);
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
SASSERT(false); // unreachable
|
||||
lp_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -344,24 +343,24 @@ public:
|
|||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
SASSERT(m < 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
lp_assert(m < 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
limit_inf_on_upper_bound_m_neg(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
SASSERT(m < 0 && this->m_column_types[j] == column_type::low_bound);
|
||||
limit_inf_on_bound_m_neg(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_lower_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lp_assert(m < 0 && this->m_column_types[j] == column_type::lower_bound);
|
||||
limit_inf_on_bound_m_neg(m, this->m_x[j], this->m_lower_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
SASSERT(m > 0 && this->m_column_types[j] == column_type::low_bound);
|
||||
limit_inf_on_low_bound_m_pos(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_lower_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lp_assert(m > 0 && this->m_column_types[j] == column_type::lower_bound);
|
||||
limit_inf_on_lower_bound_m_pos(m, this->m_x[j], this->m_lower_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
SASSERT(m > 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
lp_assert(m > 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
limit_inf_on_bound_m_pos(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
|
||||
};
|
||||
|
||||
|
@ -370,7 +369,7 @@ public:
|
|||
|
||||
void get_bound_on_variable_and_update_leaving_precisely(unsigned j, vector<unsigned> & leavings, T m, X & t, T & abs_of_d_of_leaving);
|
||||
|
||||
vector<T> m_low_bounds_dummy; // needed for the base class only
|
||||
vector<T> m_lower_bounds_dummy; // needed for the base class only
|
||||
|
||||
X get_max_bound(vector<X> & b);
|
||||
|
||||
|
@ -403,7 +402,7 @@ public:
|
|||
bool need_to_switch_costs() const {
|
||||
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
return false;
|
||||
// SASSERT(calc_current_x_is_feasible() == current_x_is_feasible());
|
||||
// lp_assert(calc_current_x_is_feasible() == current_x_is_feasible());
|
||||
return this->current_x_is_feasible() == this->m_using_infeas_costs;
|
||||
}
|
||||
|
||||
|
@ -420,7 +419,7 @@ public:
|
|||
// returns the number of iterations
|
||||
unsigned solve();
|
||||
|
||||
lu<T, X> * factorization() {return this->m_factorization;}
|
||||
lu<static_matrix<T, X>> * factorization() {return this->m_factorization;}
|
||||
|
||||
void delete_factorization();
|
||||
|
||||
|
@ -445,7 +444,7 @@ public:
|
|||
|
||||
void advance_on_entering_and_leaving_tableau_rows(int entering, int leaving, const X &theta ) {
|
||||
this->update_basis_and_x_tableau(entering, leaving, theta);
|
||||
this->update_column_in_inf_set(entering);
|
||||
this->track_column_feasibility(entering);
|
||||
}
|
||||
|
||||
|
||||
|
@ -458,23 +457,23 @@ public:
|
|||
if (j == -1)
|
||||
return -1;
|
||||
|
||||
SASSERT(!this->column_is_feasible(j));
|
||||
lp_assert(!this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::upper_bound:
|
||||
new_val_for_leaving = this->m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
new_val_for_leaving = this->m_low_bounds[j];
|
||||
case column_type::lower_bound:
|
||||
new_val_for_leaving = this->m_lower_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (this->x_above_upper_bound(j))
|
||||
new_val_for_leaving = this->m_upper_bounds[j];
|
||||
else
|
||||
new_val_for_leaving = this->m_low_bounds[j];
|
||||
new_val_for_leaving = this->m_lower_bounds[j];
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
new_val_for_leaving = numeric_traits<T>::zero(); // does not matter
|
||||
}
|
||||
return j;
|
||||
|
@ -484,7 +483,7 @@ public:
|
|||
X new_val_for_leaving;
|
||||
int leaving = find_leaving_tableau_rows(new_val_for_leaving);
|
||||
if (leaving == -1) {
|
||||
this->set_status(OPTIMAL);
|
||||
this->set_status(lp_status::OPTIMAL);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -500,14 +499,14 @@ public:
|
|||
T a_ent;
|
||||
int entering = find_beneficial_column_in_row_tableau_rows(this->m_basis_heading[leaving], a_ent);
|
||||
if (entering == -1) {
|
||||
this->set_status(INFEASIBLE);
|
||||
this->set_status(lp_status::INFEASIBLE);
|
||||
return;
|
||||
}
|
||||
X theta = (this->m_x[leaving] - new_val_for_leaving) / a_ent;
|
||||
advance_on_entering_and_leaving_tableau_rows(entering, leaving, theta );
|
||||
SASSERT(this->m_x[leaving] == new_val_for_leaving);
|
||||
lp_assert(this->m_x[leaving] == new_val_for_leaving);
|
||||
if (this->current_x_is_feasible())
|
||||
this->set_status(OPTIMAL);
|
||||
this->set_status(lp_status::OPTIMAL);
|
||||
}
|
||||
|
||||
void fill_breakpoints_array(unsigned entering);
|
||||
|
@ -522,30 +521,30 @@ public:
|
|||
void update_basis_and_x_with_comparison(unsigned entering, unsigned leaving, X delta);
|
||||
|
||||
void decide_on_status_when_cannot_find_entering() {
|
||||
SASSERT(!need_to_switch_costs());
|
||||
this->set_status(this->current_x_is_feasible()? OPTIMAL: INFEASIBLE);
|
||||
lp_assert(!need_to_switch_costs());
|
||||
this->set_status(this->current_x_is_feasible()? lp_status::OPTIMAL: lp_status::INFEASIBLE);
|
||||
}
|
||||
|
||||
// void limit_theta_on_basis_column_for_feas_case_m_neg(unsigned j, const T & m, X & theta) {
|
||||
// SASSERT(m < 0);
|
||||
// SASSERT(this->m_column_type[j] == low_bound || this->m_column_type[j] == boxed);
|
||||
// const X & eps = harris_eps_for_bound(this->m_low_bounds[j]);
|
||||
// if (this->above_bound(this->m_x[j], this->m_low_bounds[j])) {
|
||||
// theta = std::min((this->m_low_bounds[j] -this->m_x[j] - eps) / m, theta);
|
||||
// lp_assert(m < 0);
|
||||
// lp_assert(this->m_column_type[j] == lower_bound || this->m_column_type[j] == boxed);
|
||||
// const X & eps = harris_eps_for_bound(this->m_lower_bounds[j]);
|
||||
// if (this->above_bound(this->m_x[j], this->m_lower_bounds[j])) {
|
||||
// theta = std::min((this->m_lower_bounds[j] -this->m_x[j] - eps) / m, theta);
|
||||
// if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
|
||||
// }
|
||||
// }
|
||||
|
||||
void limit_theta_on_basis_column_for_feas_case_m_neg_no_check(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
SASSERT(m < 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_low_bounds[j]);
|
||||
limit_theta((this->m_low_bounds[j] - this->m_x[j] - eps) / m, theta, unlimited);
|
||||
lp_assert(m < 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_lower_bounds[j]);
|
||||
limit_theta((this->m_lower_bounds[j] - this->m_x[j] - eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
|
||||
}
|
||||
|
||||
bool limit_inf_on_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets smaller
|
||||
SASSERT(m < 0);
|
||||
lp_assert(m < 0);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (this->below_bound(x, bound)) return false;
|
||||
if (this->above_bound(x, bound)) {
|
||||
|
@ -569,7 +568,7 @@ public:
|
|||
|
||||
bool limit_inf_on_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets larger
|
||||
SASSERT(m > 0);
|
||||
lp_assert(m > 0);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (this->above_bound(x, bound)) return false;
|
||||
if (this->below_bound(x, bound)) {
|
||||
|
@ -591,17 +590,17 @@ public:
|
|||
return true;
|
||||
}
|
||||
|
||||
void limit_inf_on_low_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
void limit_inf_on_lower_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
// x gets larger
|
||||
SASSERT(m > 0);
|
||||
lp_assert(m > 0);
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// x gets larger
|
||||
SASSERT(m > 0);
|
||||
lp_assert(m > 0);
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x + eps) / m, theta, unlimited);
|
||||
|
@ -611,7 +610,7 @@ public:
|
|||
|
||||
void limit_inf_on_upper_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets smaller
|
||||
SASSERT(m < 0);
|
||||
lp_assert(m < 0);
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x - eps) / m, theta, unlimited);
|
||||
|
@ -619,9 +618,9 @@ public:
|
|||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
// SASSERT(m > 0 && this->m_column_type[j] == column_type::boxed);
|
||||
// lp_assert(m > 0 && this->m_column_type[j] == column_type::boxed);
|
||||
const X & x = this->m_x[j];
|
||||
const X & lbound = this->m_low_bounds[j];
|
||||
const X & lbound = this->m_lower_bounds[j];
|
||||
|
||||
if (this->below_bound(x, lbound)) {
|
||||
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
|
@ -639,14 +638,14 @@ public:
|
|||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
// SASSERT(m < 0 && this->m_column_type[j] == column_type::boxed);
|
||||
// lp_assert(m < 0 && this->m_column_type[j] == column_type::boxed);
|
||||
const X & x = this->m_x[j];
|
||||
const X & ubound = this->m_upper_bounds[j];
|
||||
if (this->above_bound(x, ubound)) {
|
||||
const X& eps = harris_eps_for_bound(ubound);
|
||||
limit_theta((ubound - x - eps) / m, theta, unlimited);
|
||||
} else {
|
||||
const X & lbound = this->m_low_bounds[j];
|
||||
const X & lbound = this->m_lower_bounds[j];
|
||||
if (this->above_bound(x, lbound)){
|
||||
const X& eps = harris_eps_for_bound(lbound);
|
||||
limit_theta((lbound - x - eps) / m, theta, unlimited);
|
||||
|
@ -657,7 +656,7 @@ public:
|
|||
}
|
||||
}
|
||||
void limit_theta_on_basis_column_for_feas_case_m_pos(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
SASSERT(m > 0);
|
||||
lp_assert(m > 0);
|
||||
const T& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
if (this->below_bound(this->m_x[j], this->m_upper_bounds[j])) {
|
||||
limit_theta((this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
|
||||
|
@ -669,7 +668,7 @@ public:
|
|||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_feas_case_m_pos_no_check(unsigned j, const T & m, X & theta, bool & unlimited ) {
|
||||
SASSERT(m > 0);
|
||||
lp_assert(m > 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
limit_theta( (this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) {
|
||||
|
@ -679,7 +678,7 @@ public:
|
|||
|
||||
// j is a basic column or the entering, in any case x[j] has to stay feasible.
|
||||
// m is the multiplier. updating t in a way that holds the following
|
||||
// x[j] + t * m >= this->m_low_bounds[j]- harris_feasibility_tolerance ( if m < 0 )
|
||||
// x[j] + t * m >= this->m_lower_bounds[j]- harris_feasibility_tolerance ( if m < 0 )
|
||||
// or
|
||||
// x[j] + t * m <= this->m_upper_bounds[j] + harris_feasibility_tolerance ( if m > 0)
|
||||
void limit_theta_on_basis_column(unsigned j, T m, X & theta, bool & unlimited) {
|
||||
|
@ -696,15 +695,15 @@ public:
|
|||
limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(j, m, theta, unlimited);
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m < 0)
|
||||
limit_theta_on_basis_column_for_feas_case_m_neg_no_check(j, m, theta, unlimited);
|
||||
} else {
|
||||
if (m < 0)
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(j, m, theta, unlimited);
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_lower_bound(j, m, theta, unlimited);
|
||||
else
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(j, m, theta, unlimited);
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_lower_bound(j, m, theta, unlimited);
|
||||
}
|
||||
break;
|
||||
// case fixed:
|
||||
|
@ -735,7 +734,7 @@ public:
|
|||
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
if (!unlimited && theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
|
@ -770,7 +769,7 @@ public:
|
|||
|
||||
void init_reduced_costs();
|
||||
|
||||
bool low_bounds_are_set() const override { return true; }
|
||||
bool lower_bounds_are_set() const override { return true; }
|
||||
|
||||
int advance_on_sorted_breakpoints(unsigned entering, X & t);
|
||||
|
||||
|
@ -794,7 +793,7 @@ public:
|
|||
if (this->m_basis_heading[j] < 0)
|
||||
continue;
|
||||
if (!this->column_is_feasible(j))
|
||||
this->m_inf_set.insert(j);
|
||||
this->insert_column_into_inf_set(j);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -807,7 +806,7 @@ public:
|
|||
if (this->x_above_upper_bound(j))
|
||||
return 1;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(j))
|
||||
return -1;
|
||||
break;
|
||||
|
@ -818,7 +817,7 @@ public:
|
|||
case column_type::free_column:
|
||||
return 0;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -842,18 +841,18 @@ public:
|
|||
case column_type::fixed:
|
||||
return 0;
|
||||
case column_type::boxed:
|
||||
if (this->x_is_at_low_bound(j))
|
||||
if (this->x_is_at_lower_bound(j))
|
||||
return 1;
|
||||
return -1;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
return 1;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
return -1;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
return 0;
|
||||
|
||||
|
@ -879,7 +878,7 @@ public:
|
|||
|
||||
// the delta is between the old and the new cost (old - new)
|
||||
void update_reduced_cost_for_basic_column_cost_change(const T & delta, unsigned j) {
|
||||
SASSERT(this->m_basis_heading[j] >= 0);
|
||||
lp_assert(this->m_basis_heading[j] >= 0);
|
||||
unsigned i = static_cast<unsigned>(this->m_basis_heading[j]);
|
||||
for (const row_cell<T> & rc : this->m_A.m_rows[i]) {
|
||||
unsigned k = rc.m_j;
|
||||
|
@ -906,7 +905,7 @@ public:
|
|||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
const vector<column_type> & column_type_array,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & lower_bound_values,
|
||||
const vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names):
|
||||
|
@ -919,7 +918,7 @@ public:
|
|||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
low_bound_values,
|
||||
lower_bound_values,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()),
|
||||
m_epsilon_of_reduced_cost(T(1)/T(10000000)),
|
||||
|
@ -930,7 +929,7 @@ public:
|
|||
} else {
|
||||
m_converted_harris_eps = zero_of_type<T>();
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
}
|
||||
|
||||
// constructor
|
||||
|
@ -954,12 +953,12 @@ public:
|
|||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
m_low_bounds_dummy,
|
||||
m_lower_bounds_dummy,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()),
|
||||
m_converted_harris_eps(convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance)) {
|
||||
SASSERT(initial_x_is_correct());
|
||||
m_low_bounds_dummy.resize(A.column_count(), zero_of_type<T>());
|
||||
lp_assert(initial_x_is_correct());
|
||||
m_lower_bounds_dummy.resize(A.column_count(), zero_of_type<T>());
|
||||
m_enter_price_eps = numeric_traits<T>::precise() ? numeric_traits<T>::zero() : T(1e-5);
|
||||
#ifdef Z3DEBUG
|
||||
// check_correctness();
|
||||
|
@ -972,7 +971,7 @@ public:
|
|||
basis_set.insert(this->m_basis[i]);
|
||||
}
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->column_has_low_bound(j) && this->m_x[j] < numeric_traits<T>::zero()) {
|
||||
if (this->column_has_lower_bound(j) && this->m_x[j] < numeric_traits<T>::zero()) {
|
||||
LP_OUT(this->m_settings, "low bound for variable " << j << " does not hold: this->m_x[" << j << "] = " << this->m_x[j] << " is negative " << std::endl);
|
||||
return false;
|
||||
}
|
||||
|
@ -983,7 +982,7 @@ public:
|
|||
}
|
||||
|
||||
if (basis_set.find(j) != basis_set.end()) continue;
|
||||
if (this->m_column_types[j] == column_type::low_bound) {
|
||||
if (this->m_column_types[j] == column_type::lower_bound) {
|
||||
if (numeric_traits<T>::zero() != this->m_x[j]) {
|
||||
LP_OUT(this->m_settings, "only low bound is set for " << j << " but low bound value " << numeric_traits<T>::zero() << " is not equal to " << this->m_x[j] << std::endl);
|
||||
return false;
|
||||
|
|
|
@ -25,12 +25,12 @@ Revision History:
|
|||
#include <string>
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
namespace lp {
|
||||
// This core solver solves (Ax=b, low_bound_values \leq x \leq upper_bound_values, maximize costs*x )
|
||||
// This core solver solves (Ax=b, lower_bound_values \leq x \leq upper_bound_values, maximize costs*x )
|
||||
// The right side b is given implicitly by x and the basis
|
||||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::sort_non_basis_rational() {
|
||||
SASSERT(numeric_traits<T>::precise());
|
||||
lp_assert(numeric_traits<T>::precise());
|
||||
if (this->m_settings.use_tableau()) {
|
||||
std::sort(this->m_nbasis.begin(), this->m_nbasis.end(), [this](unsigned a, unsigned b) {
|
||||
unsigned ca = this->m_A.number_of_non_zeroes_in_column(a);
|
||||
|
@ -84,12 +84,12 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_on_breakpoin
|
|||
bool ret;
|
||||
const T & d = this->m_d[j];
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::low_bound:
|
||||
SASSERT(this->x_is_at_low_bound(j));
|
||||
case column_type::lower_bound:
|
||||
lp_assert(this->x_is_at_lower_bound(j));
|
||||
ret = d < -m_epsilon_of_reduced_cost;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
SASSERT(this->x_is_at_upper_bound(j));
|
||||
lp_assert(this->x_is_at_upper_bound(j));
|
||||
ret = d > m_epsilon_of_reduced_cost;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
|
@ -97,16 +97,16 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_on_breakpoin
|
|||
break;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool low_bound = this->x_is_at_low_bound(j);
|
||||
SASSERT(low_bound || this->x_is_at_upper_bound(j));
|
||||
ret = (low_bound && d < -m_epsilon_of_reduced_cost) || ((!low_bound) && d > m_epsilon_of_reduced_cost);
|
||||
bool lower_bound = this->x_is_at_lower_bound(j);
|
||||
lp_assert(lower_bound || this->x_is_at_upper_bound(j));
|
||||
ret = (lower_bound && d < -m_epsilon_of_reduced_cost) || ((!lower_bound) && d > m_epsilon_of_reduced_cost);
|
||||
}
|
||||
break;
|
||||
case column_type::free_column:
|
||||
ret = d > m_epsilon_of_reduced_cost || d < - m_epsilon_of_reduced_cost;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
ret = false;
|
||||
break;
|
||||
}
|
||||
|
@ -125,7 +125,7 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis(unsign
|
|||
if (dj > m_epsilon_of_reduced_cost || dj < -m_epsilon_of_reduced_cost)
|
||||
return true;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (dj > m_epsilon_of_reduced_cost) return true;;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
|
@ -137,19 +137,19 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis(unsign
|
|||
return true;
|
||||
break;
|
||||
} else if (dj < - m_epsilon_of_reduced_cost) {
|
||||
if (this->m_x[j] > this->m_low_bounds[j] + this->bound_span(j)/2)
|
||||
if (this->m_x[j] > this->m_lower_bounds[j] + this->bound_span(j)/2)
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precise(unsigned j) const {
|
||||
SASSERT (numeric_traits<T>::precise());
|
||||
lp_assert (numeric_traits<T>::precise());
|
||||
if (this->m_using_infeas_costs && this->m_settings.use_breakpoints_in_feasibility_search)
|
||||
return column_is_benefitial_for_entering_on_breakpoints(j);
|
||||
const T& dj = this->m_d[j];
|
||||
|
@ -159,9 +159,9 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precis
|
|||
if (!is_zero(dj))
|
||||
return true;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (dj > zero_of_type<T>()) return true;
|
||||
if (dj < 0 && this->m_x[j] > this->m_low_bounds[j]){
|
||||
if (dj < 0 && this->m_x[j] > this->m_lower_bounds[j]){
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
|
@ -177,12 +177,12 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precis
|
|||
return true;
|
||||
break;
|
||||
} else if (dj < zero_of_type<T>()) {
|
||||
if (this->m_x[j] > this->m_low_bounds[j])
|
||||
if (this->m_x[j] > this->m_lower_bounds[j])
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
|
@ -190,7 +190,7 @@ bool lp_primal_core_solver<T, X>::column_is_benefitial_for_entering_basis_precis
|
|||
|
||||
template <typename T, typename X>
|
||||
int lp_primal_core_solver<T, X>::choose_entering_column_presize(unsigned number_of_benefitial_columns_to_go_over) { // at this moment m_y = cB * B(-1)
|
||||
SASSERT(numeric_traits<T>::precise());
|
||||
lp_assert(numeric_traits<T>::precise());
|
||||
if (number_of_benefitial_columns_to_go_over == 0)
|
||||
return -1;
|
||||
if (this->m_basis_sort_counter == 0) {
|
||||
|
@ -274,7 +274,7 @@ int lp_primal_core_solver<T, X>::choose_entering_column(unsigned number_of_benef
|
|||
template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_sorted_breakpoints(unsigned entering, X &t) {
|
||||
T slope_at_entering = this->m_d[entering];
|
||||
breakpoint<X> * last_bp = nullptr;
|
||||
SASSERT(m_breakpoint_indices_queue.is_empty()==false);
|
||||
lp_assert(m_breakpoint_indices_queue.is_empty()==false);
|
||||
while (m_breakpoint_indices_queue.is_empty() == false) {
|
||||
unsigned bi = m_breakpoint_indices_queue.dequeue();
|
||||
breakpoint<X> *b = &m_breakpoints[bi];
|
||||
|
@ -289,7 +289,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_so
|
|||
}
|
||||
}
|
||||
}
|
||||
SASSERT (last_bp != nullptr);
|
||||
lp_assert (last_bp != nullptr);
|
||||
t = last_bp->m_delta;
|
||||
return last_bp->m_j;
|
||||
}
|
||||
|
@ -297,13 +297,13 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::advance_on_so
|
|||
|
||||
template <typename T, typename X> int
|
||||
lp_primal_core_solver<T, X>::find_leaving_and_t_with_breakpoints(unsigned entering, X & t){
|
||||
SASSERT(this->precise() == false);
|
||||
lp_assert(this->precise() == false);
|
||||
fill_breakpoints_array(entering);
|
||||
return advance_on_sorted_breakpoints(entering, t);
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_core_solver<T, X>::get_harris_theta(X & theta) {
|
||||
SASSERT(this->m_ed.is_OK());
|
||||
lp_assert(this->m_ed.is_OK());
|
||||
bool unlimited = true;
|
||||
for (unsigned i : this->m_ed.m_index) {
|
||||
if (this->m_settings.abs_val_is_smaller_than_pivot_tolerance(this->m_ed[i])) continue;
|
||||
|
@ -360,13 +360,13 @@ template <typename T, typename X> bool lp_primal_core_solver<T, X>::try_jump_to_
|
|||
if (m_sign_of_entering_delta > 0) {
|
||||
t = this->m_upper_bounds[entering] - this->m_x[entering];
|
||||
if (unlimited || t <= theta){
|
||||
SASSERT(t >= zero_of_type<X>());
|
||||
lp_assert(t >= zero_of_type<X>());
|
||||
return true;
|
||||
}
|
||||
} else { // m_sign_of_entering_delta == -1
|
||||
t = this->m_x[entering] - this->m_low_bounds[entering];
|
||||
t = this->m_x[entering] - this->m_lower_bounds[entering];
|
||||
if (unlimited || t <= theta) {
|
||||
SASSERT(t >= zero_of_type<X>());
|
||||
lp_assert(t >= zero_of_type<X>());
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -375,16 +375,16 @@ template <typename T, typename X> bool lp_primal_core_solver<T, X>::try_jump_to_
|
|||
if (m_sign_of_entering_delta > 0) {
|
||||
t = this->m_upper_bounds[entering] - this->m_x[entering];
|
||||
if (unlimited || t <= theta){
|
||||
SASSERT(t >= zero_of_type<X>());
|
||||
lp_assert(t >= zero_of_type<X>());
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (m_sign_of_entering_delta < 0) {
|
||||
t = this->m_x[entering] - this->m_low_bounds[entering];
|
||||
t = this->m_x[entering] - this->m_lower_bounds[entering];
|
||||
if (unlimited || t <= theta) {
|
||||
SASSERT(t >= zero_of_type<X>());
|
||||
lp_assert(t >= zero_of_type<X>());
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -404,7 +404,7 @@ try_jump_to_another_bound_on_entering_unlimited(unsigned entering, X & t ) {
|
|||
return true;
|
||||
}
|
||||
// m_sign_of_entering_delta == -1
|
||||
t = this->m_x[entering] - this->m_low_bounds[entering];
|
||||
t = this->m_x[entering] - this->m_lower_bounds[entering];
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -420,7 +420,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
do {
|
||||
unsigned i = this->m_ed.m_index[k];
|
||||
const T & ed = this->m_ed[i];
|
||||
SASSERT(!numeric_traits<T>::is_zero(ed));
|
||||
lp_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
limit_theta_on_basis_column(j, - ed * m_sign_of_entering_delta, t, unlimited);
|
||||
if (!unlimited) {
|
||||
|
@ -439,7 +439,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
while (k != initial_k) {
|
||||
unsigned i = this->m_ed.m_index[k];
|
||||
const T & ed = this->m_ed[i];
|
||||
SASSERT(!numeric_traits<T>::is_zero(ed));
|
||||
lp_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
unlimited = true;
|
||||
limit_theta_on_basis_column(j, -ed * m_sign_of_entering_delta, ratio, unlimited);
|
||||
|
@ -479,7 +479,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leavi
|
|||
return find_leaving_and_t_with_breakpoints(entering, t);
|
||||
X theta;
|
||||
bool unlimited = get_harris_theta(theta);
|
||||
SASSERT(unlimited || theta >= zero_of_type<X>());
|
||||
lp_assert(unlimited || theta >= zero_of_type<X>());
|
||||
if (try_jump_to_another_bound_on_entering(entering, theta, t, unlimited)) return entering;
|
||||
if (unlimited)
|
||||
return -1;
|
||||
|
@ -489,7 +489,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leavi
|
|||
|
||||
|
||||
// m is the multiplier. updating t in a way that holds the following
|
||||
// x[j] + t * m >= m_low_bounds[j] ( if m < 0 )
|
||||
// x[j] + t * m >= m_lower_bounds[j] ( if m < 0 )
|
||||
// or
|
||||
// x[j] + t * m <= this->m_upper_bounds[j] ( if m > 0)
|
||||
template <typename T, typename X> void
|
||||
|
@ -501,7 +501,7 @@ lp_primal_core_solver<T, X>::get_bound_on_variable_and_update_leaving_precisely(
|
|||
return;
|
||||
default:break;
|
||||
}
|
||||
X tt = - (this->m_low_bounds[j] - this->m_x[j]) / m;
|
||||
X tt = - (this->m_lower_bounds[j] - this->m_x[j]) / m;
|
||||
if (numeric_traits<X>::is_neg(tt))
|
||||
tt = zero_of_type<X>();
|
||||
if (leavings.size() == 0 || tt < t || (tt == t && m > abs_of_d_of_leaving)) {
|
||||
|
@ -516,7 +516,7 @@ lp_primal_core_solver<T, X>::get_bound_on_variable_and_update_leaving_precisely(
|
|||
} else if (m < 0){
|
||||
switch (this->m_column_types[j]) { // check that j has an upper bound
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
return;
|
||||
default:break;
|
||||
}
|
||||
|
@ -548,7 +548,7 @@ template <typename T, typename X> X lp_primal_core_solver<T, X>::get_max_boun
|
|||
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_Ax_equal_b() {
|
||||
dense_matrix<T, X> d(this->m_A);
|
||||
T * ls = d.apply_from_left_with_different_dims(this->m_x);
|
||||
SASSERT(vectors_are_equal<T>(ls, this->m_b, this->m_m()));
|
||||
lp_assert(vectors_are_equal<T>(ls, this->m_b, this->m_m()));
|
||||
delete [] ls;
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_the_bounds() {
|
||||
|
@ -558,8 +558,8 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::check_the
|
|||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_bound(unsigned i) {
|
||||
SASSERT (!(this->column_has_low_bound(i) && (numeric_traits<T>::zero() > this->m_x[i])));
|
||||
SASSERT (!(this->column_has_upper_bound(i) && (this->m_upper_bounds[i] < this->m_x[i])));
|
||||
lp_assert (!(this->column_has_lower_bound(i) && (numeric_traits<T>::zero() > this->m_x[i])));
|
||||
lp_assert (!(this->column_has_upper_bound(i) && (this->m_upper_bounds[i] < this->m_x[i])));
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::check_correctness() {
|
||||
|
@ -575,8 +575,8 @@ void lp_primal_core_solver<T, X>::update_reduced_costs_from_pivot_row(unsigned e
|
|||
// the basis heading has changed already
|
||||
#ifdef Z3DEBUG
|
||||
auto & basis_heading = this->m_basis_heading;
|
||||
SASSERT(basis_heading[entering] >= 0 && static_cast<unsigned>(basis_heading[entering]) < this->m_m());
|
||||
SASSERT(basis_heading[leaving] < 0);
|
||||
lp_assert(basis_heading[entering] >= 0 && static_cast<unsigned>(basis_heading[entering]) < this->m_m());
|
||||
lp_assert(basis_heading[leaving] < 0);
|
||||
#endif
|
||||
T pivot = this->m_pivot_row[entering];
|
||||
T dq = this->m_d[entering]/pivot;
|
||||
|
@ -599,7 +599,7 @@ void lp_primal_core_solver<T, X>::update_reduced_costs_from_pivot_row(unsigned e
|
|||
template <typename T, typename X> int lp_primal_core_solver<T, X>::refresh_reduced_cost_at_entering_and_check_that_it_is_off(unsigned entering) {
|
||||
if (numeric_traits<T>::precise()) return 0;
|
||||
T reduced_at_entering_was = this->m_d[entering]; // can benefit from going over non-zeros of m_ed
|
||||
SASSERT(abs(reduced_at_entering_was) > m_epsilon_of_reduced_cost);
|
||||
lp_assert(abs(reduced_at_entering_was) > m_epsilon_of_reduced_cost);
|
||||
T refreshed_cost = this->m_costs[entering];
|
||||
unsigned i = this->m_m();
|
||||
while (i--) refreshed_cost -= this->m_costs[this->m_basis[i]] * this->m_ed[i];
|
||||
|
@ -634,7 +634,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::backup_an
|
|||
m_costs_backup = this->m_costs;
|
||||
} else {
|
||||
T cost_max = std::max(max_abs_in_vector(this->m_costs), T(1));
|
||||
SASSERT(m_costs_backup.size() == 0);
|
||||
lp_assert(m_costs_backup.size() == 0);
|
||||
for (unsigned j = 0; j < this->m_costs.size(); j++)
|
||||
m_costs_backup.push_back(this->m_costs[j] /= cost_max);
|
||||
}
|
||||
|
@ -664,16 +664,16 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run(
|
|||
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::calc_working_vector_beta_for_column_norms(){
|
||||
SASSERT(numeric_traits<T>::precise() == false);
|
||||
SASSERT(this->m_ed.is_OK());
|
||||
SASSERT(m_beta.is_OK());
|
||||
lp_assert(numeric_traits<T>::precise() == false);
|
||||
lp_assert(this->m_ed.is_OK());
|
||||
lp_assert(m_beta.is_OK());
|
||||
m_beta = this->m_ed;
|
||||
this->m_factorization->solve_yB_with_error_check_indexed(m_beta, this->m_basis_heading, this->m_basis, this->m_settings);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering, X & t) {
|
||||
SASSERT(!this->A_mult_x_is_off() );
|
||||
CASSERT("A_off", !this->A_mult_x_is_off() );
|
||||
this->update_x(entering, t * m_sign_of_entering_delta);
|
||||
if (this->A_mult_x_is_off_on_index(this->m_ed.m_index) && !this->find_x_by_solving()) {
|
||||
this->init_lu();
|
||||
|
@ -685,7 +685,7 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering
|
|||
}
|
||||
}
|
||||
if (this->m_using_infeas_costs) {
|
||||
SASSERT(is_zero(this->m_costs[entering]));
|
||||
lp_assert(is_zero(this->m_costs[entering]));
|
||||
init_infeasibility_costs_for_changed_basis_only();
|
||||
}
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
|
@ -698,10 +698,10 @@ void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving(int entering
|
|||
}
|
||||
|
||||
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving(int entering, int leaving, X & t) {
|
||||
SASSERT(entering >= 0 && m_non_basis_list.back() == static_cast<unsigned>(entering));
|
||||
SASSERT(this->m_using_infeas_costs || t >= zero_of_type<X>());
|
||||
SASSERT(leaving >= 0 && entering >= 0);
|
||||
SASSERT(entering != leaving || !is_zero(t)); // otherwise nothing changes
|
||||
lp_assert(entering >= 0 && m_non_basis_list.back() == static_cast<unsigned>(entering));
|
||||
lp_assert(this->m_using_infeas_costs || t >= zero_of_type<X>());
|
||||
lp_assert(leaving >= 0 && entering >= 0);
|
||||
lp_assert(entering != leaving || !is_zero(t)); // otherwise nothing changes
|
||||
if (entering == leaving) {
|
||||
advance_on_entering_equal_leaving(entering, t);
|
||||
return;
|
||||
|
@ -713,14 +713,14 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
int pivot_compare_result = this->pivots_in_column_and_row_are_different(entering, leaving);
|
||||
if (!pivot_compare_result){;}
|
||||
else if (pivot_compare_result == 2) { // the sign is changed, cannot continue
|
||||
this->set_status(UNSTABLE);
|
||||
this->set_status(lp_status::UNSTABLE);
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return;
|
||||
} else {
|
||||
SASSERT(pivot_compare_result == 1);
|
||||
lp_assert(pivot_compare_result == 1);
|
||||
this->init_lu();
|
||||
if (this->m_factorization == nullptr || this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(UNSTABLE);
|
||||
this->set_status(lp_status::UNSTABLE);
|
||||
this->iters_with_no_cost_growing()++;
|
||||
return;
|
||||
}
|
||||
|
@ -732,10 +732,10 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
t = -t;
|
||||
}
|
||||
if (!this->update_basis_and_x(entering, leaving, t)) {
|
||||
if (this->get_status() == FLOATING_POINT_ERROR)
|
||||
if (this->get_status() == lp_status::FLOATING_POINT_ERROR)
|
||||
return;
|
||||
if (this->m_look_for_feasible_solution_only) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
return;
|
||||
}
|
||||
init_reduced_costs();
|
||||
|
@ -748,7 +748,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
}
|
||||
|
||||
if (this->current_x_is_feasible()) {
|
||||
this->set_status(FEASIBLE);
|
||||
this->set_status(lp_status::FEASIBLE);
|
||||
if (this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
}
|
||||
|
@ -761,7 +761,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
} else {
|
||||
update_reduced_costs_from_pivot_row(entering, leaving);
|
||||
}
|
||||
SASSERT(!need_to_switch_costs());
|
||||
lp_assert(!need_to_switch_costs());
|
||||
std::list<unsigned>::iterator it = m_non_basis_list.end();
|
||||
it--;
|
||||
* it = static_cast<unsigned>(leaving);
|
||||
|
@ -769,13 +769,13 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_entering_precise(int entering) {
|
||||
SASSERT(numeric_traits<T>::precise());
|
||||
SASSERT(entering > -1);
|
||||
lp_assert(numeric_traits<T>::precise());
|
||||
lp_assert(entering > -1);
|
||||
this->solve_Bd(entering);
|
||||
X t;
|
||||
int leaving = find_leaving_and_t_precise(entering, t);
|
||||
if (leaving == -1) {
|
||||
this->set_status(UNBOUNDED);
|
||||
this->set_status(lp_status::UNBOUNDED);
|
||||
return;
|
||||
}
|
||||
advance_on_entering_and_leaving(entering, leaving, t);
|
||||
|
@ -786,12 +786,12 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_e
|
|||
advance_on_entering_precise(entering);
|
||||
return;
|
||||
}
|
||||
SASSERT(entering > -1);
|
||||
lp_assert(entering > -1);
|
||||
this->solve_Bd(entering);
|
||||
int refresh_result = refresh_reduced_cost_at_entering_and_check_that_it_is_off(entering);
|
||||
if (refresh_result) {
|
||||
if (this->m_look_for_feasible_solution_only) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -806,7 +806,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_e
|
|||
int leaving = find_leaving_and_t(entering, t);
|
||||
if (leaving == -1){
|
||||
if (!this->current_x_is_feasible()) {
|
||||
SASSERT(!numeric_traits<T>::precise()); // we cannot have unbounded with inf costs
|
||||
lp_assert(!numeric_traits<T>::precise()); // we cannot have unbounded with inf costs
|
||||
|
||||
// if (m_look_for_feasible_solution_only) {
|
||||
// this->m_status = INFEASIBLE;
|
||||
|
@ -814,19 +814,19 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_e
|
|||
// }
|
||||
|
||||
|
||||
if (this->get_status() == UNSTABLE) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
if (this->get_status() == lp_status::UNSTABLE) {
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
return;
|
||||
}
|
||||
init_infeasibility_costs();
|
||||
this->set_status(UNSTABLE);
|
||||
this->set_status(lp_status::UNSTABLE);
|
||||
|
||||
return;
|
||||
}
|
||||
if (this->get_status() == TENTATIVE_UNBOUNDED) {
|
||||
this->set_status(UNBOUNDED);
|
||||
if (this->get_status() == lp_status::TENTATIVE_UNBOUNDED) {
|
||||
this->set_status(lp_status::UNBOUNDED);
|
||||
} else {
|
||||
this->set_status(TENTATIVE_UNBOUNDED);
|
||||
this->set_status(lp_status::TENTATIVE_UNBOUNDED);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -840,7 +840,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::push_forw
|
|||
|
||||
template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::get_number_of_non_basic_column_to_try_for_enter() {
|
||||
unsigned ret = static_cast<unsigned>(this->m_nbasis.size());
|
||||
if (this->get_status() == TENTATIVE_UNBOUNDED)
|
||||
if (this->get_status() == lp_status::TENTATIVE_UNBOUNDED)
|
||||
return ret; // we really need to find entering with a large reduced cost
|
||||
if (ret > 300) {
|
||||
ret = (unsigned)(ret * this->m_settings.percent_of_entering_to_check / 100);
|
||||
|
@ -864,15 +864,15 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column
|
|||
template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve() {
|
||||
if (numeric_traits<T>::precise() && this->m_settings.use_tableau())
|
||||
return solve_with_tableau();
|
||||
|
||||
|
||||
init_run();
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only) {
|
||||
this->set_status(FEASIBLE);
|
||||
this->set_status(lp_status::FEASIBLE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ((!numeric_traits<T>::precise()) && this->A_mult_x_is_off()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
return 0;
|
||||
}
|
||||
do {
|
||||
|
@ -880,10 +880,11 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
return this->total_iterations();
|
||||
}
|
||||
one_iteration();
|
||||
SASSERT(!this->m_using_infeas_costs || this->costs_on_nbasis_are_zeros());
|
||||
|
||||
lp_assert(!this->m_using_infeas_costs || this->costs_on_nbasis_are_zeros());
|
||||
switch (this->get_status()) {
|
||||
case OPTIMAL: // double check that we are at optimum
|
||||
case INFEASIBLE:
|
||||
case lp_status::OPTIMAL: // double check that we are at optimum
|
||||
case lp_status::INFEASIBLE:
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
break;
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
|
@ -892,7 +893,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
this->init_lu();
|
||||
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status (FLOATING_POINT_ERROR);
|
||||
this->set_status (lp_status::FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
|
@ -900,7 +901,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
} else { // precise case
|
||||
if (this->m_look_for_feasible_solution_only) { // todo: keep the reduced costs correct all the time!
|
||||
init_reduced_costs();
|
||||
|
@ -908,31 +909,31 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case TENTATIVE_UNBOUNDED:
|
||||
case lp_status::TENTATIVE_UNBOUNDED:
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
|
||||
init_reduced_costs();
|
||||
break;
|
||||
case UNBOUNDED:
|
||||
case lp_status::UNBOUNDED:
|
||||
if (this->current_x_is_infeasible()) {
|
||||
init_reduced_costs();
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
}
|
||||
break;
|
||||
|
||||
case UNSTABLE:
|
||||
SASSERT(! (numeric_traits<T>::precise()));
|
||||
case lp_status::UNSTABLE:
|
||||
lp_assert(! (numeric_traits<T>::precise()));
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
|
@ -941,13 +942,13 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
default:
|
||||
break; // do nothing
|
||||
}
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR
|
||||
} while (this->get_status() != lp_status::FLOATING_POINT_ERROR
|
||||
&&
|
||||
this->get_status() != UNBOUNDED
|
||||
this->get_status() != lp_status::UNBOUNDED
|
||||
&&
|
||||
this->get_status() != OPTIMAL
|
||||
this->get_status() != lp_status::OPTIMAL
|
||||
&&
|
||||
this->get_status() != INFEASIBLE
|
||||
this->get_status() != lp_status::INFEASIBLE
|
||||
&&
|
||||
this->iters_with_no_cost_growing() <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&&
|
||||
|
@ -955,7 +956,7 @@ template <typename T, typename X> unsigned lp_primal_core_solver<T, X>::solve()
|
|||
&&
|
||||
!(this->current_x_is_feasible() && this->m_look_for_feasible_solution_only));
|
||||
|
||||
SASSERT(this->get_status() == FLOATING_POINT_ERROR
|
||||
lp_assert(this->get_status() == lp_status::FLOATING_POINT_ERROR
|
||||
||
|
||||
this->current_x_is_feasible() == false
|
||||
||
|
||||
|
@ -972,7 +973,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::delete_fa
|
|||
|
||||
// according to Swietanowski, " A new steepest edge approximation for the simplex method for linear programming"
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_column_norms() {
|
||||
SASSERT(numeric_traits<T>::precise() == false);
|
||||
lp_assert(numeric_traits<T>::precise() == false);
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
this->m_column_norms[j] = T(static_cast<int>(this->m_A.m_columns[j].size() + 1))
|
||||
|
||||
|
@ -982,7 +983,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_column_
|
|||
|
||||
// debug only
|
||||
template <typename T, typename X> T lp_primal_core_solver<T, X>::calculate_column_norm_exactly(unsigned j) {
|
||||
SASSERT(numeric_traits<T>::precise() == false);
|
||||
lp_assert(numeric_traits<T>::precise() == false);
|
||||
indexed_vector<T> w(this->m_m());
|
||||
this->m_A.copy_column_to_vector(j, w);
|
||||
vector<T> d(this->m_m());
|
||||
|
@ -994,8 +995,8 @@ template <typename T, typename X> T lp_primal_core_solver<T, X>::calculate_colum
|
|||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::update_or_init_column_norms(unsigned entering, unsigned leaving) {
|
||||
SASSERT(numeric_traits<T>::precise() == false);
|
||||
SASSERT(m_column_norm_update_counter <= this->m_settings.column_norms_update_frequency);
|
||||
lp_assert(numeric_traits<T>::precise() == false);
|
||||
lp_assert(m_column_norm_update_counter <= this->m_settings.column_norms_update_frequency);
|
||||
if (m_column_norm_update_counter == this->m_settings.column_norms_update_frequency) {
|
||||
m_column_norm_update_counter = 0;
|
||||
init_column_norms();
|
||||
|
@ -1007,7 +1008,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::update_or
|
|||
|
||||
// following Swietanowski - A new steepest ...
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::update_column_norms(unsigned entering, unsigned leaving) {
|
||||
SASSERT(numeric_traits<T>::precise() == false);
|
||||
lp_assert(numeric_traits<T>::precise() == false);
|
||||
T pivot = this->m_pivot_row[entering];
|
||||
T g_ent = calculate_norm_of_entering_exactly() / pivot / pivot;
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
|
@ -1042,8 +1043,8 @@ template <typename T, typename X> T lp_primal_core_solver<T, X>::calculate_no
|
|||
// calling it stage1 is too cryptic
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::find_feasible_solution() {
|
||||
this->m_look_for_feasible_solution_only = true;
|
||||
SASSERT(this->non_basic_columns_are_set_correctly());
|
||||
this->set_status(UNKNOWN);
|
||||
lp_assert(this->non_basic_columns_are_set_correctly());
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
solve();
|
||||
}
|
||||
|
||||
|
@ -1087,15 +1088,15 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::fill_breakpo
|
|||
|
||||
|
||||
template <typename T, typename X> bool lp_primal_core_solver<T, X>::done() {
|
||||
if (this->get_status() == OPTIMAL || this->get_status() == FLOATING_POINT_ERROR) return true;
|
||||
if (this->get_status() == INFEASIBLE) {
|
||||
if (this->get_status() == lp_status::OPTIMAL || this->get_status() == lp_status::FLOATING_POINT_ERROR) return true;
|
||||
if (this->get_status() == lp_status::INFEASIBLE) {
|
||||
return true;
|
||||
}
|
||||
if (this->m_iters_with_no_cost_growing >= this->m_settings.max_number_of_iterations_with_no_improvements) {
|
||||
this->get_status() = ITERATIONS_EXHAUSTED; return true;
|
||||
this->get_status() = lp_status::ITERATIONS_EXHAUSTED; return true;
|
||||
}
|
||||
if (this->total_iterations() >= this->m_settings.max_total_number_of_iterations) {
|
||||
this->get_status() = ITERATIONS_EXHAUSTED; return true;
|
||||
this->get_status() = lp_status::ITERATIONS_EXHAUSTED; return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
@ -1110,8 +1111,8 @@ void lp_primal_core_solver<T, X>::init_infeasibility_costs_for_changed_basis_onl
|
|||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::init_infeasibility_costs() {
|
||||
SASSERT(this->m_x.size() >= this->m_n());
|
||||
SASSERT(this->m_column_types.size() >= this->m_n());
|
||||
lp_assert(this->m_x.size() >= this->m_n());
|
||||
lp_assert(this->m_column_types.size() >= this->m_n());
|
||||
for (unsigned j = this->m_n(); j--;)
|
||||
init_infeasibility_cost_for_column(j);
|
||||
this->m_using_infeas_costs = true;
|
||||
|
@ -1135,7 +1136,7 @@ lp_primal_core_solver<T, X>::get_infeasibility_cost_for_column(unsigned j) const
|
|||
ret = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
ret = -1;
|
||||
} else {
|
||||
|
@ -1153,7 +1154,7 @@ lp_primal_core_solver<T, X>::get_infeasibility_cost_for_column(unsigned j) const
|
|||
ret = numeric_traits<T>::zero();
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
ret = numeric_traits<T>::zero(); // does not matter
|
||||
break;
|
||||
}
|
||||
|
@ -1189,7 +1190,7 @@ lp_primal_core_solver<T, X>::init_infeasibility_cost_for_column(unsigned j) {
|
|||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
case column_type::lower_bound:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
this->m_costs[j] = -1;
|
||||
} else {
|
||||
|
@ -1207,14 +1208,14 @@ lp_primal_core_solver<T, X>::init_infeasibility_cost_for_column(unsigned j) {
|
|||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
if (numeric_traits<T>::is_zero(this->m_costs[j])) {
|
||||
this->m_inf_set.erase(j);
|
||||
this->remove_column_from_inf_set(j);
|
||||
} else {
|
||||
this->m_inf_set.insert(j);
|
||||
this->insert_column_into_inf_set(j);
|
||||
}
|
||||
if (!this->m_settings.use_breakpoints_in_feasibility_search) {
|
||||
this->m_costs[j] = - this->m_costs[j];
|
||||
|
@ -1227,18 +1228,18 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column
|
|||
switch (this->m_column_type[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "( " << this->m_low_bounds[j] << " " << this->m_x[j] << " " << this->m_upper_bounds[j] << ")" << std::endl;
|
||||
out << "( " << this->m_lower_bounds[j] << " " << this->m_x[j] << " " << this->m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << "( _" << this->m_x[j] << " " << this->m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << "( " << this->m_low_bounds[j] << " " << this->m_x[j] << " " << "_ )" << std::endl;
|
||||
case column_type::lower_bound:
|
||||
out << "( " << this->m_lower_bounds[j] << " " << this->m_x[j] << " " << "_ )" << std::endl;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
out << "( _" << this->m_x[j] << "_)" << std::endl;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1277,7 +1278,7 @@ template <typename T, typename X> std::string lp_primal_core_solver<T, X>::break
|
|||
case upper_break: return "upper_break";
|
||||
case fixed_break: return "fixed_break";
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}
|
||||
return "type is not found";
|
||||
|
@ -1290,7 +1291,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_breakp
|
|||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::init_reduced_costs() {
|
||||
SASSERT(!this->use_tableau());
|
||||
lp_assert(!this->use_tableau());
|
||||
if (this->current_x_is_infeasible() && !this->m_using_infeas_costs) {
|
||||
init_infeasibility_costs();
|
||||
} else if (this->current_x_is_feasible() && this->m_using_infeas_costs) {
|
||||
|
@ -1305,12 +1306,12 @@ void lp_primal_core_solver<T, X>::init_reduced_costs() {
|
|||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::change_slope_on_breakpoint(unsigned entering, breakpoint<X> * b, T & slope_at_entering) {
|
||||
if (b->m_j == entering) {
|
||||
SASSERT(b->m_type != fixed_break && (!is_zero(b->m_delta)));
|
||||
lp_assert(b->m_type != fixed_break && (!is_zero(b->m_delta)));
|
||||
slope_at_entering += m_sign_of_entering_delta;
|
||||
return;
|
||||
}
|
||||
|
||||
SASSERT(this->m_basis_heading[b->m_j] >= 0);
|
||||
lp_assert(this->m_basis_heading[b->m_j] >= 0);
|
||||
unsigned i_row = this->m_basis_heading[b->m_j];
|
||||
const T & d = - this->m_ed[i_row];
|
||||
if (numeric_traits<T>::is_zero(d)) return;
|
||||
|
@ -1329,27 +1330,27 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::change_sl
|
|||
slope_at_entering += delta;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::try_add_breakpoint_in_row(unsigned i) {
|
||||
SASSERT(i < this->m_m());
|
||||
lp_assert(i < this->m_m());
|
||||
const T & d = this->m_ed[i]; // the coefficient before m_entering in the i-th row
|
||||
if (d == 0) return; // the change of x[m_entering] will not change the corresponding basis x
|
||||
unsigned j = this->m_basis[i];
|
||||
const X & x = this->m_x[j];
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
try_add_breakpoint(j, x, d, fixed_break, this->m_low_bounds[j]);
|
||||
try_add_breakpoint(j, x, d, fixed_break, this->m_lower_bounds[j]);
|
||||
break;
|
||||
case column_type::boxed:
|
||||
try_add_breakpoint(j, x, d, low_break, this->m_low_bounds[j]);
|
||||
try_add_breakpoint(j, x, d, low_break, this->m_lower_bounds[j]);
|
||||
try_add_breakpoint(j, x, d, upper_break, this->m_upper_bounds[j]);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
try_add_breakpoint(j, x, d, low_break, this->m_low_bounds[j]);
|
||||
case column_type::lower_bound:
|
||||
try_add_breakpoint(j, x, d, low_break, this->m_lower_bounds[j]);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
try_add_breakpoint(j, x, d, upper_break, this->m_upper_bounds[j]);
|
||||
|
@ -1357,7 +1358,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::try_add_b
|
|||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -1369,10 +1370,10 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_bound_
|
|||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "[" << this->m_low_bounds[j] << "," << this->m_upper_bounds[j] << "]" << std::endl;
|
||||
out << "[" << this->m_lower_bounds[j] << "," << this->m_upper_bounds[j] << "]" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << "[" << this->m_low_bounds[j] << ", inf" << std::endl;
|
||||
case column_type::lower_bound:
|
||||
out << "[" << this->m_lower_bounds[j] << ", inf" << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << "inf ," << this->m_upper_bounds[j] << "]" << std::endl;
|
||||
|
@ -1381,7 +1382,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_bound_
|
|||
out << "inf, inf" << std::endl;
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
|
@ -28,14 +28,14 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::one_iteratio
|
|||
else {
|
||||
advance_on_entering_tableau(entering);
|
||||
}
|
||||
SASSERT(this->inf_set_is_correct());
|
||||
lp_assert(this->inf_set_is_correct());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_entering_tableau(int entering) {
|
||||
X t;
|
||||
int leaving = find_leaving_and_t_tableau(entering, t);
|
||||
if (leaving == -1) {
|
||||
this->set_status(UNBOUNDED);
|
||||
this->set_status(lp_status::UNBOUNDED);
|
||||
return;
|
||||
}
|
||||
advance_on_entering_and_leaving_tableau(entering, leaving, t);
|
||||
|
@ -52,7 +52,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_enteri
|
|||
//this moment m_y = cB * B(-1)
|
||||
unsigned number_of_benefitial_columns_to_go_over = get_number_of_non_basic_column_to_try_for_enter();
|
||||
|
||||
SASSERT(numeric_traits<T>::precise());
|
||||
lp_assert(numeric_traits<T>::precise());
|
||||
if (number_of_benefitial_columns_to_go_over == 0)
|
||||
return -1;
|
||||
if (this->m_basis_sort_counter == 0) {
|
||||
|
@ -100,25 +100,26 @@ template <typename T, typename X>
|
|||
unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
||||
init_run_tableau();
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only) {
|
||||
this->set_status(FEASIBLE);
|
||||
this->set_status(lp_status::FEASIBLE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ((!numeric_traits<T>::precise()) && this->A_mult_x_is_off()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
return 0;
|
||||
}
|
||||
do {
|
||||
if (this->print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over((this->m_using_infeas_costs? "inf t" : "feas t"), * this->m_settings.get_message_ostream())) {
|
||||
return this->total_iterations();
|
||||
}
|
||||
if (this->m_settings.use_tableau_rows())
|
||||
if (this->m_settings.use_tableau_rows()) {
|
||||
one_iteration_tableau_rows();
|
||||
}
|
||||
else
|
||||
one_iteration_tableau();
|
||||
switch (this->get_status()) {
|
||||
case OPTIMAL: // double check that we are at optimum
|
||||
case INFEASIBLE:
|
||||
case lp_status::OPTIMAL: // double check that we are at optimum
|
||||
case lp_status::INFEASIBLE:
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
break;
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
|
@ -127,7 +128,7 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
this->init_lu();
|
||||
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
|
@ -135,7 +136,7 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
} else { // precise case
|
||||
if ((!this->infeasibility_costs_are_correct())) {
|
||||
init_reduced_costs_tableau(); // forcing recalc
|
||||
|
@ -143,31 +144,31 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case TENTATIVE_UNBOUNDED:
|
||||
case lp_status::TENTATIVE_UNBOUNDED:
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
|
||||
init_reduced_costs();
|
||||
break;
|
||||
case UNBOUNDED:
|
||||
case lp_status::UNBOUNDED:
|
||||
if (this->current_x_is_infeasible()) {
|
||||
init_reduced_costs();
|
||||
this->set_status(UNKNOWN);
|
||||
this->set_status(lp_status::UNKNOWN);
|
||||
}
|
||||
break;
|
||||
|
||||
case UNSTABLE:
|
||||
SASSERT(! (numeric_traits<T>::precise()));
|
||||
case lp_status::UNSTABLE:
|
||||
lp_assert(! (numeric_traits<T>::precise()));
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
this->set_status(lp_status::FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
|
@ -176,13 +177,13 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
default:
|
||||
break; // do nothing
|
||||
}
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR
|
||||
} while (this->get_status() != lp_status::FLOATING_POINT_ERROR
|
||||
&&
|
||||
this->get_status() != UNBOUNDED
|
||||
this->get_status() != lp_status::UNBOUNDED
|
||||
&&
|
||||
this->get_status() != OPTIMAL
|
||||
this->get_status() != lp_status::OPTIMAL
|
||||
&&
|
||||
this->get_status() != INFEASIBLE
|
||||
this->get_status() != lp_status::INFEASIBLE
|
||||
&&
|
||||
this->iters_with_no_cost_growing() <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&&
|
||||
|
@ -193,13 +194,13 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
this->m_settings.get_cancel_flag() == false);
|
||||
|
||||
if (this->m_settings.get_cancel_flag()) {
|
||||
this->set_status(CANCELLED);
|
||||
this->set_status(lp_status::CANCELLED);
|
||||
}
|
||||
|
||||
SASSERT(
|
||||
this->get_status() == FLOATING_POINT_ERROR
|
||||
lp_assert(
|
||||
this->get_status() == lp_status::FLOATING_POINT_ERROR
|
||||
||
|
||||
this->get_status() == CANCELLED
|
||||
this->get_status() == lp_status::CANCELLED
|
||||
||
|
||||
this->current_x_is_feasible() == false
|
||||
||
|
||||
|
@ -208,13 +209,13 @@ unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
|||
|
||||
}
|
||||
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving_tableau(int entering, int leaving, X & t) {
|
||||
SASSERT(this->A_mult_x_is_off() == false);
|
||||
SASSERT(leaving >= 0 && entering >= 0);
|
||||
SASSERT((this->m_settings.simplex_strategy() ==
|
||||
CASSERT("A_off", this->A_mult_x_is_off() == false);
|
||||
lp_assert(leaving >= 0 && entering >= 0);
|
||||
lp_assert((this->m_settings.simplex_strategy() ==
|
||||
simplex_strategy_enum::tableau_rows) ||
|
||||
m_non_basis_list.back() == static_cast<unsigned>(entering));
|
||||
SASSERT(this->m_using_infeas_costs || !is_neg(t));
|
||||
SASSERT(entering != leaving || !is_zero(t)); // otherwise nothing changes
|
||||
lp_assert(this->m_using_infeas_costs || !is_neg(t));
|
||||
lp_assert(entering != leaving || !is_zero(t)); // otherwise nothing changes
|
||||
if (entering == leaving) {
|
||||
advance_on_entering_equal_leaving_tableau(entering, t);
|
||||
return;
|
||||
|
@ -225,7 +226,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
t = -t;
|
||||
}
|
||||
this->update_basis_and_x_tableau(entering, leaving, t);
|
||||
SASSERT(this->A_mult_x_is_off() == false);
|
||||
CASSERT("A_off", this->A_mult_x_is_off() == false);
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
} else {
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
|
@ -240,7 +241,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
this->init_reduced_costs_tableau();
|
||||
}
|
||||
|
||||
SASSERT(!need_to_switch_costs());
|
||||
lp_assert(!need_to_switch_costs());
|
||||
std::list<unsigned>::iterator it = m_non_basis_list.end();
|
||||
it--;
|
||||
* it = static_cast<unsigned>(leaving);
|
||||
|
@ -249,7 +250,7 @@ template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_en
|
|||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving_tableau(int entering, X & t) {
|
||||
SASSERT(!this->A_mult_x_is_off() );
|
||||
CASSERT("A_off", !this->A_mult_x_is_off() );
|
||||
this->update_x_tableau(entering, t * m_sign_of_entering_delta);
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
return;
|
||||
|
@ -270,7 +271,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
const column_cell & c = col[k];
|
||||
unsigned i = c.m_i;
|
||||
const T & ed = this->m_A.get_val(c);
|
||||
SASSERT(!numeric_traits<T>::is_zero(ed));
|
||||
lp_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
limit_theta_on_basis_column(j, - ed * m_sign_of_entering_delta, t, unlimited);
|
||||
if (!unlimited) {
|
||||
|
@ -289,7 +290,7 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
const column_cell & c = col[k];
|
||||
unsigned i = c.m_i;
|
||||
const T & ed = this->m_A.get_val(c);
|
||||
SASSERT(!numeric_traits<T>::is_zero(ed));
|
||||
lp_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
unlimited = true;
|
||||
limit_theta_on_basis_column(j, -ed * m_sign_of_entering_delta, ratio, unlimited);
|
||||
|
@ -321,13 +322,12 @@ template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_
|
|||
return m_leaving_candidates[k];
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tableau() {
|
||||
// print_matrix(&(this->m_A), std::cout);
|
||||
SASSERT(this->A_mult_x_is_off() == false);
|
||||
SASSERT(basis_columns_are_set_correctly());
|
||||
CASSERT("A_off", this->A_mult_x_is_off() == false);
|
||||
lp_assert(basis_columns_are_set_correctly());
|
||||
this->m_basis_sort_counter = 0; // to initiate the sort of the basis
|
||||
this->set_total_iterations(0);
|
||||
this->iters_with_no_cost_growing() = 0;
|
||||
SASSERT(this->inf_set_is_correct());
|
||||
lp_assert(this->inf_set_is_correct());
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
if (this->m_settings.backup_costs)
|
||||
|
@ -341,13 +341,13 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tab
|
|||
}
|
||||
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
init_tableau_rows();
|
||||
SASSERT(this->reduced_costs_are_correct_tableau());
|
||||
SASSERT(!this->need_to_pivot_to_basis_tableau());
|
||||
lp_assert(this->reduced_costs_are_correct_tableau());
|
||||
lp_assert(!this->need_to_pivot_to_basis_tableau());
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_core_solver<T, X>::
|
||||
update_basis_and_x_tableau(int entering, int leaving, X const & tt) {
|
||||
SASSERT(this->use_tableau());
|
||||
lp_assert(this->use_tableau());
|
||||
update_x_tableau(entering, tt);
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
this->change_basis(entering, leaving);
|
||||
|
@ -355,36 +355,34 @@ update_basis_and_x_tableau(int entering, int leaving, X const & tt) {
|
|||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::
|
||||
update_x_tableau(unsigned entering, const X& delta) {
|
||||
this->add_delta_to_x_and_call_tracker(entering, delta);
|
||||
if (!this->m_using_infeas_costs) {
|
||||
this->m_x[entering] += delta;
|
||||
for (const auto & c : this->m_A.m_columns[entering]) {
|
||||
unsigned i = c.m_i;
|
||||
this->m_x[this->m_basis[i]] -= delta * this->m_A.get_val(c);
|
||||
this->update_column_in_inf_set(this->m_basis[i]);
|
||||
this->update_x_with_delta_and_track_feasibility(this->m_basis[i], - delta * this->m_A.get_val(c));
|
||||
}
|
||||
} else { // m_using_infeas_costs == true
|
||||
this->m_x[entering] += delta;
|
||||
SASSERT(this->column_is_feasible(entering));
|
||||
SASSERT(this->m_costs[entering] == zero_of_type<T>());
|
||||
lp_assert(this->column_is_feasible(entering));
|
||||
lp_assert(this->m_costs[entering] == zero_of_type<T>());
|
||||
// m_d[entering] can change because of the cost change for basic columns.
|
||||
for (const auto & c : this->m_A.m_columns[entering]) {
|
||||
unsigned i = c.m_i;
|
||||
unsigned j = this->m_basis[i];
|
||||
this->m_x[j] -= delta * this->m_A.get_val(c);
|
||||
this->add_delta_to_x_and_call_tracker(j, -delta * this->m_A.get_val(c));
|
||||
update_inf_cost_for_column_tableau(j);
|
||||
if (is_zero(this->m_costs[j]))
|
||||
this->m_inf_set.erase(j);
|
||||
this->remove_column_from_inf_set(j);
|
||||
else
|
||||
this->m_inf_set.insert(j);
|
||||
this->insert_column_into_inf_set(j);
|
||||
}
|
||||
}
|
||||
SASSERT(this->A_mult_x_is_off() == false);
|
||||
CASSERT("A_off", this->A_mult_x_is_off() == false);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::
|
||||
update_inf_cost_for_column_tableau(unsigned j) {
|
||||
SASSERT(this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows);
|
||||
SASSERT(this->m_using_infeas_costs);
|
||||
lp_assert(this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows);
|
||||
lp_assert(this->m_using_infeas_costs);
|
||||
T new_cost = get_infeasibility_cost_for_column(j);
|
||||
T delta = this->m_costs[j] - new_cost;
|
||||
if (is_zero(delta))
|
|
@ -22,7 +22,7 @@ Revision History:
|
|||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_primal_simplex.hpp"
|
||||
#include "util/lp/lp_primal_simplex_def.h"
|
||||
template bool lp::lp_primal_simplex<double, double>::bounds_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template bool lp::lp_primal_simplex<double, double>::row_constraints_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template double lp::lp_primal_simplex<double, double>::get_current_cost() const;
|
|
@ -26,12 +26,11 @@ Revision History:
|
|||
#include "util/lp/column_info.h"
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
namespace lp {
|
||||
template <typename T, typename X>
|
||||
class lp_primal_simplex: public lp_solver<T, X> {
|
||||
lp_primal_core_solver<T, X> * m_core_solver;
|
||||
vector<X> m_low_bounds;
|
||||
vector<X> m_lower_bounds;
|
||||
private:
|
||||
unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); }
|
||||
|
||||
|
|
|
@ -76,14 +76,14 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x
|
|||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
SASSERT(row >= 0 && row < this->row_count());
|
||||
lp_assert(row >= 0 && row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
T artificial_cost = - numeric_traits<T>::one();
|
||||
switch (constraint.m_relation) {
|
||||
case Equal: // no slack variable here
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
this->m_column_types[artificial] = column_type::lower_bound;
|
||||
this->m_costs[artificial] = artificial_cost; // we are maximizing, so the artificial, which is non-negatiive, will be pushed to zero
|
||||
this->m_basis[row] = artificial;
|
||||
if (rs >= 0) {
|
||||
|
@ -97,13 +97,13 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x
|
|||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_column_types[slack_var] = column_type::low_bound;
|
||||
this->m_column_types[slack_var] = column_type::lower_bound;
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
|
||||
if (rs > 0) {
|
||||
SASSERT(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
lp_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
// adding one artificial
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
this->m_column_types[artificial] = column_type::lower_bound;
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_basis[row] = artificial;
|
||||
|
@ -118,13 +118,13 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x
|
|||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
this->m_column_types[slack_var] = column_type::low_bound;
|
||||
this->m_column_types[slack_var] = column_type::lower_bound;
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
SASSERT(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
lp_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
this->m_column_types[artificial] = column_type::lower_bound;
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_x[artificial] = - rs;
|
||||
|
@ -192,12 +192,12 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_bas
|
|||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row) {
|
||||
SASSERT(row < this->row_count());
|
||||
lp_assert(row < this->row_count());
|
||||
auto ext_row_it = this->m_core_solver_rows_to_external_rows.find(row);
|
||||
SASSERT(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
|
||||
lp_assert(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
|
||||
unsigned ext_row = ext_row_it->second;
|
||||
auto constr_it = this->m_constraints.find(ext_row);
|
||||
SASSERT(constr_it != this->m_constraints.end());
|
||||
lp_assert(constr_it != this->m_constraints.end());
|
||||
auto & constraint = constr_it->second;
|
||||
unsigned j = this->m_A->column_count(); // j is a slack variable
|
||||
this->m_A->add_column();
|
||||
|
@ -208,34 +208,34 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_bas
|
|||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::fixed;
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
|
||||
this->m_upper_bounds[j] = m_lower_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_x[j] = - this->m_b[row];
|
||||
(*this->m_A)(row, j) = - numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::low_bound;
|
||||
this->m_column_types[j] = column_type::lower_bound;
|
||||
this->m_upper_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
case Less_or_equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::low_bound;
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
|
||||
this->m_column_types[j] = column_type::lower_bound;
|
||||
this->m_upper_bounds[j] = m_lower_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::solve_with_total_inf() {
|
||||
int total_vars = this->m_A->column_count() + this->row_count();
|
||||
if (total_vars == 0) {
|
||||
this->m_status = OPTIMAL;
|
||||
this->m_status = lp_status::OPTIMAL;
|
||||
return;
|
||||
}
|
||||
m_low_bounds.clear();
|
||||
m_low_bounds.resize(total_vars, zero_of_type<X>()); // low bounds are shifted ot zero
|
||||
m_lower_bounds.clear();
|
||||
m_lower_bounds.resize(total_vars, zero_of_type<X>()); // low bounds are shifted ot zero
|
||||
this->m_x.resize(total_vars, numeric_traits<T>::zero());
|
||||
this->m_basis.resize(this->row_count());
|
||||
this->m_costs.clear();
|
||||
|
@ -253,7 +253,7 @@ template <typename T, typename X> void lp_primal_simplex<T, X>::solve_with_total
|
|||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types,
|
||||
m_low_bounds,
|
||||
m_lower_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings, *this);
|
||||
m_core_solver->solve();
|
||||
|
@ -278,7 +278,6 @@ template <typename T, typename X> bool lp_primal_simplex<T, X>::bounds_hold(std:
|
|||
}
|
||||
|
||||
if (!it.second->bounds_hold(sol_it->second)) {
|
||||
// std::cout << "bounds do not hold for " << it.second->get_name() << std::endl;
|
||||
it.second->bounds_hold(sol_it->second);
|
||||
return false;
|
||||
}
|
||||
|
@ -296,10 +295,10 @@ template <typename T, typename X> T lp_primal_simplex<T, X>::get_row_value(unsig
|
|||
T ret = numeric_traits<T>::zero();
|
||||
for (auto & pair : it->second) {
|
||||
auto cit = this->m_map_from_var_index_to_column_info.find(pair.first);
|
||||
SASSERT(cit != this->m_map_from_var_index_to_column_info.end());
|
||||
lp_assert(cit != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = cit->second;
|
||||
auto sol_it = solution.find(ci->get_name());
|
||||
SASSERT(sol_it != solution.end());
|
||||
lp_assert(sol_it != solution.end());
|
||||
T column_val = sol_it->second;
|
||||
if (out != nullptr) {
|
||||
(*out) << pair.second << "(" << ci->get_name() << "=" << column_val << ") ";
|
||||
|
@ -344,7 +343,7 @@ template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraint_h
|
|||
}
|
||||
return true;;
|
||||
}
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return false; // it is unreachable
|
||||
}
|
||||
|
|
@ -19,7 +19,7 @@ Revision History:
|
|||
--*/
|
||||
#include <memory>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_settings.hpp"
|
||||
#include "util/lp/lp_settings_def.h"
|
||||
template bool lp::vectors_are_equal<double>(vector<double> const&, vector<double> const&);
|
||||
template bool lp::vectors_are_equal<lp::mpq>(vector<lp::mpq > const&, vector<lp::mpq> const&);
|
||||
|
|
@ -31,13 +31,16 @@ namespace lp {
|
|||
typedef unsigned var_index;
|
||||
typedef unsigned constraint_index;
|
||||
typedef unsigned row_index;
|
||||
|
||||
typedef vector<std::pair<mpq, constraint_index>> explanation_t;
|
||||
|
||||
enum class column_type {
|
||||
free_column = 0,
|
||||
low_bound = 1,
|
||||
upper_bound = 2,
|
||||
boxed = 3,
|
||||
fixed = 4
|
||||
};
|
||||
lower_bound = 1,
|
||||
upper_bound = 2,
|
||||
boxed = 3,
|
||||
fixed = 4
|
||||
};
|
||||
|
||||
enum class simplex_strategy_enum {
|
||||
undecided = 3,
|
||||
|
@ -48,7 +51,7 @@ enum class simplex_strategy_enum {
|
|||
|
||||
std::string column_type_to_string(column_type t);
|
||||
|
||||
enum lp_status {
|
||||
enum class lp_status {
|
||||
UNKNOWN,
|
||||
INFEASIBLE,
|
||||
TENTATIVE_UNBOUNDED,
|
||||
|
@ -81,7 +84,7 @@ inline std::ostream& operator<<(std::ostream& out, lp_status status) {
|
|||
|
||||
lp_status lp_status_from_string(std::string status);
|
||||
|
||||
enum non_basic_column_value_position { at_low_bound, at_upper_bound, at_fixed, free_of_bounds, not_at_bound };
|
||||
enum non_basic_column_value_position { at_lower_bound, at_upper_bound, at_fixed, free_of_bounds, not_at_bound };
|
||||
|
||||
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition
|
||||
|
||||
|
@ -91,11 +94,22 @@ public:
|
|||
};
|
||||
|
||||
struct stats {
|
||||
unsigned m_make_feasible;
|
||||
unsigned m_total_iterations;
|
||||
unsigned m_iters_with_no_cost_growing;
|
||||
unsigned m_num_factorizations;
|
||||
unsigned m_num_of_implied_bounds;
|
||||
unsigned m_need_to_solve_inf;
|
||||
unsigned m_max_cols;
|
||||
unsigned m_max_rows;
|
||||
unsigned m_gcd_calls;
|
||||
unsigned m_gcd_conflicts;
|
||||
unsigned m_cube_calls;
|
||||
unsigned m_cube_success;
|
||||
unsigned m_patches;
|
||||
unsigned m_patches_success;
|
||||
unsigned m_hnf_cutter_calls;
|
||||
unsigned m_hnf_cuts;
|
||||
stats() { reset(); }
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
};
|
||||
|
@ -115,53 +129,76 @@ private:
|
|||
};
|
||||
|
||||
default_lp_resource_limit m_default_resource_limit;
|
||||
lp_resource_limit* m_resource_limit;
|
||||
lp_resource_limit* m_resource_limit;
|
||||
// used for debug output
|
||||
std::ostream* m_debug_out;
|
||||
std::ostream* m_debug_out;
|
||||
// used for messages, for example, the computation progress messages
|
||||
std::ostream* m_message_out;
|
||||
std::ostream* m_message_out;
|
||||
|
||||
stats m_stats;
|
||||
random_gen m_rand;
|
||||
stats m_stats;
|
||||
random_gen m_rand;
|
||||
|
||||
public:
|
||||
unsigned reps_in_scaler;
|
||||
unsigned reps_in_scaler;
|
||||
// when the absolute value of an element is less than pivot_epsilon
|
||||
// in pivoting, we treat it as a zero
|
||||
double pivot_epsilon;
|
||||
double pivot_epsilon;
|
||||
// see Chatal, page 115
|
||||
double positive_price_epsilon;
|
||||
double positive_price_epsilon;
|
||||
// a quatation "if some choice of the entering vairable leads to an eta matrix
|
||||
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
|
||||
double entering_diag_epsilon;
|
||||
int c_partial_pivoting; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search;
|
||||
bool using_partial_pivoting;
|
||||
double entering_diag_epsilon;
|
||||
int c_partial_pivoting; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search;
|
||||
bool using_partial_pivoting;
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
double refactor_tolerance;
|
||||
double pivot_tolerance;
|
||||
double zero_tolerance;
|
||||
double drop_tolerance;
|
||||
double tolerance_for_artificials;
|
||||
double can_be_taken_to_basis_tolerance;
|
||||
double refactor_tolerance;
|
||||
double pivot_tolerance;
|
||||
double zero_tolerance;
|
||||
double drop_tolerance;
|
||||
double tolerance_for_artificials;
|
||||
double can_be_taken_to_basis_tolerance;
|
||||
|
||||
unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling;
|
||||
double scaling_maximum;
|
||||
double scaling_minimum;
|
||||
double harris_feasibility_tolerance; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris;
|
||||
unsigned max_number_of_iterations_with_no_improvements;
|
||||
unsigned max_total_number_of_iterations;
|
||||
double time_limit; // the maximum time limit of the total run time in seconds
|
||||
unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling;
|
||||
double scaling_maximum;
|
||||
double scaling_minimum;
|
||||
double harris_feasibility_tolerance; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris;
|
||||
unsigned max_number_of_iterations_with_no_improvements;
|
||||
unsigned max_total_number_of_iterations;
|
||||
double time_limit; // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
|
||||
bool m_bound_propagation;
|
||||
double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
|
||||
// end of dual section
|
||||
bool m_bound_propagation;
|
||||
bool presolve_with_double_solver_for_lar;
|
||||
simplex_strategy_enum m_simplex_strategy;
|
||||
|
||||
int report_frequency;
|
||||
bool print_statistics;
|
||||
unsigned column_norms_update_frequency;
|
||||
bool scale_with_ratio;
|
||||
double density_threshold;
|
||||
bool use_breakpoints_in_feasibility_search;
|
||||
unsigned max_row_length_for_bound_propagation;
|
||||
bool backup_costs;
|
||||
unsigned column_number_threshold_for_using_lu_in_lar_solver;
|
||||
unsigned m_int_gomory_cut_period;
|
||||
unsigned m_int_find_cube_period;
|
||||
unsigned m_hnf_cut_period;
|
||||
bool m_int_run_gcd_test;
|
||||
bool m_int_pivot_fixed_vars_from_basis;
|
||||
bool m_int_patch_only_integer_values;
|
||||
unsigned limit_on_rows_for_hnf_cutter;
|
||||
unsigned limit_on_columns_for_hnf_cutter;
|
||||
|
||||
unsigned random_next() { return m_rand(); }
|
||||
void set_random_seed(unsigned s) { m_rand.set_seed(s); }
|
||||
|
||||
bool bound_progation() const {
|
||||
return m_bound_propagation;
|
||||
}
|
||||
|
@ -172,15 +209,15 @@ public:
|
|||
|
||||
lp_settings() : m_default_resource_limit(*this),
|
||||
m_resource_limit(&m_default_resource_limit),
|
||||
m_debug_out( &std::cout),
|
||||
m_debug_out(&std::cout),
|
||||
m_message_out(&std::cout),
|
||||
reps_in_scaler(20),
|
||||
pivot_epsilon(0.00000001),
|
||||
positive_price_epsilon(1e-7),
|
||||
entering_diag_epsilon ( 1e-8),
|
||||
c_partial_pivoting ( 10), // this is the constant c from page 410
|
||||
depth_of_rook_search ( 4),
|
||||
using_partial_pivoting ( true),
|
||||
entering_diag_epsilon (1e-8),
|
||||
c_partial_pivoting (10), // this is the constant c from page 410
|
||||
depth_of_rook_search (4),
|
||||
using_partial_pivoting (true),
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
refactor_tolerance ( 1e-4),
|
||||
|
@ -189,7 +226,6 @@ public:
|
|||
drop_tolerance ( 1e-14),
|
||||
tolerance_for_artificials ( 1e-4),
|
||||
can_be_taken_to_basis_tolerance ( 0.00001),
|
||||
|
||||
percent_of_entering_to_check ( 5),// we try to find a profitable column in a percentage of the columns
|
||||
use_scaling ( true),
|
||||
scaling_maximum ( 1),
|
||||
|
@ -214,7 +250,15 @@ public:
|
|||
use_breakpoints_in_feasibility_search(false),
|
||||
max_row_length_for_bound_propagation(300),
|
||||
backup_costs(true),
|
||||
column_number_threshold_for_using_lu_in_lar_solver(4000)
|
||||
column_number_threshold_for_using_lu_in_lar_solver(4000),
|
||||
m_int_gomory_cut_period(4),
|
||||
m_int_find_cube_period(4),
|
||||
m_hnf_cut_period(4),
|
||||
m_int_run_gcd_test(true),
|
||||
m_int_pivot_fixed_vars_from_basis(false),
|
||||
m_int_patch_only_integer_values(true),
|
||||
limit_on_rows_for_hnf_cutter(75),
|
||||
limit_on_columns_for_hnf_cutter(150)
|
||||
{}
|
||||
|
||||
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
|
||||
|
@ -284,8 +328,6 @@ public:
|
|||
return is_eps_small_general<T>(t, tolerance_for_artificials);
|
||||
}
|
||||
// the method of lar solver to use
|
||||
bool presolve_with_double_solver_for_lar;
|
||||
simplex_strategy_enum m_simplex_strategy;
|
||||
simplex_strategy_enum simplex_strategy() const {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
@ -307,20 +349,9 @@ public:
|
|||
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
|
||||
}
|
||||
|
||||
int report_frequency;
|
||||
bool print_statistics;
|
||||
unsigned column_norms_update_frequency;
|
||||
bool scale_with_ratio;
|
||||
double density_threshold; // need to tune it up, todo
|
||||
#ifdef Z3DEBUG
|
||||
static unsigned ddd; // used for debugging
|
||||
#endif
|
||||
bool use_breakpoints_in_feasibility_search;
|
||||
unsigned random_next() { return m_rand(); }
|
||||
void random_seed(unsigned s) { m_rand.set_seed(s); }
|
||||
unsigned max_row_length_for_bound_propagation;
|
||||
bool backup_costs;
|
||||
unsigned column_number_threshold_for_using_lu_in_lar_solver;
|
||||
}; // end of lp_settings class
|
||||
|
||||
|
||||
|
@ -343,7 +374,7 @@ inline std::string T_to_string(const numeric_pair<mpq> & t) {
|
|||
|
||||
inline std::string T_to_string(const mpq & t) {
|
||||
std::ostringstream strs;
|
||||
strs << t.get_double();
|
||||
strs << t;
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
|
@ -382,7 +413,7 @@ inline void print_blanks(int n, std::ostream & out) {
|
|||
// after a push of the last element we ensure that the vector increases
|
||||
// we also suppose that before the last push the vector was increasing
|
||||
inline void ensure_increasing(vector<unsigned> & v) {
|
||||
SASSERT(v.size() > 0);
|
||||
lp_assert(v.size() > 0);
|
||||
unsigned j = v.size() - 1;
|
||||
for (; j > 0; j-- )
|
||||
if (v[j] <= v[j - 1]) {
|
||||
|
|
|
@ -26,30 +26,30 @@ std::string column_type_to_string(column_type t) {
|
|||
switch (t) {
|
||||
case column_type::fixed: return "fixed";
|
||||
case column_type::boxed: return "boxed";
|
||||
case column_type::low_bound: return "low_bound";
|
||||
case column_type::lower_bound: return "lower_bound";
|
||||
case column_type::upper_bound: return "upper_bound";
|
||||
case column_type::free_column: return "free_column";
|
||||
default: SASSERT(false);
|
||||
default: lp_unreachable();
|
||||
}
|
||||
return "unknown"; // it is unreachable
|
||||
}
|
||||
|
||||
const char* lp_status_to_string(lp_status status) {
|
||||
switch (status) {
|
||||
case UNKNOWN: return "UNKNOWN";
|
||||
case INFEASIBLE: return "INFEASIBLE";
|
||||
case UNBOUNDED: return "UNBOUNDED";
|
||||
case TENTATIVE_DUAL_UNBOUNDED: return "TENTATIVE_DUAL_UNBOUNDED";
|
||||
case DUAL_UNBOUNDED: return "DUAL_UNBOUNDED";
|
||||
case OPTIMAL: return "OPTIMAL";
|
||||
case FEASIBLE: return "FEASIBLE";
|
||||
case FLOATING_POINT_ERROR: return "FLOATING_POINT_ERROR";
|
||||
case TIME_EXHAUSTED: return "TIME_EXHAUSTED";
|
||||
case ITERATIONS_EXHAUSTED: return "ITERATIONS_EXHAUSTED";
|
||||
case EMPTY: return "EMPTY";
|
||||
case UNSTABLE: return "UNSTABLE";
|
||||
case lp_status::UNKNOWN: return "UNKNOWN";
|
||||
case lp_status::INFEASIBLE: return "INFEASIBLE";
|
||||
case lp_status::UNBOUNDED: return "UNBOUNDED";
|
||||
case lp_status::TENTATIVE_DUAL_UNBOUNDED: return "TENTATIVE_DUAL_UNBOUNDED";
|
||||
case lp_status::DUAL_UNBOUNDED: return "DUAL_UNBOUNDED";
|
||||
case lp_status::OPTIMAL: return "OPTIMAL";
|
||||
case lp_status::FEASIBLE: return "FEASIBLE";
|
||||
case lp_status::FLOATING_POINT_ERROR: return "FLOATING_POINT_ERROR";
|
||||
case lp_status::TIME_EXHAUSTED: return "TIME_EXHAUSTED";
|
||||
case lp_status::ITERATIONS_EXHAUSTED: return "ITERATIONS_EXHAUSTED";
|
||||
case lp_status::EMPTY: return "EMPTY";
|
||||
case lp_status::UNSTABLE: return "UNSTABLE";
|
||||
default:
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
}
|
||||
return "UNKNOWN"; // it is unreachable
|
||||
}
|
||||
|
@ -64,7 +64,7 @@ lp_status lp_status_from_string(std::string status) {
|
|||
if (status == "TIME_EXHAUSTED") return lp_status::TIME_EXHAUSTED;
|
||||
if (status == "ITERATIONS_EXHAUSTED") return lp_status::ITERATIONS_EXHAUSTED;
|
||||
if (status == "EMPTY") return lp_status::EMPTY;
|
||||
SASSERT(false);
|
||||
lp_unreachable();
|
||||
return lp_status::UNKNOWN; // it is unreachable
|
||||
}
|
||||
|
||||
|
@ -74,14 +74,12 @@ bool vectors_are_equal(T * a, vector<T> &b, unsigned n) {
|
|||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (!numeric_traits<T>::is_zero(a[i] - b[i])) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (std::abs(numeric_traits<T>::get_double(a[i] - b[i])) > 0.000001) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -97,7 +95,6 @@ bool vectors_are_equal(const vector<T> & a, const vector<T> &b) {
|
|||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (!numeric_traits<T>::is_zero(a[i] - b[i])) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -112,7 +109,6 @@ bool vectors_are_equal(const vector<T> & a, const vector<T> &b) {
|
|||
}
|
||||
|
||||
if (fabs(da - db) > 0.000001) {
|
||||
// std::cout << "a[" << i <<"] = " << a[i] << ", but " << "b[" << i <<"] = " << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
|
@ -18,7 +18,7 @@ Revision History:
|
|||
|
||||
--*/
|
||||
#include <string>
|
||||
#include "util/lp/lp_solver.hpp"
|
||||
#include "util/lp/lp_solver_def.h"
|
||||
template void lp::lp_solver<double, double>::add_constraint(lp::lp_relation, double, unsigned int);
|
||||
template void lp::lp_solver<double, double>::cleanup();
|
||||
template void lp::lp_solver<double, double>::count_slacks_and_artificials();
|
||||
|
@ -34,7 +34,6 @@ template void lp::lp_solver<double, double>::print_statistics_on_A(std::ostream
|
|||
template bool lp::lp_solver<double, double>::problem_is_empty();
|
||||
template void lp::lp_solver<double, double>::scale();
|
||||
template void lp::lp_solver<double, double>::set_scaled_cost(unsigned int);
|
||||
template std::string lp::lp_solver<double, double>::get_column_name(unsigned int) const;
|
||||
template lp::lp_solver<double, double>::~lp_solver();
|
||||
template void lp::lp_solver<lp::mpq, lp::mpq>::add_constraint(lp::lp_relation, lp::mpq, unsigned int);
|
||||
template void lp::lp_solver<lp::mpq, lp::mpq>::cleanup();
|
||||
|
@ -54,4 +53,3 @@ template void lp::lp_solver<lp::mpq, lp::mpq>::scale();
|
|||
template void lp::lp_solver<lp::mpq, lp::mpq>::set_scaled_cost(unsigned int);
|
||||
template lp::lp_solver<lp::mpq, lp::mpq>::~lp_solver();
|
||||
template double lp::lp_solver<double, double>::get_column_value_by_name(std::string) const;
|
||||
template std::string lp::lp_solver<lp::mpq, lp::mpq>::get_column_name(unsigned int) const;
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue